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Abstract: Cancer remains the primary cause of death worldwide. To develop less toxic anti-cancer
drugs to relieve the suffering and improve the survival of cancer patients is the major focus in the
anti-cancer field. To this end, marine creatures are being extensively studied for their anti-cancer
effects, since extracts from at least 10% of the marine organisms have been shown to possess anti-
tumor activities. As a classic Chinese traditional medicine, sea cucumbers and compounds extracted
from the sea cucumbers, such as polysaccharides and saponins, have recently been shown to exhibit
anti-cancer, anti-inflammatory, and anti-oxidant effects. Holothuria leucospilota (H. leucospilota) is a
tropical edible sea cucumber species that has been successfully cultivated and farmed in large scales,
providing a readily available source of raw materials to support the development of novel marine
anti-cancer drugs. However, very few studies have so far been performed on the biological activities
of H. leucospilota. In this study, we first investigated the anti-cancer effect of H. leucospilota protein
on three cancer cell lines (i.e., HepG2, A549, Panc02) and three normal cell lines (NIH-3T3, HaCaT,
16HBE). Our data showed that H. leucospilota protein decreased the cell viabilities of HepG2, A549,
HaCaT, 16HBE in a concentration-dependent manner, while Panc02 and NIH-3T3 in a time- and
concentration-dependent manner. We also found that the inhibitory effect of H. leucospilota protein
(≥10 µg/mL) on cell viability is near or even superior to EPI, a clinical chemotherapeutic agent.
In addition, our data also demonstrated that H. leucospilota protein significantly affected the cell
cycle and induced apoptosis in the three cancer cell lines investigated; in comparison, it showed no
effects on the normal cell lines (i.e., NIH-3T3, HaCaT and 16HBE). Finally, our results also showed
that H. leucospilota protein exhibited the excellent performance in inhibiting cell immigrations. In
conclusion, H. leucospilota protein targeted the cancer cell cycles and induced cancer cell apoptosis;
its superiority to inhibit cancer cell migration compared with EPI, shows the potential as a promising
anti-cancer drug.

Keywords: sea cucumber protein; anti-cancer activity; targeted effects; cell apoptosis; cell migration;
marine extractions
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1. Introduction

As the primary cause of death, cancer is responsible for approximate 10 million
deaths per year worldwide; the morbidity is increasing in both developing and developed
countries [1]. According to the World Health Organization (WHO), lung cancer (1.8 million
deaths), colon and rectal cancer (935,000 deaths), liver cancer (830,000 deaths), stomach
cancer (769,000 deaths) and breast cancer (685,000 deaths) are the top five cancers that cause
the most deaths per year [2]. While significant progress has been made in cancer treatments,
such as targeted therapy, cancer immunotherapy, radiation therapy and chemotherapy,
these treatments are still inadequate due to either their high costs, questionable efficacies,
serious side effects or drug resistance, limiting their wide applications in clinics [3–6].
Therefore, there is a pressing need to develop novel anti-cancer drugs that are broad-
spectrum, high potency, low toxicity and more cost effective.

Marine creatures are an enriched ore of drug development; at least 10% of the ma-
rine organism extracts possess anti-tumor properties [7,8]. Marine organism extracts are
characterized by high efficiency, safety, lower toxicity and reduced drug resistance [9].
At present, some of the marine organism extracts have demonstrated anti-cancer activity
in various preclinical studies; several marine organism-derived drugs, such as the cyclic
depsipeptide plitidepsin (Aplidin®), Tetrodotoxin (Tectin®), and Ralaniten acetate (EPI-506)
are already in clinical trials [10]. However, limited marine natural resources and complex-
ities associated with active chemical ingredients constitute bottlenecks in marine drugs
development [10,11].

