
ORIGINAL RESEARCH ARTICLE
published: 10 April 2014

doi: 10.3389/fnins.2014.00067

Flexible multivariate hemodynamics fMRI data analyses
and simulations with PyHRF
Thomas Vincent1,2, Solveig Badillo2,3, Laurent Risser2,4, Lotfi Chaari1,5, Christine Bakhous1,

Florence Forbes1 and Philippe Ciuciu2,3*

1 INRIA, MISTIS, LJK, Grenoble University, Grenoble, France
2 UNATI/INRIA Saclay, Parietal, CEA/DSV/I2BM NeuroSpin center, Gif-sur-Yvette, France
3 INRIA, Parietal, NeuroSpin center, Gif-sur-Yvette, France
4 CNRS, UMR 5219, Statistics and Probability Team, Toulouse Mathematics Institute, Toulouse, France
5 INP-ENSEEIHT/CNRS UMR 5505, TCI, IRIT, University of Toulouse, Toulouse, France

Edited by:

Yaroslav O. Halchenko, Dartmouth
College, USA

Reviewed by:

Russell A. Poldrack, University of
Texas, USA
Matthew Brett, University of
Cambridge, UK
Dylan D. Wagner, Dartmouth
College, USA

*Correspondence:

Philippe Ciuciu, UNATI/INRIA Saclay,
CEA/DSV/I2BM NeuroSpin center,
Bât. 145, Point Courrier 156,
F-91191 Gif-sur-Yvette, France
e-mail: philippe.ciuciu@cea.fr

As part of fMRI data analysis, the pyhrf package provides a set of tools for addressing
the two main issues involved in intra-subject fMRI data analysis: (1) the localization of
cerebral regions that elicit evoked activity and (2) the estimation of activation dynamics
also known as Hemodynamic Response Function (HRF) recovery. To tackle these two
problems, pyhrf implements the Joint Detection-Estimation framework (JDE) which
recovers parcel-level HRFs and embeds an adaptive spatio-temporal regularization scheme
of activation maps. With respect to the sole detection issue (1), the classical voxelwise
GLM procedure is also available through nipy, whereas Finite Impulse Response (FIR)
and temporally regularized FIR models are concerned with HRF estimation (2) and are
specifically implemented in pyhrf. Several parcellation tools are also integrated such
as spatial and functional clustering. Parcellations may be used for spatial averaging prior
to FIR/RFIR analysis or to specify the spatial support of the HRF estimates in the JDE
approach. These analysis procedures can be applied either to volume-based data sets or
to data projected onto the cortical surface. For validation purpose, this package is shipped
with artificial and real fMRI data sets, which are used in this paper to compare the outcome
of the different available approaches. The artificial fMRI data generator is also described
to illustrate how to simulate different activation configurations, HRF shapes or nuisance
components. To cope with the high computational needs for inference, pyhrf handles
distributing computing by exploiting cluster units as well as multi-core machines. Finally, a
dedicated viewer is presented, which handles n-dimensional images and provides suitable
features to explore whole brain hemodynamics (time series, maps, ROI mask overlay).
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1. INTRODUCTION
As Magnetic Resonance Imaging (MRI) is a growing imaging
modality in neuroscience, the need for powerful tools to explore
the increasing amount of data is more and more significant.
This data growth is quantitative as cohort sizes are getting bigger
through the development of international multi-center projects
like the Human Brain Project (Kandel et al., 2013) but also qual-
itative as high field magnets become more and more available
(Duyn and Koretsky, 2011). Functional MRI (fMRI), in partic-
ular, benefits from these improvements. The experimenter has
access to finer spatial (∼1 mm) and temporal (∼1 s) resolutions
and also higher signal-to-noise ratio (SNR). In particular, the
higher temporal resolution combined with higher SNR allows
for a better recovery of dynamic processes so that we are no
longer limited to only static mappings of cerebral activity. In
this context, pyhrf aims to extract dynamic features from
fMRI data, especially the Blood Oxygenated Level Dependent
(BOLD) modality (Ogawa et al., 1990). The observed BOLD sig-
nal is an indirect measure of the neural activity via the oxygen

variation induced by the neuro-vascular coupling. Therefore,
analysis methods have to formalize a hemodynamic model in
order to make inference on neural processes. However, even if
BOLD variations are known to correlate with neural activity, it
is difficult to disentangle the dynamics of neural and the vascular
components. As the employed methodology mainly uses linear
systems, dynamic processes are summarized within the so-called
Hemodynamic Response Function (HRF), which is the impulse
response that links neuronal activity to the fMRI signal. In fact,
the package offers various tools to analyze evoked fMRI data
ranging from spatial mappings such as those provided by the
General Linear Model (GLM) framework (Friston et al., 1995) to
finer hemodynamics models as provided by the joint detection-
estimation (JDE) approach described in Makni et al. (2005, 2008)
and Vincent et al. (2010). Through a bilinear and time-invariant
system, the JDE approach models an unknown HRF at the level
of a group of voxels (referred to as a parcel in the following) as
well as voxel- and condition-specific response levels to encode the
local magnitudes of this response. The HRF is only constrained to
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be smooth (temporal regularization) and can cover a wide vari-
ety of shapes. The response levels are spatially regularized within
each parcel. Hence, the JDE approach is a spatially adaptive GLM
built on unknown parcel-dependent HRFs with spatio-temporal
regularization.

The use of each tool depends on a choice of model which is
driven by the features required by the experimenter’s goal. To
obtain classical detection results, a GLM based on the canoni-
cal HRF (and possibly its temporal derivatives) may be sufficient.
Even if the between-region hemodynamic variability is acknowl-
edged, the canonical HRF can provide good results in regions
where it has been calibrated such as temporal and occipital cor-
tices as studied by Boynton et al. (1996). However, in regions
involving more complex processes, HRF derivatives or function
bases may not be enough to capture the hemodynamic fluctua-
tions allowing activation detection. Hemodynamics delays may
happen due to varying reaction delays or pathological cases.
Moreover, if one is interested in studying the dynamic features
of the response, an explicit HRF estimation is required. The
main question in this case concerns whether there is a need
for condition-specific features or not. That is, a need for an
HRF estimation associated with each experimental condition
or for a single HRF estimate associated with all conditions. If
explicit condition-wise HRFs are required, the best methodologi-
cal tool to use is the temporally Regularized FIR (RFIR) developed
in Ciuciu et al. (2003) and Marrelec et al. (2003). Otherwise,
if variability is only expected across separated and specialized
regions, the JDE framework is well-suited. Indeed, within a spe-
cialized region, if only one condition exhibits activity then the
region-specific HRF can be considered a condition-specific HRF.
The performance of RFIR models depends nonetheless on the
number of experimental conditions involved in the paradigm
because the higher this number, the larger the number of param-
eters to estimate, and thus the fewer the number of degrees
of freedom for statistical testing. The model choice thus also
depends on the experimental paradigm. First, it is worth noticing
that the use of the JDE formulation is less relevant in the analysis
of block paradigm data since the signal variability in this case is
small. The JDE formalism is actually more adapted to fast event-
related paradigms or to paradigms including many conditions,
like the localizer paradigm (10 conditions) introduced by Pinel
et al. (2007) and used hereafter in this paper. The JDE approach
is also optimally tuned to combined analysis of hemodynamics
features with the detection of activated brain areas. To summa-
rize, the JDE model choice provides a fair compromise with the
possibility for the user to adapt the model to the studied region.

