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Dental pulp stem cells overexpressing ")
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repair of DSS-induced ulcerative colitis
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Abstract

Background: Ulcerative colitis (UC) is a chronic and recurrent disease without satisfactory treatment strategies.
Dental pulp stem cell (DPSC) transplantation has been proposed as a potential therapy for UC. This study aimed to
investigate the therapeutic effects of the rat hepatocyte growth factor (HGF) gene transduced into DPSCs for UC.

Methods: The therapeutic effects of HGF-DPSCs transplanted intravenously into a rat model of UC induced by 5%
dextran sulphate sodium (DSS) were compared with the other treatment groups (LV-HGF group, DPSCs group and
GFP-DPSCs group). Immunofluorescence and immunohistochemistry were used to observe the localization and
proliferation of HGF-DPSCs at the site of colon injury. The expression levels of inflammatory factors were detected
by real-time quantitative PCR (RT-PCR) and western blotting. The oxidative stress markers were detected by ELISA.
DAl scores and body weight changes were used to macroscopically evaluate the treatment of rats in each group.

Results: Immunofluorescence and immunohistochemistry assays showed that HGF-DPSCs homed to colon injury
sites and colocalized with intestinal stem cell (ISC) markers (Bmi1, Musashil and Sox9) and significantly promoted
protein expression (Bmil, Musashil, Sox9 and PCNA). Anti-inflammatory cytokine (TGF-f and IL-10) expression was
the highest in the HGF-DPSCs group compared with the other treatment groups, while the expression of pro-
inflammatory cytokines (TNF-a and INF-y) was the lowest. Additionally, the oxidative stress response results showed
that malondialdehyde (MDA) and myeloperoxidase (MPO) expression decreased while superoxide dismutase (SOD)
expression increased, especially in the HGF-DPSCs group. The DAI scores showed a downward trend with time in
the five treatment groups, whereas body weight increased, and the changes were most prominent in the HGF-
DPSCs group.

Conclusions: The study indicated that HGF-DPSCs can alleviate injuries to the intestinal mucosa by
transdifferentiating into ISC-like cells, promoting ISC-like cell proliferation, suppressing inflammatory responses and
reducing oxidative stress damage, which provides new ideas for the clinical treatment of UC.
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Background

Ulcerative colitis (UC) is an inflammatory bowel disease
(IBD) localized in the colon and rectum that is charac-
terized by chronic and typically recurrent disease. Al-
though the pathogenesis of UC has been confirmed to
be related to genetic susceptibility, environmental factors
and autoimmunity, it has not been fully elucidated [1, 2].
The typical clinical manifestations of UC are recurring
abdominal pain, diarrhoea and bloody purulent stool. Se-
vere UC may induce life-threatening complications, such
as enterorrhagia and toxic megacolon [3]. The primary
therapies used for mild and severe UC are limited to
medication (corticosteroids, aminosalicylates and immu-
nosuppressants) and surgical treatment [4, 5]. Under
medical treatment, most patients with UC achieve tem-
porary remission, while the long-term application of
these drugs can trigger adverse effects, such as gastro-
intestinal reactions, hepatotoxicity nephrotoxicity and
bone marrow suppression [6-8]. Surgical treatment is
generally supposed to be the ultimate solution for UC,
and ileal pouch anal anastomosis (IPAA) is a significant
treatment for chronic and medically refractory mucosal
UC. However, IPAA is accompanied by significant
trauma and a variety of related complications, such as
wound infection, anastomotic leakage or stricture, small
bowel obstruction, pelvic sepsis, pouch-related fistula,
pouchitis and pouch failure [9-11]. These side effects
impose an economic burden on patients and seriously
affect their quality of life [12]. Therefore, novel therapies
for UC are urgently required to improve the quality of
life of patients.

Mesenchymal stem cell (MSC) transplantation repre-
sents an innovative treatment for UC. MSCs have been
shown to migrate to injuries at intestinal sites and facili-
tate damaged tissue repair by controlling the local devel-
opment of inflammation [5, 13]. Dental pulp stem cells
(DPSCs), a type of MSC, are characterized by self-
renewal, multipotent differentiation potential and ampli-
fication in vitro. Under appropriate extracellular stimuli,
DPSCs differentiate into various lineages, including oste-
oblasts, neurons, vascular cells and hepatocytes [14, 15].
Numerous studies have revealed that DPSCs could mi-
grate to the lesion site, which accelerates tissue repair
and regeneration [16, 17]. In addition, DPSCs present
easy access, low-risk immune rejection and fewer ethical
issues; hence, they can be used as ideal gene vehicles
with wide application prospects [18, 19].