Sea cucumbers (or holothurians), a classic traditional Chinese medicine, have been used
in traditional medicine practices for thousands of years in China and many other countries
in Asia. They have an impressive character of valuable nutrients, including triterpene gly-
cosides (saponins) [12–16], chondroitin sulfates, glycosaminoglycan [17] and peptides [18]
that are recognized as the origin of unique biological and pharmacological functions of sea
cucumbers, including anti-angiogenesis [19], anti-coagulation [20], anti-bacterial [21], anti-
inflammatory [18,22,23], anti-diabetic [24], and anti-cancer [12,15,16,19,25,26]. Among the
approximately 21 species of edible sea cucumber in China, with the exception of the
Apostichopus japonicus, all are tropical species. With the development of advanced breed-
ing technology of several tropical edible sea cucumbers (such as Holothuria leucospilota
(H. leucospilota) and Stichopus japonicus), large-scale breeding and farming of these trop-
ical edible sea cucumbers are possible. As a widespread tropical edible sea cucumber,
H. leucospilota protein makes up more than 70% of its body wall, which is the main source
of bioactive peptides [27]. However, the anti-cancer effect of protein generated from
H. leucospilota remains unexplored. In this study, we aim to explore a possible anti-cancer
effect of the H. leucospilota protein by investigating the effects of H. leucospilota protein on
cancer cell survival, migration, cell cycle, and apoptosis.

2. Materials and Methods
2.1. Reagents

MinuteTM Animal Cell/tissue total protein extraction kit (Invent Biotechnologies,
Eden Prairie, Minnesota, USA), Cell Counting Kit-8 (CCK-8, US EVERBRIGHT®INC.,
Suzhou, Jiangsu, China), Hoechst-33258 Staining Kit, Annexin V-FITC Apoptosis Detection
Kit, Cell Cycle and Apoptosis Analysis Kit (Beyotime, Zhen Jiang, Jiangsu, China), BCA
Protein Assay Kit (Keygen Biotech, Nanjing, Jiangsu, China), DMEM medium, fetal bovine
serum (FBS), Phosphate Buffer solution (PBS), RPMI-1640 medium (Gibco, Thermo Fisher
Scientific, Waltham, MA, USA), penicillin (100 Units/mL), streptomycin (100 µg/mL), and
0.25% Trypsin (1×) (Gibco, Grand Island, NY, United States of America (USA)) were used
in this study. Chemotherapeutic agent Epirubicin hydrochloride (EPI), a commonly used
anti-tumor drug to treat solid tumors, such as lung cancer, liver cancer, breast cancer, and
bladder cancer, was purchased from Aladdin.
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2.2. Sample Collection and Preparation

Sea cucumber (Holothuria leucospilota) were captured from Dapeng’ao Bay of China
(Latitude: 22◦32′6.95′′ N, Longitude: 114◦29′12.07′′ E). The body wall of sea cucumbers
was collected and stored at −80 ◦C. Total protein was extracted by MinuteTM Animal
Cell/Tissue total protein extraction kit and quantified by a BCA Protein Assay Kit by
following protocols by the vendors. Total protein of H. leucospilota was stored at −80 ◦C
until future use.

2.3. Cell Lines and Cell Cultures

Three cancer cell lines (Human hepatoma cell HepG2, ATCC® No. HB-8065TM; Human
lung carcinoma cell A549, ATCC® No. CCL-185TM; Human pancreatic cancer cell Panc02,
ATCC® No. CRL-2553TM), and three normal cell lines (mouse embryonic fibroblasts cell
NIH-3T3, ATCC® No. CRL-1658TM; Human bronchus epithelial cell 16HBE, ATCC® No.
CRL-2078TM; Human keratinocyte cell HaCaT was generously provided by the College of
Traditional Chinese Medicine of Guangdong Pharmaceutical University as a gift) were used
in this study. HepG2, Panc02, NIH-3T3, HaCaT and 16HBE cells were grown in regular
growth medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 Units/mL
of penicillin and 100 µg/mL of streptomycin. In addition, A549 cells were maintained
in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS), 100 Units/mL
of penicillin and 100 µg/mL of streptomycin. All cells were incubated at 37 ◦C with 5%
CO2 atmosphere.