JDE also delivers interesting and complementary results for
the sole activation-detection aspect compared with classical GLM.
Spatial regularization, which is necessary due to the low SNR
in fMRI, is not enforced in the same way between methods. In
the GLM, FIR, and RFIR cases, there is no embedded spatial
regularization within models. Indeed, the data are usually spa-
tially smoothed with a fixed Gaussian kernel in preprocessing.
In contrast, JDE incorporates spatial correlation through hidden
Markov models. The amount of spatial correlation is automat-
ically tuned and also adaptive across brain regions, therefore
avoiding any prior invariant smoothing.

pyhrf is mainly written in python with some C code to
cope with computationally demanding parts of algorithms. This
python choice has been made possible thanks to the nipy 1

project and especially nibabel2 to handle data reading/writing
in the NIFTI format.

In terms of package maturity, pyhrf is a research tool which
has the ambition to target cognitive neuroscientists and clinicians.
Efforts are made in terms of user-friendliness and the design is a
trade-off between mutability which is required by methodologi-
cal research where specifications change frequently and usability
where user interfaces should be as stable as possible to ease
external non-developer use cases.

The rest of the paper is organized as follows. First, meth-
ods available in the package are presented, comprising parcella-
tion and detection/estimation analyses. Then, the workflow and
design of the pyhrf package are detailed. These cover the user
interface and code snippets for the main analysis treatments, sim-
ulation framework, distributed computations and data viewer.
Results illustrate the outcome of geometric and functional par-
cellations and their impact on detection/estimation treatments.
Finally, conclusions are drawn and perspectives for future devel-
opments are indicated.

2. METHODS
The are two main kinds of fMRI data analysis methods avail-
able in pyhrf: (1) parcellation tools that segment the brain into
disjoint sets of positions and (2) activation detection/HRF esti-
mation tools that highlight correlations between the input exper-
imental paradigm and variations in the measured fMRI signal.
The first kind comprises two spatial parcellation tools: Voronoi-
based random parcellation, as reviewed by Aurenhammer and
Klein (2000) and balanced partitioning, developed in Elor and
Bruckstein (2009). The second kind comprises the GLM intro-
duced in Friston (1998), the FIR model described in Henson et al.
(2000), the RFIR model developed in Ciuciu et al. (2003) and
the JDE approach presented in Vincent et al. (2010) and Risser
et al. (2011). The GLM and FIR GLM procedures are provided by
nipywhile RFIR and JDE are originally implemented in pyhrf.
For all these methods, we refer to their respective bibliographi-
cal references for an extensive presentation of their methodology.
Nonetheless, the main aspects of these methods are summarized
in what follows to allow comparison between them, especially in
terms of model structure and assumptions.
After detailing notations, we introduce detection/estimation
methods, namely GLM, FIR and RFIR, which require the mea-
sured fMRI signal and the timing of the experimental paradigm
as input. After setting the generative model common to all detec-
tion/estimation methods and a brief comparative overview, each
approach is presented in more details. Subsequently, parcellation
methods are presented. Spatial parcellation approaches can be
applied directly to the input fMRI data and only depend on its
geometry. Functional parcellation, which is a clustering of GLM
results, is detailed afterwards.

1www.nipy.org
2www.nipy.org/nibabel
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2.1. NOTATION
2.1.1. Conventions
We denote vectors with bold lower case (e.g., y) and matrices
with bold upper case letters (e.g., P ). A vector is by convention a
column vector. Scalars are denoted with non-bold lower case let-
ters (e.g., a). The transpose operation is denoted by t. Probability
distribution functions (pdf) are denoted using calligraphic letters
(e.g., N and G for the Gaussian and gamma distributions).

2.1.2. Data geometry
As methods can be applied to data defined in the volume or on the
cortical surface, the generic term “position” will be used in place
of “voxel” (volume unit) and “node” (surface mesh unit). Position
indexes are denoted by j = 1 : J to indicate a range between 1
and J. Data is assumed to be masked to only allow positions
within the brain. J is the total number of positions within the
functional mask. In addition, when considering parcellated data,
this functional mask is divided into a set of � parcels denoted
P = {P1, . . . ,Pγ , . . . ,P�}, where Pγ is the set of Jγ = |Pγ |
position indexes belonging to parcel γ .

2.1.3. Functional data
We consider the usual case of evoked fMRI data analysis where
the experimental paradigm comprising M conditions is known.
The signal measured at each time of repetition (TR) is denoted
yj = {yj,n}n = 1:N where N is the number of scans. Stimulus tim-
ing onsets for a given experimental condition m = 1 : M are
encoded by variable xm so that xm

t = 1 if a stimulus occurs at
time t up to a time step �t, else xm

t = 0. The time step is such that
�t � TR and depends on the actual temporal resolution sought
by the analysis method.

2.2. DETECTION/ESTIMATION METHODS
For ease of comparison, the presentation of all methods is
immersed in the same formalism where the signal is assumed
generated by a linear and time-invariant (convolution) system
with additive noise. We also consider the usual case of taking into
account a position-specific low frequency drift in the data which
is a well known fMRI artifact produced by the aliasing of respi-
ratory and cardiac rhythms into the low frequencies as studied in
Yan et al. (2009). The generic forward model, reads:

yj =
M∑

m = 1

Xmφm
h + P �j + bj, (1)

where:

• P is a fixed orthonormal basis that takes a potential drift
and any other nuisance effect (e.g., motion parameters) into
account. The low-frequency drift can classically be either poly-
nomial with an order up to 5 or cosine with a cut-off of
0.01 Hz,

• �j are the unknown regression weights associated with P ,
• bj is the noise component,
• φm

h is a “generic” hemodynamic filter of size D. For a typi-
cal duration of 25 s, D = 25/TR for the GLM and FIR GLM3

approaches, while D = 25/(TR/4) for the RFIR and JDE
approaches considering a typical oversampling factor of 4. In
the GLM framework, φm

h can be fixed to the canonical HRF
or parametric when resorting to function bases and we will
note R the number of unknown parameters. In non-parametric
approaches, all HRF coefficients are estimated as in RFIR or
JDE approaches,

• Xm is the N×D stimulus occurrence matrix consisting of the
lagged stimulus covariates for the experimental condition m:
Xm =[

xm
t1
, . . . ,xm

tN

]t
with xm

tn
=(

xm
tn−d�t

)t
0�d�D,

• ∑M
m = 1 Xmφm

h is hence the summation of all stimulus-induced
signal components which are generated as the convolution
between the paradigm encoded in Xm and the hemodynamic
filters φm

h .

For the sake of simplicity, multiple-run data are not considered
here but all implemented methods can handle such data with a
fixed-effect model (same effect size across runs), a homoscedas-
tic noise model (one noise variance for all runs) and run-specific
drift coefficients (see discussion for further extensions).