The intestinal mucosa is composed of proliferating
epithelial cells. After intestinal mucosa injury occurs in
UC, multiple growth factors and cytokines are induced
at luminal and submucosal locations [20]. Research has
shown that growth factors are strictly related to the pro-
cesses of cell proliferation, migration, regeneration and
ulcer healing [21]. Hepatocyte growth factor (HGEF)
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secreted by MSCs plays a crucial role in the proliferation
and migration of intestinal epithelial cells and reduces
inflammatory cell infiltration [22]. Nevertheless, the
physiological function of HGF is closely linked to the
serum concentration, and repeated administration is re-
quired for a better therapeutic effect; however, such
treatment is expensive and inconvenient and restrains
the therapeutic effect on UC [22, 23]. Therefore, in this
study, the rat HGF gene was transduced into DPSCs to
compare the therapeutic effect of the HGF-DPSCs group
with other treatment groups to determine whether
HGEF-overexpressing DPSCs provide the most suitable
treatment for UC.

Methods

Experimental animals

Male Sprague-Dawley (SD) rats weighing approxi-
mately 100 g were purchased from the animal facility
of the Second Affiliated Hospital of Harbin Medical
University. All rats were maintained under 12:12-h
light-dark cycles in standard animal cages and fed a
standard pellet diet as well as drinking water ad libi-
tum. All experiments and methods were performed
strictly following the institutional guides for animal
experiments, and they were approved by the Ethics
Committee of the Second Affiliated Hospital of Har-
bin Medical University (No. SYDW2018-028).

UC model establishment

The UC model was induced by intragastric administra-
tion [24, 25] using 5% dextran sulphate sodium (DSS,
Shanghai Yuanye Bio-Technology Co., Ltd.) dissolved in
distilled water (3.5ml/100g) for 14 consecutive days,
while the controls were treated with distilled water (3.5
ml/100 g). To verify the establishment of the UC model,
five DSS-treated experimental rats and five control rats
were sacrificed to evaluate the changes in colon and rec-
tum lengths, body weights and DAI scores. Then, the
remaining DSS-treated rats were randomly divided into
the following five groups (n =5 rats/group): saline treat-
ment (UC group, saline, 300 ul), HGF treatment (LV-
HGF group, 300 ul), DPSCs treatment (DPSCs group,
1.0 x 10° cells, 300 pl), green fluorescent protein (GFP)-
modified DPSC treatment (GFP-DPSCs group, 1.0 x 10°
cells, 300pl) and HGF-modified DPSCs treatment
(HGF-DPSCs group, 1.0 x 10° cells, 300 ul). All treat-
ments were administered by tail vein injections into the
rats.

Haematoxylin-eosin staining

The colon tissues were collected and fixed in a 4% para-
formaldehyde solution. After conventional dehydration
and paraffin embedding, these tissues were cut into 5-
pum-thick sections stained with haematoxylin-eosin (HE)
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according to the instructions. The slice images were ob-
served by a BX51 microscope (Olympus, Tokyo, Japan).

Evans blue staining

After using DSS for 14 consecutive days, five UC rats
and control rats were randomly selected for Evans blue
staining. Evans blue solution (2%, 4 ml/kg) was injected
into rats through the tail vein. Then, the rats were sacri-
ficed 2 h later, and intestinal staining was observed.