2.4. Cellular Viability Assay

HepG2, Panc02, NIH-3T3, HaCaT and 16HBE cells were seeded on the wells of 96-well
plates at a density of 5000 cells per well, and A549 cells were seeded at a density of 4000 cells
per well; the cells were incubated overnight. Subsequently, the cells were treated for 24, 48,
and 72 h with increasing concentrations of H. leucospilota protein in triplicate, after which
the Cell Counting Kit-8 was used to determine cell viabilities using a Bio-Rad microplate
reader at 450 nm (Hercules, CA, USA) according to the vendor’s protocol. In parallel,
EPI (10 µM) and PBS (pH 7.4) were also used as positive and blank controls, respectively.
According to the protocol, cells were washed twice using PBS, then 10% CCK-8 reagent
was added into wells. Three hours later, plates were detected at 450 nm by a microplate
reader (Bio-Rad, Hercules, CA, USA). Data were presented as proportional viability (%) by
comparing the treatment groups (both H. leucospilota protein and EPI treatment groups)
with the PBS (pH 7.4) group (blank control), for which the viability was assumed to be
100%. Half maximal inhibitory concentration (IC50) values of H. leucospilota protein in
HepG2, Panc02, NIH-3T3, HaCaT, 16HBE, and A549 cell lines were determined and used
for further assay.

2.5. Cell Cycle Analysis

The cell cycle distribution was analyzed by flow cytometry using propidium iodide
(PI) staining, according to the manufacturer’s instructions. Specifically, HepG2, A549,
Panc02, NIH-3T3, HaCaT and 16HBE cells were separately seeded into the wells of 6-well
plates at a density of 2 × 105 cells per well and incubated for 24 h, after which the cells
were treated with either specific IC50 concentrations of H. leucospilota protein or EPI (10 µM)
for 48 h. Subsequently, the cells were trypsinized, collected, and, finally, fixed with 75%
EtOH/H2O (v/v) at 4 ◦C overnight. The fixed cells were stained in PI staining solution
containing RNase A (1×) for 30 min at 37 ◦C in the dark. The fluorescent signals were
detected by BD FACS Calibur (BD Bioscience). The results were analyzed using FlowJo
software (Version 10.0.7, Tree Star, Inc., Ashland, OR, USA).

2.6. Cell Apoptosis and Morphology Assay

Apoptotic cells were examined by flow cytometry analysis with an Annexin V-FITC
and propidium iodide (PI) double staining. In brief, HepG2, A549, Panc02, NIH-3T3, HaCaT
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and 16HBE cells were incubated overnight in wells of 6-well plates (2 × 105 cells/well), to
which IC50 concentrations of H. leucospilota protein were added and incubated with the cells
for an additional 48 h. Subsequently, the cells were detached, harvested, and incubated for
20 min with 500 µL Annexin V-FITC binding buffer, 5 µL Annexin V-FITC, and 10 µL PI in
the dark. The fluorescent signals were detected by BD FACS Calibur (BD Bioscience).

The morphological changes of the nuclei were observed by the staining of the nuclei of
the cells with Hoechst-33258. In brief, HepG2, A549, Panc02, NIH-3T3, HaCaT and 16HBE
cells were grown on sterile cover slips in 6-well plates treated with the IC50 concentrations
of H. leucospilota protein for 48 h. The cells were fixed in fixative for 15 min, washed
twice using PBS (pH 7.4), stained with 500 µL of Hoechst-33258 for 5 min and washed
twice with PBS (pH 7.4), mounted with prolonged gold anti-fade reagent, and observed
using a fluorescence microscope (Olympus Co, Tokyo, Japan) under 350 nm excitation and
460 nm emission.

2.7. Cell Migration Assay

HepG2, A549, Panc02, NIH-3T3, HaCaT and 16HBE cells were grown in 6-well tissue
culture plates until confluence. A scrape was carefully made through the confluent cell
monolayer with a plastic micropipette tip, washing cellular debris twice with PBS (pH 7.4).
Afterward, the IC50 concentrations of H. leucospilota proteinwere prepared to contain 1%
FBS, then were added to cells for 24 h. At the bottom side of each dish, two arbitrary
places were marked where the width of the wounds was photographed with an inverted
microscope (objective× 4) (Olympus Co, Tokyo, Japan) at time 0 and the 12 and 24 h period
time. Finally, the scratch areas were measured by Image J software (National Institutes of
Health, Bethesda, MD, USA) and the closure of the wounded area was calculated.

2.8. Statistical Analysis

All experiments were performed in triplicates and repeated at least three times. Data
are expressed as the mean ± SD. Statistical analysis was performed by unpaired Student’s
t-test and one-way ANOVA; a p < 0.05 was deemed significant.