To give a first overview of how this generative model structure
is derived in the different approaches, Table 1 provides a compar-
ison in terms of regularization, number of unknowns and analysis
duration. Embedded spatial regularization is only available in the
JDE procedure, while temporal regularization is available in RFIR
and JDE (Table 1—1st, 2nd rows). In terms of constraints applied
to the HRF shape (Table 1—3rd row), the basis set GLM (BS
GLM) is the most constraining and the shape captured depends
on the choice of the function basis. In the FIR, RFIR and JDE
cases, any form of HRF shape can be recovered, provided that
they are smooth in the case of RFIR and JDE. On Table 1—4th
row, the information on the number of unknowns conveys the
level of parsimony of a given model. BS GLM, FIR and RFIR
have increasing model complexity as the number of parameters
for the HRF increases. In contrast, JDE achieves larger parsimony
by making the number of unknowns associated with the HRF
dependent on the number of parcels rather than on the num-
ber of positions. When computing the ratio between the number
of unknowns and the number of data points for a typical fMRI
experiment (Table 1—5th row), it appears that JDE is comparable
to a GLM with derivatives. The RFIR presents the worst situation
with three times more unknowns than data points. In terms of
analysis duration (Table 1—last row), GLM methods are almost
instantaneous as their inference is straightforward. RFIR relies on
an iterative scheme to perform unsupervised estimation of the
amount of temporal regularization and is hence much slower. In
addition, the implementation of RFIR is done in pure python
with a main loop over positions which worsen its slow compu-
tation speed (∼30 h. for a whole brain analysis)4. Therefore, this

3Over-sampling could be performed in the case of FIR GLM but is not advis-
able in terms of estimability since some FIR coefficients may be poorly or
even not associated with paradigm covariates in matrix Xm, depending on
the paradigm jittering.
4Note that the RFIR approach with supervised regularization is much faster
with an analysis duration of 20 min. since the maximum a posteriori estimator
admits a closed form expression.
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Table 1 | Comparative overview for all detection/estimation analysis procedures available in pyhrf in terms of model structure and analysis

duration.

BS GLM FIR GLM RFIR JDE

Spatial regularization Smoothing Smoothing Smoothing Adaptive

Temporal regularization None None 2nd order deriv. 2nd order deriv.

HRF shape constraint Function basis Free Smooth Smooth

Number of unknowns J × R × M J × D × M J × M × (D + 1) 2 × J × M + � × (D + 4M + 1)

for the stimulus-induced 1 � R � 3 D ≈ 10 10 � D � 50 10 � D � 50,

component � ≈ 400

Typical ratio of 0.23 0.78 3.4 0.16

unknowns/data

Analysis duration 3 min 5 min 30 h 8 h

“2nd order deriv.” stands for a penalization on the energy of the HRF which penalizes abrupt shape changes. The number of nuisance parameters was considered

the same for all models, so that only the modeling of the stimulus-induced component is relevant to assess model parsimony. The ratio “unknowns/data” is given

for a typical fMRI data analysis with J = 4 × 104, R = 3, D = 40, M = 10, � = 400, and N = 128 (total number of data points: N × J). The analysis duration is for a

whole brain data treatment on an Intel Core i5 (M480 2.67 Ghz).

approach is rather limited to the processing of some regions of
interest where we expect cerebral activity instead of whole brain
data analysis. The computation speed of JDE is also slow, but to
a lesser extent as results can be obtained overnight (∼8 h. for a
whole brain analysis) on a single processing unit. All these consid-
erations on speed have to be nuanced with the access to increasing
computing power and distributed computations, as will be seen in
section 3.3.

2.2.1. Basis set General Linear Model
In any position j of the brain, the basis set GLM (BS GLM)
allows for some limited hemodynamic fluctuations by mod-
eling the hemodynamic filter function φh in Equation (1) as
a weighted sum of the fixed canonical HRF denoted hc and
its first and second order derivative h′

c, h′′
c as proposed in

Friston (1998). The generative model, illustrated in Figure 1A,
reads:

∀j,yj =
M∑

m = 1

Xm(
βm

j hc + β ′m
j h′

c + β ′′m
j h′′

c

) + P �j + bj, (2)

where βm
j , β ′m

j , β ′′m
j are the unknown effects associated with

the mth stimulus-induced regressors constructed with the fixed
known vectors hc, h′

c, h′′
c , respectively. To obtain the classical

GLM with only the canonical HRF, β ′
j and β ′′

j can be set to
zero for all positions. It is worth noting that this formulation
of the forward model is equivalent to the classical one where all
regressors are gathered in the design matrix (noted X̄) and all
corresponding effects gathered in a single vector β̄. Equation (2)
reads:

∀j, yj = X̄β̄ j + bj, (3)

with: X̄ = [
X1hc | · · · |Xmhc |X1h′

c | · · · |Xmh′
c |X1h′′

c |
· · · |Xmh′′

c |P ]t
,

β̄ j =
[
β1

j | · · · | βm
j |β ′1

j | · · · | β ′m
j | β ′′1

j | · · · | β ′′m
j | �j

]t
.

The hemodynamics fluctuations caught by such a model are
limited to ∼1 s around the peak of the canonical HRF which
is at 5 s, see Calhoun et al. (2004). This model is massively
univariate since every position j is analyzed independently, i.e.,
no correlation between neighboring signals is considered. It
works well on spatially smoothed data to counter-balance the low
signal-to-noise ratio, at the expense of blurred activation clusters.
In the nipy implementation of the GLM, the fitting process can
be performed using ordinary least squares in the case of white
Gaussian noise or using Kalman filtering in the case of an AR(1)

Gaussian noise process.

2.2.2. FIR GLM and Regularized FIR
The generative BOLD signal modeling in the FIR context
encodes all HRF coefficients as unknown variables (illustrated in
Figure 1B):

∀j, yj =
M∑

m = 1

Xmhm
j + P �j + bj (4)

Here, vector hm
j = (

hm
j,d�t

)t
d=0,..,D represents the unknown HRF

time course in voxel j which is associated with the mth experimen-
tal condition and sampled every �t. In its un-regularized version,
the FIR model can be expressed in the GLM framework and hence
its implementation in pyhrf relies on nipy.

In the case of the Regularized FIR (Ciuciu et al., 2003),
the problem is placed in the Bayesian formalism in order to
inject regularity on the recovered HRF coefficients hj. More
specifically, hm

j ∼ N (0, vhm
j
R) with R = (Dt

2D2)
−1 where

D2 is the second-order finite difference matrix enforcing local
smoothness by penalizing abrupt changes quadratically and vhm

j

is the unknown HRF prior variance which is jointly estimated.
Computational and inference details are given in Ciuciu et al.
(2003).

2.2.3. Joint detection-estimation
The functional mask of a given subject’s brain is a priori divided
in � functionally homogeneous parcels using methods described
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FIGURE 1 | Forward models generating the stimulus-induced

components for the methods available in pyhrf. In all cases, the scheme
involves two experimental conditions colored in blue and yellow with four
stimulation events as depicted by vertical bars over the TR-sampled grid. (A)

General Linear Model (GLM). For a given condition in a given voxel, the stimulus
event sequence is convolved with the fixed canonical HRF resulting in a fixed
stimulus-induced regressor. This regressor is then multiplied by an unknown
effect βm

j . All the condition-specific regressors are then summed to form the

final stimulus-induced signal sj . (B) Finite Impulse Response (FIR) Model. In a
given voxel, the stimulus event-sequence is convolved with an unknown FIR
vector hm for each condition to yield a condition-specific component. All
components are then summed to form the final stimulus-induced signal sj . (C)

Joint Detection-Estimation (JDE). For a given voxel in a given parcel Pγ , the
stimulus sequence gathering all experimental conditions is multiplied by the
response levels {am

j }. Then, this spike signal is convolved with an unknown
spatially-invariant HRF h to form the stimulus-induced signal sj .

in section 2.3.2. In each parcel Pγ , the shape of the HRF hγ is
assumed constant and the parcel-specific generative model reads:

∀ j ∈ Pγ , yj =
M∑

m = 1

am
j Xmhγ + P �j + bj. (5)

where yj, Xm, P , �j, and bj match the variables introduced
in section 2.2.1. As shown in Figure 1C which illustrates this
forward model, the am

j variables encode fluctuations that occur
before the application of the hemodynamic filter. Therefore,
they are attributed to neural effects and referred to as “Neural
Response Levels” (NRL). However, this term, which is historical,
might be misleading as it is difficult to disentangle the contribu-
tion of the neural and the vascular components from single BOLD
fMRI data. These variables can be more simply identified to the
voxel- and condition-specific response amplitudes.