Preparation of DPSCs for cell transplant therapy

DPSCs were extracted from the upper incisors of SD rats
(male, 38-42g, n=2) and resuspended in phosphate-
buffered saline (PBS) with 0.3% type I collagenase for 30
min at 37 °C. After centrifugation at 1000 rpm for 10
min, DPSCs were incubated with high-glucose DMEM
containing 15% foetal bovine serum (FBS, ScienCell Re-
search Laboratories, CA, USA), 100 IU/ml penicillin-G
and 100 mg/ml streptomycin (JR Scientific, Woodland,
CA) at 37°C in a humidified atmosphere with 5% CO,.
The third-generation DPSCs were transduced with lenti-
viral (LV)-HGF (Hanbio Biotechnology (Shanghai) Co.,
Ltd.) or LV-GFP at a multiplicity of infection (MOI) of
80 according to the manufacturer’s instructions. In
short, the original culture medium of the DPSCs was re-
moved via suction, and a 1/2 volume of lentivirus cul-
ture medium (0.5 ml) was added. Then, the cells were
infected at 37 °C for 4 h and replenished to a normal vol-
ume by adding 0.5 ml culture medium. After infection
for 24'h, the culture medium containing the virus was
removed via suction, replaced with fresh complete
medium and cultured at 37 °C. DPSCs with green fluor-
escence were observed under a fluorescence microscope
after 48 h of infection. The LV-GFP-DPSCs and LV-
HGEF-DPSCs were screened by puromycin dihydrochlor-
ide (1 pg/ml, Thermo Fisher Scientific). The expression
levels of HGF were assessed by western blotting.

Flow cytometry

An immunophenotyping analysis of DPSCs was per-
formed by flow cytometry. The cells were incubated with
rat monoclonal antibodies against CD90 (0.2 mg/ml,
551401, BD Pharmingen), CD45 (0.2 mg/ml, 559135, BD
Pharmingen), CD29 (0.5 mg/ml, 561796, BD Pharmin-
gen) and CD11b (0.2 mg/ml, 562102, BD Pharmingen) at
4.°C for 30 min. An isotype control antibody was used as
a negative control group. After incubation, DPSCs were
washed by PBS. Signals were recorded by flow cytometry
using a fluorescence-activated cell sorting (FACS) Canto
IT system (BD Biosciences, San Jose, CA, USA), and the
data were analysed by FlowJo 10.0 (Tree Star, Inc., San
Carlos, CA, USA).
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Osteogenic and adipogenic differentiation

The differentiation capacities of DPSCs were detected
according to a previously described method [26]. Briefly,
third-passage DPSCs were incubated with adipogenic or
osteogenic differentiation medium for 2weeks. Then,
DPSCs were stained with oil red O (Sigma-Aldrich) and
alizarin red S (Sigma-Aldrich) and observed under a
microscope (Olympus, Tokyo, Japan).

Tissue processing

After 4 weeks of treatment, the rats (nz = 5) were anesthe-
tized with xylazine (10 mg/kg) and ketamine (60 mg/kg).
The colons were divided into three portions that were
quickly frozen for nucleic acid and protein level detec-
tion, temporarily placed in 4% paraformaldehyde for
histological analysis or provisionally placed in precooled
PBS for oxidative stress markers determination. Add-
itionally, the liver, spleen, kidney and lung tissues were
also removed and temporarily placed in 4% paraformal-
dehyde for histological analysis.

Immunofluorescence staining

The colon, liver, spleen, kidney and lung tissues of the
rats (n = 5) were fixed in 4% paraformaldehyde overnight
and then dehydrated in 30% sucrose solution. The tis-
sues were embedded in optimal cutting temperature
(OCT) compound and cut into 5-pum-thick frozen sec-
tions. After soaking with PBS, the sections were placed
in 5% normal goat serum (abs933, Absin, Shanghai,
China) and incubated with anti-Bmil (1:200, ab14389,
Abcam), anti-Musashil (1:200, c-135,721, Santa Cruz
Biotechnology), anti-Sox9 (1:100, ab3697, Abcam) and
anti-PCNA antibodies (1:200, ab92552, Abcam) at 4°C
overnight. Next, the sections were washed in PBS and
incubated at 37 °C for 1h with anti-mouse IgG (1:500,
8890, Cell Signaling Technology) and anti-rabbit IgG (1:
500, 8889, Cell Signaling Technology). Sections were
then stained with DAPI and anti-fading medium before
observation by a laser scanning confocal microscope
(LSM 510 META; Zeiss, Germany), and the results were
semi-quantitatively analysed with ImageJ (National Insti-
tutes of Health, Bethesda, USA).