3. Results
3.1. The Inhibitory Effects on Cell Viability

As shown in Figure 1, H. leucospilota protein reduced the cell viability of HepG2, A549,
HaCaT and 16HBE in a concentration-dependent manner, and in atime- and concentration-
dependent manner on Panc02 and NIH-3T3. For example, for HepG2 cells, at all concentra-
tions studied (i.e., 0.005–10 µg/mL), H. leucospilota protein showed significant cytotoxicity
at 24 h; however, at 48 and 72 h, it showed cytotoxicity similar to EPI only at a high con-
centration of 10 µg/mL. For the case of A549 cells, H. leucospilota protein did not show
significant cytotoxicity to the cells until the H. leucospilota protein concentration reached
10 µg/mL (p < 0.001). In contrast, for the case of Panc02 cells, H. leucospilota protein
demonstrated significant cytotoxicity even at lower concentrations (i.e., 0.005–1 µg/mL)
after 48 and 72 h (p < 0.001). In addition, its cytotoxicity was much more pronounced at
concentrations above 20 µg/mL at 24, 48, and 72 h. For NIH-3T3 cells, H. leucospilota pro-
tein decreased cell viability and reached a significant level above 5 µg/mL in both 48 and
72 h. In HaCaT cells, H. leucospilota protein at high concentration (>5 µg/mL) significantly
inhibited the proliferation. For 16HBE cells, H. leucospilota protein significantly inhibited
cell viability, and was sensitive to 16HBE cells in above 0.1 µg/mL at 24 and 48 h. The IC50
concentrations of H. leucospilota protein on six cell lines were determined and used for the
further assay, as 17.175 µg/mL in HepG2, 10.658 µg/mL (A549), 17.481 µg/mL (Panc02),
8.493 µg/mL (NIH-3T3), 9.282 µg/mL (HaCaT), and 3.489 µg/mL (16HBE), respectively.
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cycle of HepG2, A549, Panc02, and NIH-3T3 arrested in G2/M phase, and the distribu-
tion of both G0/G1 and S phases was reduced. Additionally, the cell cycle of HaCaT ar-
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Figure 1. Inhibition of cellular viability by Holothuria leucospilota (H. leucospilota) protein. Expo-
nentially growing HepG2, A549, Panc02, NIH-3T3, HaCaT and 16HBE cells were treated with EPI
(10 µM) and the increased concentrations of H. leucospilota protein for 24, 48, 72 h. Viable cells were
assayed as described in Materials and Methods. All experiments were repeated as least three times.
Data are expressed as Mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3.2. Effects of H. leucospilota Protein Treatment on the Distribution of Cell Cycle

It is evident from Figure 2 that, in comparison with EPI, H. leucospilota protein caused
various effects on the cell cycles of cell lines investigated, suggesting different action
mechanisms between H. leucospilota protein and EPI. With EPI treatments, the cell cycle of
HepG2, A549, Panc02, and NIH-3T3 arrested in G2/M phase, and the distribution of both
G0/G1 and S phases was reduced. Additionally, the cell cycle of HaCaT arrested in the
sub-G1 phase and decreased in the G0/G1 phase. In 16HBE cells, the distribution of the cell
cycle was arrested in S and G2/M phases, with a reduction in the G0/G1 phase (Figure 2).
In contrast, H. leucospilota protein treatment only significantly affected the cell cycles of
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cancer cells (i.e., HepG2, A549 and Panc02) but had no evident effects on the three normal
cells (i.e., NIH-3T3, HaCaT and 16HBE). For example, as shown in Figure 2, H. leucospilota
protein treatment arrested the G0/G1 phase and reduced the proportion of the G2/M
phase of HepG2 cells; the H. leucospilota protein treatment increased the G0/G1 phase and
decreased the distribution of S and G2/M phases of A549 cells; the H. leucospilota protein
treatment increased the S and G2/M phases and reduced G0/G1 phase of Panc02 cells.
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Figure 2. Effect of H. leucospilota protein on cell cycle distribution. Cells were treated with the IC50 
concentrations of H. leucospilota protein for 48 h, with EPI (10 μΜ) as positive control. All experi-
ments were repeated at least three times. Data are mean ± SD. * p <0.05, ** p <0.01, *** p <0.001, **** 
p <0.0001. 
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Figure 2. Effect of H. leucospilota protein on cell cycle distribution. Cells were treated with the
IC50 concentrations of H. leucospilota protein for 48 h, with EPI (10 µM) as positive control. All
experiments were repeated at least three times. Data are mean± SD. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.
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3.3. Effects of H. leucospilota Protein Treatment on Inducing Cell Apoptosis and Nuclear
Morphology Changes