In contrast to Equation (2) for the GLM forward model, the
fixed HRF components hc and h′

c are replaced by an unknown
parcel-based HRF hγ . Similarly, each unknown NRL am

j embod-
ies a single magnitude parameter per regressor whereas the GLM
formulation implies that the magnitude is distributed between
weights βm

j , β ′m
j , and β ′′m

j . To summarize, the HRF shape and the
BOLD response magnitude are coupled in the GLM formulation
whereas they are decoupled in the JDE formulation.

In the Bayesian framework, priors are formulated to (1)
enforce temporal smoothness on the HRF shape to perform esti-
mation in the same manner as for RFIR and (2) account for spatial

correlations between NRLs through spatial mixture models to
perform detection, as described in Vincent et al. (2010). The spa-
tial regularization factor is jointly estimated and optimized wrt
parcel topology so as to perform an adaptive spatial smoothing.
If the experimenter is not interested in the estimation of the HRF,
then the HRF can be fixed typically to its canonical version in
the JDE framework, which hence amounts to a spatially adaptive
GLM. The latter approach enables parcelwise multivariate detec-
tion of activations with adaptive regularization across parcels.
As shown at the group-level in Badillo et al. (2013b), this strat-
egy retrieves more peaked and less extended activation clusters
compared to classical SPM-like analysis.

The inference is performed by a stochastic sampling scheme
where posterior mean estimates are computed from Markov
Chain Monte Carlo samples. The implementation of the main
sampling loop is coded in pure python and some intensive sam-
plers such as the one for the HRF of the NRLs are coded in C.
Still, the overall JDE procedure is computationally demanding.
However, since there are as many independent models as parcels,
the analysis can be split up into parcel-wise parallel analyses (see
section 3.3). The efficiency of the inference scheme has also
been improved by resorting to a variational formulation of the
JDE (Chaari et al., 2013) which is also available in pyhrf.

2.3. PARCELLATION
2.3.1. Spatial parcellation
2.3.1.1. Random Voronoi diagrams. A Voronoi diagram consists
of a spatial partitioning that builds parcels around predefined
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control points or seeds. The parcel boundaries are placed so that
each point of a given parcel is closer to the associated parcel
seed than any other seed in terms of the Euclidean distance, as
illustrated in Figure 2 (left). To build a parcellation from such
partitioning, i.e., to assign each cerebral position to a parcel
identifier, we do not explicitly require the parcel boundaries.
Accordingly, there is no need to rely on classical algorithms that
precisely compute these boundaries. Instead, a given position is
assigned to the closest seed by resorting to a kd-tree (5).

Random Voronoi parcellations are convenient ways to generate
samples in the space of sensible parcellations as they produce con-
vex and compact parcels which are physiologically plausible. They
have been used in Vincent et al. (2008) to study the sensitivity of
the parcel-based JDE method.

2.3.1.2. Balanced partitioning. The goal of balanced partition-
ing is to build parcels of equal sizes. In the case of a non-regular
topology such as the brain, there is no morphological tool to
deterministically solve such partitioning problem which is known
to be NP-complete as mentioned in Andreev and Räcke (2004).
Hence, the algorithm implemented in pyhrf employs a heuris-
tic and relies on a multi-agent system that mimics the inflation
of balloons in a fixed volume (Elor and Bruckstein, 2009), as
illustrated in Figure 2 (right).

Balanced partitioning is useful to test the effect of parcel size.
In pyhrf, balanced partitioning is implemented in pure python
with a position-wise main loop and is hence rather slow: ∼1 min
to split 6000 voxels into 20 parcels. However, this performance is
sufficient since we only employ balanced partitioning in the case
of small scale testing data sets or when parcels obtained on real
data are too big.

2.3.2. Functional parcellation
The main goal of functional parcellation is to provide homo-
geneous parcels with respect to hemodynamics. It is mainly
motivated by the JDE procedure which assumes that the HRF
shape is constant within one parcel. To provide such parcellation,
results obtained from a GLM analysis, or any given task-specific

5implemented in scipy.spatial.KDTree

FIGURE 2 | Illustration of spatial parcellation methods in pyhrf. Left:

Voronoi diagram where seeds are represented as crosses. The red point is
assigned to the red seed and verifies that its distance to any other seed is
larger (d1 < d2, d1 < d3). Right: Balanced partitioning performed by
patrolling a(ge)nts, image extracted from Elor and Bruckstein (2009).

functional maps are clustered using different available algorithms:
K-means, Ward or spatially-constrained Ward as provided by
scikit-learn6. To objectively choose an adequate number of
parcels, theoretical information criteria have been investigated in
Thyreau et al. (2006): converging evidence for � ≈ 400 at a spa-
tial resolution of 3 × 3 × 3mm3 has been shown for a whole brain
analysis leading to typical parcel sizes around a few hundred vox-
els (≈ 2.7cm3). As the parcel size is not fixed, some big parcels
may arise from the parcellation process and may slow down the
overall parallel processing. To overcome this, the maximum parcel
size was controlled by splitting too big parcels (larger than 1000
voxels) according to the balanced partitioning presented in sec-
tion 2.3.1, which also guarantees the spatial connexity and thus
properly satisfies the JDE assumptions on the HRF.

Such “hard clustering” approach yields sharp parcel bound-
aries that prevent from capturing smooth transitions between
HRF territories. To avoid wrong boundaries, one can resort to
over-segmented parcellations (high number of parcels).

3. PYHRF
The installation of pyhrf relies on the setuptools python
package and requires the following dependencies: numpy 7

and scipy 8 for core algorithms, nibabel for nifti or gifti
input/outputs, nipy for the GLM implementation and par-
cellation tools, matplotlib for plots and PyQT4 for GUIs.
Optional dependencies comprise joblib, scikit-learn
and soma-workflow. pyhrf is mainly intended for linux-
based distributions as it has especially been developed under
Ubuntu. Installation notes and documentation can be found
online at http://www.pyhrf.org. Within the package, the following
data files9 are shipped:

� two volume-based fMRI data sets (paradigm as CSV files,
anatomical and BOLD data files). One serves quick test-
ing while the other is intended for validation/demonstration
purpose, which is used to generate results in section 4.3,

� one surface-based fMRI data set mainly intended for testing,
� several simulation resources in the form of png images

to provide 2D maps of various activation labels and HRF
territories.