Immunohistochemical analysis

The colon tissues (1 =5) were embedded in paraffin and
cut into 5-um-thick slices after conventional dehydra-
tion. The sections were dewaxed in xylene and dehy-
drated in grade ethanol. These sections were placed in
boiling ethylenediaminetetraacetic acid (EDTA) for anti-
gen retrieval, and then 3% hydrogen peroxide was used
to suppress endogenous peroxidase activity. After appli-
cation of bovine serum albumin (BSA) for 30 min, the
sections were incubated at 4 °C overnight with primary
antibodies against Bmil (1:500, ab14389, Abcam),
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Musashil (1:200, sc-135721, Santa Cruz Biotechnology),
Sox9 (1:200, ab3697, Abcam) and PCNA (1:200,
ab92552, Abcam) followed by secondary antibodies
(anti-rabbit (8114, Cell Signaling Technology) and anti-
mouse (8125, Cell Signaling Technology)) for 1h. Next,
the sections were placed in diaminobenzidine (DAB) as
the substrate and stained with haematoxylin. Then, the
slides were subjected to conventional dehydration, clear-
ing and sealing. The results were observed with a BX51
microscope (Olympus, Tokyo, Japan) and semiquantita-
tively analysed by Image] (National Institutes of Health,
Bethesda, USA).

Real-time quantitative PCR

Total RNA was extracted from frozen colon tissues
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions. The
c¢DNAs were produced by reverse transcription using a
Transcriptor First Strand ¢cDNA Synthesis Kit (Roche
Diagnostics GmbH, Mannheim, Germany). The template
DNA was amplified by real-time quantitative PCR (RT-
PCR) using the Fast Start Universal SYBR Green Master
kit (Roche Diagnostics GmbH, Mannheim, Germany). In
brief, PCRs were performed at 95°C for 10 min to acti-
vate FastStart Taq DNA polymerase, followed by ampli-
fication of 40 cycles of 95 °C for 15s and 60 °C for 1 min.
The relative gene expression levels were normalized to
B-actin using the 22T quantitation method [27]. The
RT-PCR primers are shown below: TNF-a F: CGGAAA
GCATGATCCGAGAT, R: AGACAGAAGAGCGTGG
TGGC; IFN-y F: GTGTCATCGAATCGCACCTGA, R:
TTGTGCTGGATCTGTGGGTTG; TGE-f F: GAAC
CAAGGAGACGGAATACAGG, R: GAGGAGCAGG
AAGGGTCGGT; IL-10 F: CCAGTCAGCCAGACCCAC
AT, R: GCATCACTTCTACCAGGTAAAAC; pB-actin F:
GGAGATTACTGCCCTGGCTCCTAGC, R: GGCCGG
ACTCATCGTACTCCTGCTT.

Western blotting

Frozen colon tissues, DPSCs, GFP-DPSCs and HGEF-
DPSCs were homogenized in lysis buffer containing prote-
ase inhibitors. After the lysates were centrifuged at 12,000
rpm for 10 min at 4°C, the supernatants were collected
and the total protein concentration was measured by a
BCA protein concentration determination kit (Beyotime,
P00125) in accordance with the manufacturer’s instruc-
tions. Protein extracts were electrophoresed on 5% SDS-
PAGE gels and further transferred to polyvinylidene fluor-
ide (PVDF) membranes. After blocking with 5% skim milk
for 1h, the membranes were incubated with primary anti-
bodies against TNF-a (Santa Cruz Biotechnology, sc-
52746, 1:500), TGF-B (Cell Signaling Technology, #3711,
1:500), IL-10 (Abcam, ab33471, 1:1000), IFN-y (R&D Sys-
tems, MAB585, 1:1000), HGF (Abcam, ab83760, 1:500)

Page 4 of 13

and P-actin (Abcam, ab8226, 1:1000) at 4°C overnight.
Then, the membranes were washed in TBST three times
and incubated with horseradish peroxidase (HRP)-conju-
gated anti-mouse (Abcam, ab6728, 1:5000) and anti-rabbit
IgG (Abcam, ab6721, 1:5000) for 1 h at room temperature.
The protein bands were visualized by enhanced chemilu-
minescence (ECL) solution, and the immunoblotting
images were captured by an Omega-Lum G imaging
system.