From Figure 3, it is clear that the H. leucospilota protein treatment significantly induced
the apoptosis of cancer cells (HepG2, A549, and Panc02), but had little effects on normal
cells (NIH-3T3, HaCaT and 16HBE). Specifically, the apoptosis rate of all cancer cell lines
investigated was about 40% when treated with H. leucospilota protein (Figure 3), whereas
that of the normal cell lines was 7.16–29.65%, no significant difference compared with blank
control. In contrast, EPI significantly induced the apoptosis and necrosis of all six cell lines,
that of the rate was above 60% regardless of cell types (Figure 3).
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Figure 3. Effect of H. leucospilota protein treatment on cell apoptosis. Cells were treated with the
IC50 concentrations of H. leucospilota protein for 48 h, and EPI (10 µM) as positive group. * p < 0.05,
*** p < 0.001, **** p < 0.0001.

Consistent with the results from the apoptosis assay, morphological analysis of the
cancer cells after the treatment of H. leucospilota protein showed bright blue, nuclear
fragmentation, and chromatin condensation, clear evidence suggesting apoptosis [28]; in
contrast, morphological analysis did not show obvious morphological changes in any of
the H. leucospilota protein treated normal cells. However, all six cell lines treated with EPI
showed evident bright blue, nuclear fragmentation, chromatin condensation, and formation
of apoptotic bodies (Figure 4).

3.4. Effects of H. leucospilota Protein Treatment on Cell Migration

As shown in Figure 5, both H. leucospilota protein and EPI treatments significantly
inhibited cell migrations of all six cell lines (HepG2, A549, Panc02, NIH-3T3, HaCaT and
16HBE), and markedly reduced their proliferations. In addition, a closer analysis of the data
suggested that the H. leucospilota protein treatment exhibited more pronounced inhibition in
cell migrations (6.22% ± 1.85%–34.86% ± 3.15% (12 h) and 7.04% ± 1.70%–43.26% ± 7.18%
(24 h)) than EPI (6.35% ± 2.69%–45.99% ± 5.68% (12 h) and 9.08% ± 2.73%–74.52% ± 7.91%
(24 h)).
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Figure 5. Effect of H. leucospilota protein treatment on cellular migration. Wounds were introduced in
HepG2, A549, Panc02, NIH-3T3, HaCaT and 16HBE confluent mono-layers cultured in the presence
or absence (control) with the IC50 concentrations of H. leucospilota protein for 0, 12, and 24 h, and
EPI (10 µM) as positive group. Migration rate of HepG2, A549, Panc02, NIH-3T3, HaCaT, 16HBE in
Figure. Experiments were repeated at least three times. Data are expressed as mean ± SD. * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001.

4. Discussion

Despite advances in molecular biology of cancers, improved diagnosis, and even
optimal target therapies, the current treatment options for cancers are still insufficient to
cure cancer patients. Conventional chemotherapy drugs, such as docetaxel, cabazitaxel,
and epirubicin, and other widely used targeted therapy drugs, have led to concerns about
drug resistance due to different mechanisms, such as p53 mutations [29] or deficiency [30],
increased drug efflux by p-glycoprotein [31], enhancing DNA repair, and altering the
signaling pathway of apoptosis [32]. As such, there are still urgent need for innovative
anti-cancer drugs, especially in the unexplored areas of marine products.