The rest of this section is organized as follows. First, the overall
workflow of how to use pyhrf is presented, which mainly resorts
to command lines and some dedicated GUI tools. Second, to go
further into the package architecture and also to address some fea-
tures available when scripting, the design of pyhrf is introduced.
Third, distributed computation is explained in terms of resource
handling. Finally, the pyhrf viewer is presented with a focus on
ergonomics.

3.1. WORKFLOW
The typical usage of pyhrf relies on shell commands which
work on XML files. This XML format was chosen for its hier-
archical organization which suits well the nested nature of the

6sklearn.cluster.ward
7www.numpy.org
8www.scipy.org
9There is no special licence on the shipped data sets.
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algorithm parametrizations. A dedicated XML editor is pro-
vided with a PyQt4 graphical interface for a quick editing
and also a better review of the treatment parameters. When
such an XML setup file is generated, it defines a default anal-
ysis that involves a small volume-based real data set shipped
with the package. This allows for a quick testing of the algo-
rithms and is also used for demonstration purposes. Here is
a typical example of shell commands used to perform a JDE
analysis:

$ pyhrf_jde_buildcfg # generate a
-o jde.xml default XML

file
$ pyhrf_xmledit jde.xml # set up custom

experiment
$ pyhrf_jde_estim -c # run the

jde.xml analysis
$ pyhrf_view *nii # view all output

nifti files

The “buildcfg” command offers various options to define setup
items from the command line without having to edit the XML
file. For example, the paradigm can be loaded from a CSV or a
SPM.mat file. As for the JDE procedure specifically, the option
--vem enables the variational EM approach developed in Chaari
et al. (2013).

3.2. DESIGN
An overview of the static design of the main package compo-
nents of the package is shown in Figure 3. The class FmriData
is the within-subject fMRI data representation, for any spatial
support: on the cortical surface, in the volume, or from a sim-
ulation. This data representation comprises spatially flat data
(fMRI time series and parcellation) and a connectivity matrix
which holds the data topology. At the center of the analy-
sis component is the Analyzer class that handles parcelwise

data splitting which is done according to the input data par-
cellation by default, and also takes care of merging parcel-
specific outputs at the end of the analysis. This Analyzer
class is then specialized into various method-specific analyz-
ers: GLM, RFIR and JDE. Note that the analyzer component
is decoupled from the data component, as is classically done
in scientific programming because they do not have the same
life-cycles (e.g., the same model can be applied to various data
objects). The FmriTreatment packs the data and analysis
definitions together and handles distributed computation across
parcels.

In the following sub-sections, two specific components
are further explained: XML parametrization through the
XmlInitable class, and the handling of arrays with axis
semantics through the xndarray class.

3.2.1. XML parametrization
The XML format was chosen for its hierarchical organization
which suits the nested nature of the algorithm parametriza-
tions. Indeed, for a JDE analysis, here is an example of such
different levels: treatment → analyzer → sampler →
hrf sampler. At a given level, different classes may be used
as there exist, for example, different sampler types depend-
ing on the type of prior expressed in the JDE model, so
that we require a seamless parametrization process that avoids
rewriting code for the building of parameter files each time a
new model is tested. To do so, any object whose initialization
has to be exposed in the XML configuration file inherits the
XmlInitable class. This system is not a serialization process
as the whole python object is not dumped in the XML. Only
the parameters provided to the __init__ function are stored.
In terms of object life cycle, this process handles object creation
but is not able to track any subsequent modification. Figure 4
shows a python code sample that illustrates how the XML file is
generated from this nested configuration situation. The resulting
XML file as viewed by the command pyhrf_xmledit is also
displayed.

FIGURE 3 | Static organization of the main components in the pyhrf

package (not exhaustive). Classes are represented as rounded blue
rectangles and external resources (file, computing units) as black rectangles.

Note that the XmlInitable class is duplicated for layout convenience. As in
UML class diagrams, arrows have the following meaning: → stands for an
association, � stands for a generalization.
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from pyhrf.xmlio import XmlInitable, to_xml
import numpy as np

class FmriTreatment(XmlInitable):
def __init__(self, input_data=None,

analysis_parameters=None):
XmlInitable.__init__(self)

data = { ’bold_file’ : ’./my_bold.nii’,
’paradigm’ : np.array([0,2.3,6.]) }

analysis = { ’model’ : ’JDE_MCMC’,
’mcmc_sampling’ : {
’HRF’ : { ’duration’ : 25,

’type’ :
’canonical’ }}}

treatment_xml = to_xml(FmriTreatment(data,
analysis))

f = open(’./test.xml’,’w’)
f.write(treatment_xml)
f.close()

FIGURE 4 | Handling of XML parametrization. The top part shows a
code snippet that defines a dummy yet typical fMRI treatment structure
with nested components. The init process of the resulting top-level object
is then saved in an XML file. The bottom part is a snapshot of the
pyhrf_xmledit main window where the XML file generated by the code
snippet is browsed.

3.2.2. The xndarray class: data array with axis semantics
The development of semantics-driven operations on data arrays
was motivated by the parcel-driven nature of the analysis work-
flow which implied that parcel-specific results have to be merged
in a transparent fashion, whatever their shape. Indeed, as pyhrf
is the repository of all the methodological tools developed within
the JDE framework, the number and the form of outputs is
highly changing during the development and testing process. This
involves producing convergence tracking, intermediate quantities
in addition to the final results of interest. To avoid writing a spe-
cific saving procedure for such versatile and numerous outputs,
the information about the interpretation of the data axes has to
be explicit. The class xndarray handles any required reorien-
tation prior to saving data arrays into nifti or gifti files. In the
volume-based data case, the reorientation follows the nibabel
convention that is sagittal, coronal, axial and time. To store the
extra axis information along with the data, a dedicated nifti-
extension is also written in the volume-based case or add a
“pyhrf_xndarray_data” field in the gifti meta data dictionary in
the surface-based case.

Moreover, outputs are primarily generated at the parcel-level
so that they are in a flat shape, i.e., the position axis represent
indices of positions in the spatial domain. To form the final whole
brain outputs, the parcel-specific outputs have to be merged
together and the position axis, if present, has to be mapped into
the final spatial domain. Table 2 shows two examples of parcel-
specific outputs that are merged to form whole brain data either
by spatial mapping or by parcel stacking. To handle these two
merging operations, stack and merge functions are provided.
The reverse process is also available via the method explode
which allows an array to be split according to a mask com-
posed of integers, i.e., a parcellation. It returns the dictionary of
“flat” parcel-specific data arrays associated with each integer label
present in the mask.

In terms of data life cycle, xndarray objects are used to pre-
pare data before analysis and to pack results after analysis. During
the analysis process, it is more convenient to work with numpy
arrays directly. The following code snippet illustrates the use of
xndarray objects: functional and parcellation data are loaded,
within-parcel means are computed and the result is saved to nifti:

from pyhrf.ndarray import xndarray, merge
# Data loading
func_data = xndarray.load(’./bold.nii’)
parcellation = xndarray.load(’./parcellatio
n.nii’)
# Split functional data into parcel-
specific data
parcel_fdata = func_data.explode

(parcellation)
# Fill parcel-specific data with spatial
means
parcel_means = dict( (parcel_id, d.copy().
fill(d.mean(’position’)))

for parcel_id,d in par
cel_fdata.items() )

# Merge parcel-specific means (map
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’position’ axis onto spatial axes)
parcel_means = merge(parcel_means, parcellat
ion, axis=’position’)

# Save output
parcel_means.save(’./bold_parcel_means.nii’)

3.3. DISTRIBUTED COMPUTING
PyHRF provides parallel processing features by exploiting local
resources (multiple processors on a single workstation) as well as
remote parallel processing units such as a local grid network or
a cluster. A whole brain JDE analysis then boils down from 10 h
to 15 min in parallel (on a 100-cores cluster). More precisely the
available computing resources are handled as follows:

• local multiple-cores CPUs: through the use of joblib paral-
lel features. The latter works by spawning python sub-processes
that are then run on the different processing units by the oper-
ating system. The number of used CPUs can be setup by the
user.