Detection of oxidative stress

The colon tissues were washed thoroughly with pre-
cooled PBS (4°C) and then homogenized and centri-
fuged at 5000 rpm for 10 min to obtain the supernatant,
which was collected for myeloperoxidase (MPO, Cloud-
Clone Corp, SEA601Ra), malondialdehyde (MDA,
Cloud-Clone Corp, CEA597Ge) and superoxide dismut-
ase (SOD, Cloud-Clone Corp, SES134Ra) assays. All pro-
cedures were performed according to the manufacturer’s
instructions.

Assessment of disease activity index

The disease activity index (DAI) scores were considered
based on a complex evaluation of weight loss, stool
consistency and bloody stool extent. Each parameter was
assigned a score from 0 to 4, and the total score ranged
from O (unaffected) to 12 (severe colitis) in accordance
with previous studies [28, 29].

Statistical analysis

All the data are presented as the means + SD and were
analysed by SPSS 24.0 (SPSS Inc., Chicago, IL, USA). Stat-
istical analyses were performed by Student’s t test and
one-way analysis of variance (one-way ANOVA) followed
by Bonferroni’s multiple comparison test and two-way
ANOVA. Statistical charts were prepared using GraphPad
Prism 8.0 software (GraphPad Inc., La Jolla, CA, USA).
Differences were identified as significant at p < 0.05.

Results

Verification of the rat model of UC

During the period of intragastric administration of DSS,
weight alterations, faecal traits and haematochezia were
constantly monitored. Over time, the rats showed bloody
stool (Fig. 1a). Compared with the control group, the
body weights of the UC group were dramatically lower
at day 14, and the DAI scores showed the opposite trend
(p <0.01, Fig. 1f, g). The colon and rectum lengths of the
UC group were significantly shorter than those of the
control group (p <0.001, Fig. 1b, e). Evans blue staining
showed that the injury sites in the UC rats were darker
than those in the control rats (Fig. 1c). Compared to the
control group, a histopathology examination showed
partially missing glands, mucosal epithelium necrosis
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and loss and a large number of infiltrating inflammatory = DPSCs transdifferentiated into adipocytes and osteocytes,
cells in the UC group (Fig. 1d). which were identified by Oil Red O and Alizarin Red stain-

ing (Fig. 2d, e). The FACS results indicated that more than
Virus-transduced DPSCs exhibited mesenchymal stem cell ~ 95% of the DPSCs expressed CD90 and CD29, which are
antigenic markers the antigenic phenotypes of MSCs, and less than 6% of the
Under proper medium, DPSCs gradually attached to the DPSCs expressed CD45 (haemopoietic stem cell marker)
culture flask wall and showed a fusiform shape (Fig. 2a—c). and CD11b (monocyte/macrophage surface marker)
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(Fig. 2j). Construction of the rat HGF gene-modified lenti-
viral vector is shown (Fig. 2f). The transduction efficiency
was evaluated by different MOIs (Fig. 2g). Infected DPSCs
were observed with bright green fluorescence under a laser
scanning confocal microscope (Fig. 2h). The expression
levels of HGF in HGF-DPSCs were the highest compared
with DPSCs and GFP-DPSCs (Fig. 2i).

Transplanted DPSCs homed to injured colons and
transdifferentiated into intestinal stem cell-like cells

Four weeks after cell transplantation, immunofluorescence
assays of Bmil, Musashil, Sox9 and PCNA were per-
formed in the colon, liver, spleen, kidney and lung tissues.
Bmil, Musashil and Sox9 are intestinal stem cell (ISC)
markers, including Bmil, which was initially detected at
the +4 position from the bottom of the crypts [30, 31].
Musashil is strongly expressed at the base of the intestinal
crypts [32]. Sox9 is widely expressed in the colonic crypts
and intestinal epithelium and associated with ISC prolifer-
ation and self-renewal [33, 34]. PCNA is known as a pro-
liferating cell nuclear antigen [35]. However, GFP-DPSCs
and HGF-DPSCs were only visible in the colons (Fig. 3a—
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¢). Moreover, GFP-DPSCs and HGF-DPSCs were cola-
belled with Bmil, Musashil, Sox9 and PCNA. A semi-
quantitative analysis showed that the percentages of
double-stained (GFP/DAPI) cells in the HGF-DPSCs
group were significantly higher than those in the GFP-
DPSCs group (p<0.01) (Fig. 3d). The GFP-DPSCs and
HGE-DPSCs groups showed little difference in Pearson’s
correlation coefficients and the overlap coefficients of the
colon sections costained for Bmil, Musashil, Sox9 and
PCNA (p > 0.05) (Fig. 3e, f).