Natural products, especially those derived from the marine environment, have recently
and globally become well known in the last two decades for their pharmacodynamic
potential in a variety of disease therapies such as cancer [33,34]. Several natural products
have contributed significantly to the treatment of many cancers, including lung cancer,
liver cancer, breast cancer, and averted multi-drug resistance [35–37]. Sea cucumber is
one of the marine organisms belonging to the phylum Echinodermata; their bioactive
compounds are attractive candidates for cancer chemoprevention and therapy; above
all, the protein of sea cucumber is an effective source of bioactive peptides. It had been
shown in previous studies show that peptides hydrolyzed from the body wall of the sea
cucumber hold antioxidant, anti-inflammatory [18], and immunomodulating capacity [38]
without exploring the anticancer effect. To our knowledge, the present study is the first to
perform a comparative investigation into the effects of sea cucumber (Holothuria leucospilota)
protein on the three cancer cell lines (HepG2, A549, Panc02) and the three normal cell lines
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(NIH-3T3, HaCaT and 16HBE) in cell viability, migration, cell cycle, cell apoptosis and
cell morphology.

In the present study, H. leucospilota protein showed inhibition on the viability of the
cancer cells in the manner of concentration or time- and concentration-dependency. Induc-
tion of apoptosis is one the most prominent markers of cytotoxic anti-tumor agents [39]. It
has been shown that some natural compounds isolated from sea cucumber induce apop-
totic pathways through several different mechanisms to inhibit cancer progression. Marine
triterpene glycosides Stichoposide C induces apoptosis through the activation of Fas and
caspase-8, cleavage of Bid, mitochondrial damage, and activation of caspase-3 [13]. Mar-
zouqi et al. found that Frondoside A increased the sub-G1 (apoptotic) cell fraction through
the activation of p53 and, subsequently, the caspases 9 and 3/7 cell death pathways in
breast cancer cells [40]. We found that the H. leucospilota protein exerted its cytotoxic action
through the induction of apoptosis, leading to the morphological changes in HepG2, A549,
and Panc02 cancer cell lines. This process may be associated with the alteration of relevant
pro-apoptotic factors, such as p53 [30], NF-KB [41], cleaved caspases-3, -8, and -9, cleaved
PARP, and Bax [42]. However, the three normal cell lines (NIH-3T3, HaCaT and 16HBE)
treated with H. leucospilota protein did not show induced cell apoptosis, suggesting that
the targeting effect of H. leucospilota protein is to specifically induce tumor cells to undergo
apoptosis while causing no damages to normal tissues. In contrast, all six cell lines treated
with EPI underwent induced apoptosis and necrosis, suggesting that EPI possesses a toxic
effect on both normal and cancer cells. Future studies will be necessary to explore possible
mechanisms of H. leucospilota protein-induced apoptosis.

The H. leucospilota protein affects cell viability, altering the cell apoptosis and cell cycle
distribution in cancer cells. Mammalian cells progress through several cell cycle phases (G1,
S, G2, and metaphase) during cellular division. Cell cycle checkpoints, notable features
of cell cycle progression, provide essential surveillance to prevent cells from entering the
next phase before the previous phase has been completed [43,44]. Thus, halting the cell
cycle can lead to prevention of cancer cell growth and division and is one of the major
strategies for cancer therapy. It is likely that H. leucospilota protein may act as cell cycle
non-specific drugs that inhibits cancer cell growth by targeting multiple phases of the cell
cycle. Our results demonstrated that H. leucospilota protein could arrest the G2/M phase
and G0/G1 phase in HepG2 cells, thereby promoting cell apoptosis and inhibiting tumor
invasion and metastasis. It has also been demonstrated that H. leucospilota protein not
only increased G0/G1 phase but also induced growth inhibition at S and G2/M phase
with significant apoptosis in A549 cells. The cell cycle of Panc02 cells were arrested in
S and G2/M phases, while the G0/G1 phase was reduced after being treated with the
IC50 concentration of H. leucospilota protein. It is interesting to note that the H. leucospilota
protein showed a greater selectivity and higher cytotoxicity than EPI towards cancer cells
compared to normal cells.