• machines over a local area network: through in-house code
that relies on paramiko and hence uses ssh connections to
distribute jobs on the LAN. A basic scheduler is implemented
in pyhrf.grid that can also report faulty remote runs.

• multi-core cluster: through soma-workflow 10 developed
by Laguitton et al. (2011), which relies on paramiko11 on the
client side and on DRMAA12 on the server side.

The distribution problem addressed here is a so-called embar-
rassingly parallel problem where the same treatment has to be
repeated on several parcel-specific pieces of data. There is no
shared memory management between distributed processes here.

To optimize the distribution process, the order in which the
parcel-specific treatments are pushed in the process queue is done

10http://brainvisa.info/soma-workflow/
11http://www.lag.net/paramiko/
12http://www.drmaa.org/

by pushing the biggest parcels first. To optimize also, a safeguard
is imposed on the maximum parcel size (more than 7 cm3 in the
volume or 11 cm2 on the surface). If a parcel exceeds this limit, it
is divided up according to the balanced partitioning presented in
section 2.3.1.2.

3.4. VIEWER
pyhrf_view is a dedicated viewer built on PyQt4 which
embeds a matplotlib view. The purpose of pyhrf_view is
to provide convenient browsing of volume-based data13. However,
it does not provide advanced overlaying features such as the
display of functional over anatomical data. Instead, to plot the
final “publication-ready” maps after having selected the results
of interest with pyhrf_view, one can resort to the command
pyhrf_plot_slice to directly generate a slice image of functional
rendering along with anatomical overlay. One can also use a third
party viewer such as Anatomist14, FSL_view15 or xjview16.

pyhrf_view offers n-dimensional browsing while most
viewers in neuro-imaging software handle up to 4D volumes. In
fact, there is a limit to the number of dimensions inherent to
the nifti format which permits 7 axes at maximum. The viewer
is composed of two main components (see Figure 5):

� a main window handling object and slice selection,
� plot windows which display the selected slice as curve or

image.
The slice selection tools provides sliders to browse through axes
domain values and display related information: axis name, cur-
rent selected domain values and projection states. There can be
up to two projected axes (2D), i.e., axes which will mapped to
the actual plot axes. When multiple objects are loaded, slicers are
synchronized to plotting views so that click events yield slider
updates. This behavior can be modified in two ways. First, the

13Surface rendering is not available. Anatomist is recommended for such
usage.
14http://brainvisa.info
15http://fsl.fmrib.ox.ac.uk/fsl/fslview/
16http://www.alivelearn.net/xjview8/

Table 2 | Examples of merging operations performed on multiple parcel-specific data arrays, for some JDE outputs: parcel-specific HRFs and

condition- and voxel-specific activation labels.

Parcel-specific flat data
Merging operation

Whole brain data

Axis label Axis domain Axis label Axis domain

HRF Time [0, . . ., hrf_duration] = same

∪ Parcel [0, . . ., parcel_max]

Labels Class [’activ’, ’non_activ’] = same

Condition [’audio, ’video’] = same

Position [0, . . ., pos_max] → Axial [0, . . ., axial_max]

Coronal [0, . . ., coronal_max]

Sagittal [0, . . ., sagittal_max]

If the xndarray object contains the “position” axis, as for the “labels” object, then all parcel-specific results are merged into the same target volume and we depict

the spatial mapping operation as “→” to map the “position” axis in to the spatial axes “axial,” “coronal,” and “sagittal.” For other axes aside from “position,” no

merging operation is performed (“=” symbol). If the xndarray object does not contain the “position” axis, as for the HRF object, then all parcel-specific results are

stacked and a new “parcel” axis is created (“∪” symbol).
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FIGURE 5 | Main widget components of pyhrf_view to browse and

view n-dimensional data. Left: The list widget on top displays the
currently loaded objects. The slicer panel at the bottom allows: projection
of axes (combo boxes on the left), domain value slicing (sliders in the
middle) and definition of view synchronization (combo boxes on the right).
For a given axis slicer, the two combo boxes defining synchronization are:
(E) toggle emission of slice change to other slicers, (R) toggle reception

from other slicers or from click events on plots. Middle: Plot window for
the current selected slice. The top part displays the actual plot as
produced by matplolib.pylab. The bottom part offers changing the
view mode (either curve, image, or histogram), and toggling display of
axes, colorbar and mask. The color button pops up a gradient map selector
if in image mode or a color picker if in curve mode. Right: Other plot
window to illustrate curve display.

reception combo box toggles whether the slider receives changes
from other sliders. This is useful when one wants to prevent a
given view from being updated by synchronization events (with
reception off), e.g., when a reference slice should be compared to
other slices. Second, the emission combo box toggles the spread-
ing of slider changes to all other slicers. This is typically used to
control a given axis across all displayed objects with a single slider
(with emission on).

4. RESULTS
4.1. EXPERIMENTAL PARADIGM
In all presented results, whether they focus on artificial or real
data sets, we resorted to the same experimental paradigm. The lat-
ter is a multi-functional cognitive localizer paradigm designed in
Pinel et al. (2007). This paradigm enables the mapping of cogni-
tive brain functions such as reading, language comprehension and
mental calculations as well as primary sensory-motor functions.
It consists of a fast event-related design (60 stimuli, ISI = 3.75 s)
comprising the following experimental conditions: auditory and
visual sentences, auditory and visual calculations, left/right audi-
tory and visual clicks, horizontal and vertical checkerboards.

4.2. ARTIFICIAL DATA GENERATOR
Simulations in pyhrf mainly consist of building a script that
defines a pipeline of versatile simulation bricks presented in
Table 3. Writing a simulation script as a sequence of functions
makes things difficult to read and to reuse. Instead, all simulation
bricks are gathered inside a python dictionary that maps a simu-
lation label to its corresponding value. This value can be directly
defined as a python object or as a function which can depend on
other simulation items and which is called when the simulation

Table 3 | Different types of simulation bricks available in pyhrf.