Transplanted DPSCs promoted ISC-like cell proliferation

Immunohistochemistry analysis showed that the number
of cells positive for Bmil, Musashil, Sox9 and PCNA was
increased in the four treatment groups compared with the
UC group (Fig. 4a). The negative control result is repre-
sented by staining without primary antibody (Fig. 4b). A
quantitative analysis indicated that the number of positive
cells in the control group was the lowest, whereas the
number of these cells in the HGF-DPSCs group was the
highest, which was significantly higher than that in the
other treatment groups (p < 0.05). In addition, the positive
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the rats (liver, spleen, kidney and lung tissues, n = 5). Scale bar =50 um in all panels. d Statistical comparison of the percentages of double-stained
(GFP/DAPI) cells between the GFP-DPSCs and HGF-DPSCs groups. Data are shown as the means + SD (n =5; ***p < 0.001). e, f The comparison of

Pearson’s correlation and the overlap coefficient of colon sections costained with Bmi1, Musashil, Sox9 and PCNA between the GFP-DPSCs and
HGF-DPSCs groups (n=5; p > 0.05)
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cells in the DPSCs group were almost the same as those
in the GFP-DPSCs group (Fig. 4c).

Transplantation of DPSCs promoted injured colon tissue
repair and suppressed intestinal inflammatory responses
at the mRNA and protein levels

After 4 weeks of therapy, HE staining of colon tissues in
the four treatment groups showed that transplanted
DPSCs promoted the repair of damaged tissues (Fig. 5a).
The mRNA and protein expression levels of the inflam-
matory cytokines in the colon in all groups were assayed.
The melting curves of the four inflammatory cytokines
all showed single peaks (Fig. 5b). The expression levels
of proinflammatory cytokines (TNF-a and IFN-y) were
evidently decreased in the HGE-DPSCs group compared
with those in the UC, LV-HGF, DPSCs and GFP-DPSCs
groups (p<0.05) (Fig. 5c—e). In contrast, the anti-
inflammatory cytokines (TGE-B and IL-10) showed the
opposite trend (p < 0.05) (Fig. 5c—e). In addition, limited

differences in the expression of inflammatory cytokines
were observed between the DPSCs and GFP-DPSCs
groups (p > 0.05) (Fig. 5¢c—e).

HGF-DPSCs suppressed oxidative stress responses

To detect the oxidative stress responses in all groups,
the MPO, MDA and SOD activities were assayed by an
ELISA kit according to the manufacturer’s instructions.
Statistical analysis indicated that the MPO and MDA ac-
tivities were highest in the UC group and lowest in the
control group (Fig. 6a, b). In the treatment groups, the
HGE-DPSCs group expressed the lowest activity levels
of MPO and MDA, and the expression values were sig-
nificantly different from those of the HGF, DPSC and
GFP-DPSCs groups (p < 0.001) (Fig. 6a, b). SOD activity
followed the opposite trend (p<0.001) (Fig. 6c).
Additionally, the DPSCs and GFP-DPSCs groups showed
little difference in activity expression.
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DSS-induced disease activity was alleviated by DPSCs

During the treatment period, the changes in DAI scores
and body weights were recorded (Fig. 6d). Overall, the
DAI scores showed a downward trend in the five treat-
ment groups over 4 weeks, whereas the body weight in-
creased. The reductions in DAI scores were most
prominent in the HGF-DPSCs group. Moreover, at the
3rd and 4th weeks, the DAI scores of the HGF-DPSCs
group were noticeably lower than those of the other

treatment groups (p<0.01) (Fig. 6e), while the body
weights were higher than those of the other treatment
groups (p < 0.01) (Fig. 6f).