It has been reported that inhibition of cell cycle kinases or regulation of the lever
of cyclins can trigger tumor cell apoptosis, in addition to cell cycle arrest. The cell cycle
regulators, such as cyclins or cyclin-dependent kinases, play an important regulatory role
in cancer cell metabolism [45]. For example, Cyclin D1, an important regulator of cell cycle,
is over-expressed with high frequency in many human cancers, targeting pathways such as
the programmed cell death protein-1 (PD-1) axis [46]. The sulfated polysaccharide isolated
from sea cucumber Stichopus japonicus on the 6-hydroxydopamine-induced apoptosis in SH-
SY5Y cells (a human dopaminergic neuroblastoma cell line) significantly elevated protein
levers of Cyclin D3 [47]. It has been reported that, in sea cucumber (Apostichopus japonicus),
regulating Cyclin A could arrest cell cycle progression [48]. In HepG2, A549, and Panc02
cells, the effects of the distribution of cell cycle by H. leucospilota protein may be associated
with several cyclins, cyclin-dependent kinases and other regulatory mechanisms. However,
the results of cell cycle assay exhibited no significant effect of H. leucospilota protein on cell
cycle distribution of normal cells (NIH-3T3, HaCaT and 16HBE (p > 0.05)). The specific
mechanism needs further investigation in the future.
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Based on our findings, H. leucospilota protein demonstrated anti-cancer properties
through multiple mechanisms, including cytotoxic activity, induction of apoptosis, cell
cycle arrest, suppression of invasion. Malignant cancer is highly aggressive and metastatic
and continues to be an incurable leading cause of mortality [39]. Since tumor spreading
is responsible for 90% of all human cancer deaths, development of therapeutic agents
that inhibit tumor invasion or metastasis is highly desirable. We showed that the IC50
concentrations of H. leucospilota protein could impair cell migration in HepG2, A549, Panc02,
NIH-3T3, HaCaT and 16HBE cells 12 and 24 h after treatment, and that the protein’s ability
to inhibit cell migration was superior to EPI. We provided here evidence that H. leucospilota
protein exerts a stronger inhibitory effect on the migratory properties of the six cell lines. It
is likely that H. leucospilota protein could counter both the locally invasive and metastasizing
behavior of tumor cells, which holds promising anti-metastatic potential for cancer therapy.

As is well known, traditional Chinese medicine (TCM) compounds have been used for
a long time and are, traditionally, regarded as non-toxic and effective. Coincidentally, TCM
exerts its effect through multiple targets and pathways with multiple components, rather
than a single compound or herb. Sea cucumbers (H. leucospilota) have been extensively
used in traditional Chinese medicine or as a dietary supplement; it has been reported that
sea cucumber intestinal peptide induces apoptosis of MEC-7 breast cells via inhibition of
the PI3K/AKT signal transduction pathway [49]. Furthermore, the anti-cancer effect of
the sea cucumber intestinal peptide has been shown to be modulated through inhibiting
the overexpression of EGFR, PI3K, AKT1, and CDK4 and through inhibiting the malig-
nancy of lung cancer by regulating miR-378a-5p-targeted tumor suppressor candidate gene
2 (TUSC2) [50,51]. It has also been shown that sea cucumber-derived peptides could play a
role in alleviating oxidative stress in cells [52]. These studies provide an experimental basis
for the further development of sea cucumber as an anti-cancer nutritional supplement and
a new direction to explore the mechanism of food-derived active peptides in anti-cancer
applications. However, the exact molecular mechanism for this still remains unclear.

Our research showed that H. leucospilota protein plays an anti-cancer role in various
human cancers, which may be associated with complexes (total protein) of the body wall to
exert synergistic action, rather than with a single protein. However, further research is still
required to identify and elucidate the active ingredients of H. leucospilota protein, to detail
underlying molecular mechanisms of targeted cancer cells and to carry out pharmacological
experiments in vivo. It should also be noted that an appropriate drug delivery method
would also be required for the potential of the H. leucospilota protein as an anti-cancer
treatment to be fully realized.

5. Conclusions

The marine-derived natural product sea cucumber (Holothuria leucospilota) protein
showed potential anti-cancer activity toward HepG2, A549, and Panc02 cells and was
more effective in reducing cell migration than EPI (the clinical anticancer drug). The
targeted effects of H. leucospilota protein on cancer cells, including induction of apoptosis,
suppression of metastasis on tumor cells, as well as the effect of cell cycle arrest make
the H. leucospilota protein a promising candidate for the treatment and prevention of
human cancers.
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