Simulation item Available generation process

Experimental paradigm Localizer, random event-related

Activation labels Hand-drawn 2D maps, 3D Potts
realizations

Response levels Bi/tri mixture of Gaussian or Gamma
components

Hemodynamic response function Canonical, Bezier curve, Gaussian
smooth

Low frequency drift Polynomial, cosine

Noise White, auto-regressive of order p

The “localizer” paradigm is described in Pinel et al. (2007). Hand-drawn maps

for activation labels are in the form of png images. Gaussian smooth generation

of HRFs stands for the regularized prior used in the JDE model.

pipeline is evaluated. The pipeline structure arises from the link
between simulation labels and function arguments. An example
of such simulation script is given below:

import numpy as np
from pyhrf.ndarray import xndarray
from pyhrf.tools import Pipeline

# Functions used to generate items in the
simulation Pipeline
def generate_rls(spatial_shape, mean_rls,
var_rls):

rls = np.random.randn(*spatial_shape) *
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var_rls**.5 + mean_rls
return xndarray(rls, [’axial’,
’sagittal’, ’coronal’])

def generate_noise(stim_induced_signal,
noise_var):

noise = np.random.randn(*stim_induced_
signal.data.shape) * noise_var**.5
return xndarray.xndarray_like(stim_
induced_signal, data=noise)

def create_stim_induced_signal(rasteRed_
paradigm, hrf, response_levels):

signal = np.convolve(rasteRed_paradigm,
hrf)[np.newaxis,:] * \
response_levels.data[:,:,:,np.newaxis]
return xndarray(signal, response_levels.
axes_names + [’time’])

def create_bold(stim_induced_signal, noise):
return stim_induced_signal + noise

# Definition of the simulation pipeline
simulation_steps = {

’spatial_shape’ : (10,11,12), ’mean_rls’ :
3., ’var_rls’ : 0.5,
’response_levels’ : generate_rls,
’rasteRed_paradigm’ : np.array([0,0,1,0,0,
0,1,0,0,0,1]),
’hrf’ : np.array([0,.5,1,0.5,0.,0]),
’noise_var’ : 1.,
’noise’ : generate_noise,
’stim_induced_signal’ : create_stim_
induced_signal,
’bold’ : create_bold,
}

simulation = Pipeline(simulation_steps)

# Computation of all quantities in the
pipeline and data saving

simulation.resolve()
simulation_items = simulation.get_values()
simulation_items[’response_levels’].
save(’./response_levels.nii’)

simulation_items[’stim_induced_signal’].
save(’./stim_induced_signal.nii’)

simulation_items[’bold’].save(’./bold.nii’)

The artificial data experiment presented here comprises the gen-
eration of BOLD time series within the volume and then pro-
jected onto the cortical surface. To do so, shipped data defines a
volume of 4 HRF territories, as well as the gray/white matter seg-
mentation obtained from real data in the occipital region. Within
the gray matter mask, activation labels are generated and con-
ditionally to them, response levels are simulated according to a
bi-Gaussian mixture. For the sake of simplicity, a version of the

localizer paradigm presented in the previous section is merged
over the auditory and visual modalities so as to obtain only two
conditions. In all HRF territories this paradigm is then convolved
with HRF generated by Bezier curves that enable the control of
the time-to-peak and time-to-undershoot. Finally, nuisance sig-
nals are added (Gaussian noise and polynomial drift) to obtain
the volume of artificial BOLD data. To generate surface-based
data, data are projected onto a cortical fold that is also shipped
in the package and we resorted to an external projection tool,
developed in Operto et al. (2006) but others are available such
as Freesurfer. Figure 6 presents the results obtained on arti-
ficial data using the JDE procedure. HRF estimates recover their
respective ground truth profiles with a slightly more deformed
curve obtained on the cortical surface for the bottom right (green)
HRF territory, compared with the volume-based case. Detection
results (response levels maps in Figure 6) also shows the correct
recovery of the simulated ground-truth, in the volume and on the
cortical surface.

4.3. WITHIN-SUBJECT METHOD COMPARISON
The analyzed real data set, which is shipped with pyhrf, was
a subset of an fMRI acquisition performed on a single healthy
subject with a 3-Tesla Tim Trio Siemens scanner using an EPI
sequence. The following settings were used for this acquisi-
tion: the fMRI session consisted of N = 128 scans, each of
them being acquired using TR = 2400 ms, TE = 30 ms, slice
thickness: 3 mm, FOV = 192 mm2 and spatial in-plane resolu-
tion of 2 × 2 mm2. In order to reduce disk usage and to focus
only on areas of the brain which are expected to elicit activ-
ity in response to the paradigm, functional data was restricted
to selected regions of interest that comprise occipital, tem-
poral, parietal and motor regions. To improve interpretation
and data plot rendering, an anatomical image is also shipped,
with an in-plane resolution of 1 × 1 mm2 and slice thickness
of 1.1 mm.

This fMRI data set was analyzed using GLM with a canonical
HRF, FIR, RFIR and JDE17. For JDE, the functional parcellation
was built according to the method described in section 2.3.2.
Figures 7A,B depicts detection results for the auditory effect,
obtained by GLM with canonical HRF (see Figure 7A) and
JDE (see Figure 7B). Both methods highlight the same activa-
tion localization, with a slightly stronger sensitivity for JDE.
Figure 7C shows HRF estimation results as obtained by FIR,
RFIR and JDE at the same local maximum on the left temporal
region. Note that the HRF estimate provided by the JDE pro-
cedure is regional. The HRF profile delivered by FIR appears
noisier than the JDE and RFIR counterparts. Also the tempo-
ral resolution of FIR is limited to the TR of input data. In
contrast, RFIR and JDE offer an enhanced temporal resolution
of 0.6 s In terms of timing, the FIR and JDE methods yield a
peak at 5 s which is compatible with the canonical HRF that
has been fitted on temporal auditory regions (Boynton et al.,
1996). Accordingly, the HRF estimates obtained by RFIR seem
over-smoothed. Overall, JDE enables reliable activation maps and

17analysis scripts are available at http://github.com/pyhrf/pyhrf/tree/master/
script/frontiersBIM14/
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FIGURE 6 | Results on volume-based and surface-based artificial data.

Left part: HRF estimates obtained by JDE on the four artificial parcels.
Ground truth HRFs are depicted in black line while colored HRF are HRF
estimates that match the color of the parcels. Right part, top: labels

simulated in the cortical fold for two conditions (in blue and red). Right

part, bottom: Response levels estimates obtained by JDE on the cortical
surface and in a selected slice of the volume. 3D renderings were
produced with anatomist.

HRF profiles that can roughly be obtained by separate GLM
and FIR analyses. Figures 7D,E shows results on effect maps for
the computation effect, obtained by GLM with canonical HRF
(see Figure 7D) and JDE (see Figure 7E). JDE results have a
higher sensitivity which can be explained by an estimated HRF
that differs from the canonical version (see Figure 7F). More
specifically on the HRF estimation results shown in Figure 7F,
we can make the same comments as for the auditory results.
However, the FIR HRF profile is here more chaotic and its peak
is less easy to identify as the curve shows a plateau between
7 and 10 s

4.4. GROUP-LEVEL HEMODYNAMICS
Using pyhrf, the hemodynamic variability was also studied on a
group of 15 healthy volunteers (average: 23.2 years, std: 2 years).
The experimental paradigm is described in section 4.1 and the
fMRI acquisition parameters are similar to those previously men-
tioned in section 4.3. The results presented hereafter have been
published in Badillo et al. (2013b). In this work, hemodynamic
variability was investigated in four regions of interest, located
in the left parietal cortex (P), bilateral temporal (T) and occip-
ital (O) lobes and in the right motor cortex (M), as shown in
Figure 8. These regions were defined after conducting a random-
effect analysis to detect activation clusters showing a significant
group-level effect. More precisely, we defined four contrasts of
interest targeting brain activity in sensory and cognitive regions:
a Auditory vs. Visual contrast for which we expect evoked activ-
ity in temporal regions in response, a Visual vs. Auditory contrast
that induces evoked activity in the occipital cortex, a Left vs.
Right click contrast for which we expect evoked activity in the
right contralateral motor cortex, and a Computation vs. Sentence

contrast which is expected to highlight activity in the frontal
and parietal lobes specific to mental calculations. In terms of
detection performance, at the group-level, JDE and GLM are
comparable in primary sensory regions (where the canonical
HRF is appropriate). However, in the parietal region involved in
higher cognitive processes, the JDE approach yields more sensitive
maps. In what follows, we summarize group-level hemodynamics
results obtained in the regions of interest extracted from activated
clusters.