Discussion

UC is a chronic intestinal inflammatory disorder without
an effective treatment strategy. Numerous studies have
demonstrated that DPSCs transplantation might repre-
sent a potential therapy for UC [36, 37]. Additionally,
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HGF was reported to play a vital catalytic role in intes-
tinal mucosal injury repair [38, 39]. Nevertheless, the
therapeutic efficacy of DPSCs and HGF-DPSCs on UC is
still unclear. Therefore, the rat-derived HGF gene was over-
expressed in DPSCs by transduction of the lentiviral vector,
and the therapeutic effects were explored in this study.

The DPSCs used in this study were extracted from rat
incisors, and they expressed high amounts of MSC-
specific markers (CD29 and CD90) and low amounts of
MSC-nonspecific markers (CD45 and CD11b). More-
over, the multiple differentiation capacity was examined
by osteogenesis and lipogenesis differentiation assess-
ments, which were consistent with the defining criteria
of MSCs [40]. After 4 weeks of tail vein injections in the
rat UC model, GFP-DPSCs and HGF-DPSCs homed to
the colon injury site, colocalized with ISC markers
(Bmil, Musashil, Sox9) and proliferating cell nuclear
antigen (PCNA) and significantly promoted the expres-
sion of these proteins. Under normal conditions, ISCs
continue to proliferate, differentiate and self-renew and
maintain the normal structure and function of the intes-
tinal tract. Based on our results, we concluded that GFP-
DPSCs and HGE-DPSCs relieve colon injury by transdif-
ferentiation into ISC-like cells and accelerating ISC-like
cell proliferation. In addition, our results also found that
the number of HGF-DPSCs reaching the colon injury
site was significantly higher than that of GFP-DPSCs,
which may be because HGF-DPSCs promoted the ability
of DPSCs to home to the injury site.

To further explore the mechanism of HGF-DPSCs in
treating UC, oxidative stress indexes (MPO, MDA and
SOD) were assessed. Oxidative stress is an essential fac-
tor in promoting the occurrence and progression of UC.
In the process of injury and repair of UC, the inflamma-
tory response and oxidative stress complement each
other. The massive release of inflammatory cytokines
causes oxidative stress damage, which further exacer-
bates the inflammatory response in active UC [41, 42].
The oxidative stress response directly or indirectly dam-
ages intestinal epithelial cells and destroys the integrity
of the mucosal barrier, which is also an essential mech-
anism in UC [43]. In our study, the activity of MPO and
MDA was decreased, while the activity of SOD was in-
creased in the treatment groups, especially in the HGF-
DPSCs group. MPO activity can reflect the degree of
neutrophil infiltration, indicating that there may be sig-
nificant tissue damage in UC [44—46]. MDA is closely
related to the level of oxygen free radicals and is a
marker of lipid peroxidation damage; it is also a bio-
chemical link between oxidative stress and inflammation
[41, 47]. SOD is an antioxidant that degrades reactive
oxygen species and prevents some cells from undergoing
peroxidation [48, 49]. Similar results were observed in
the examinations of inflammatory cytokines. Pro-
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inflammatory cytokine (TNF-a, INF-y) expression levels
were remarkably reduced in the treatment groups, while
anti-inflammatory cytokine (TGF-p, IL-10) expression
showed the opposite trend. In addition, the HGF-DPSCs
group had the highest expression level of anti-
inflammatory cytokines and the lowest expression of
pro-inflammatory cytokines. Therefore, we speculated
that HGF-DPSCs ameliorated UC by inhibiting the oxi-
dative stress response and inflammatory response.
Moreover, cells lacking Bmil were reported to cause
mitochondrial dysfunction and the accumulation of re-
active oxygen species [31, 50]. Interestingly, the expres-
sion of Bmil was significantly increased in the HGEF-
DPSCs group, which may be a potential mechanism
underlying the effect of HGF-DPSCs on UC. Although
this study has confirmed that the therapeutic effect of
HGE-DPSCs is better than that of DPSCs, the transdif-
ferentiation efficiency of HGF and DPSCs has not been
measured specifically and thus needs to be further ex-
plored by subsequent experiments.

Conclusions

In summary, our study revealed that HGF-DPSCs have a
good therapeutic effect on a rat UC model. HGF-DPSCs
dramatically relieved disease activity by transdifferentiat-
ing into ISC-like cells, promoting ISC-like cell prolifera-
tion, suppressing the inflammatory response and
reducing oxidative stress damage.
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