The group-level HRF extraction in each ROI involves the fol-
lowing steps: For each subject, we identify the parcel containing
the most activated voxel across stimulus-dependent response lev-
els. Each individual parcel-based HRF time course is then scaled
by the corresponding maximum response level so as to account
for the inter-subject variability of the effect size. Last, each group-
level HRF profile (see Figure 8) is computed as the average over
the 15 subjects in the corresponding ROI.

One of the main results concerns the spatial gradient of dis-
crepancy to the canonical HRF shape between regions. As shown
in Figure 8, the mean HRF time courses retrieved in occipital and
temporal regions are the closest to the canonical shape hc. In the
motor cortex, the HRF deviates a little more from the canoni-
cal filter, especially in terms of hemodynamic delay. Finally, the
largest discrepancy to the canonical HRF was found in the parietal
region.

5. PERSPECTIVES
5.1. METHODOLOGICAL PERSPECTIVES
The main methodological developments are currently tak-
ing place in the JDE framework. In fMRI activation proto-
cols, the paradigm usually consists of several runs repeating
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FIGURE 7 | Detection and estimation results on the shipped real

data set. Top and bottom rows: Auditory and computation
experimental conditions, respectively. Columns from left to right:
Response level maps, for (A,D) GLM with canonical HRF, (B,E) JDE,

superimposed with the functional parcellation (white borders).
Neurological convention: left is left. (C,F): Estimation results for GLM
FIR (blue), RFIR (green), and JDE (red). The canonical HRF is shown
in black.

FIGURE 8 | Left: Definition of regions of interest to investigate
hemodynamics variability from JDE-based group-level analysis. Top: Sagittal
view. Bottom: Axial/top view. Left parietal area (P) appears in red, left
motor area in the pre-central cortex is shown in green, Bilateral temporal
regions along auditory cortices and bilateral occipital regions in the visual
cortices are shown in blue and cyan, respectively. Right: Group-average
HRF estimates for the four regions of interest: h̄P , h̄M , h̄T , h̄O stand for
HRF means in parietal, motor, temporal and occipital regions, respectively.
hc correspond to the canonical HRF.

similar sequences of stimuli. For an increased stability of HRF
estimates that cope with the between-run variability of the
response magnitude, a hierarchical multi-run extension with
heteroscedastic noise has been developed in Badillo et al. (2013c).

It is particularly useful for pediatric imaging where runs are short
in time. In the same vein of improving within-subject analyses, an
approach to encode the condition-specificity at the parcel level is
being developed to enforce non-relevant conditions to yield null
activation, as in Bakhous et al. (2013).

The variational EM version of JDE that has been published
in Chaari et al. (2013) and that appeared to be 10–30 times faster
than its MCMC alternative, has allowed us to address (Chaari
et al., 2012) the additional task of estimating the spatial aggre-
gation support of HRF shapes (parcellation), which is sup-
posed given a priori in the current JDE approach. The so-called
joint Parcellation-Detection-Estimation (JPDE) validation is still
ongoing. In an attempt to solve the same issue, an alternative
based on random parcellations and consensus clustering has been
recently proposed in Badillo et al. (2013a).

Closely related to the results presented in section 4.4, a multi-
subject extension of the JDE is currently developed to properly
account for the between-subject HRF variability and recover a
meaningful and potentially less biased group-level HRF pro-
file. This development trail will bring modification in the core
design of pyhrf so as to take into account the new “group” data
axis.

Finally, recent work has opened the path to multi-modality
by processing Arterial Spin Labeling fMRI data (Vincent et al.,
2013). To analyze such data, physiologically-inspired models are
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investigated to establish parsimonious and tractable versions of
physiological models such as the balloon model described in
Friston and Buechel (2000) and Buxton et al. (2004). Hence,
for validation purpose, the artificial data generator is also being
enriched with the simulation of physiological models.

5.2. PACKAGE PERSPECTIVES
In addition to improving the documentation and usability of the
current package version, additional developments will be first
motivated by the above-mentioned methodological perspectives,
namely re-factoring part of the data design to integrate the group-
level and multi-session data components. This will mainly involve
the modification of the FmriData class and the addition of a
new FmriGroupData class. The handling of data input will
have to be extended to exploit a hierarchy of subject-specific files.

We also plan to enrich the parcellation component by
handling classical atlases such as the Automated Anatomical
Labeling (AAL) atlas built by Tzourio-Mazoyer et al. (2002), the
Brodmann regions (Brodmann, 1909) and the Harvard-Oxford
atlas (Desikan et al., 2006) available in FSL 18. The goal is to
enable the definition of functional parcels that are consistent
with previous studies in the literature and also to further inves-
tigate the anatomo-functional link by comparing atlas-driven vs.
data-driven parcellations.

In order to offer more user-friendliness, the construction of
a unified graphical user interface is foreseen, which will gather
together the XML editor and the viewer while also enabling the
selection of the analysis type. We also envisage resorting to wiz-
ard interfaces to guide the setup process and deliver contextual
documentation. In terms of browsing features, tools to prop-
erly explore the surface-based results are currently missing, as we
resort to an external tool, anatomist. The goal is not to repro-
duce all the features offered by the latter which enable the output
of paper-ready figures through joint volume/surface rendering,
data fusion and material handling. We rather think of a simple
textured mesh viewer associated with a picking feature in order to
synchronize other views. The main usage is to make the selection
of a mesh node and the corresponding HRF estimate feasible. For
making this surface-based rendering available, mayavi 19 is an
appealing candidate since it has been already intensively used in
the python community.

Finally, we plan on incorporating GPU parallel computing
features. This technology is becoming more and more available
and powerful and may also appear cheaper than CPU comput-
ing systems (see Owens et al., 2008 for a review). Specifically, the
NVIDIA chipsets are easily accessible for general purpose com-
puting through the python package pyCUDA20. A simple test on
matrix products with a complexity similar to that of our models
showed a gain of one order of magnitude in favor of GPU com-
putations21 (NVIDIA GeForce 435M graphics card) compared to
CPU-based computations (Intel Core M480 @ 2.67 GHz) with
numpy.

18http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
19http://code.enthought.com/projects/mayavi/
20http://developer.nvidia.com/pycuda
21benchmark available at http://wiki.tiker.net/PyCuda/examples/
DemoMetaMatrixmulCheetah

6. CONCLUSION
The pyhrf package provides tools to detect evoked brain activ-
ity and estimate the underlying dynamics from fMRI data in the
context of event-related designs. Several “reference” methods are
available: the GLM, FIR and RFIR approaches, and also more
flexible models as provided by the JDE framework. The choice
of the analysis tools depends on the experimenter’s goal: if sim-
ple mappings are required, the GLM is appropriate provided that
the HRF is expected to be close to its canonical version, but for
finer dynamic estimation, the JDE procedure is more suitable.
The design of pyhrf allows the handling of volume-based and
surface-based data formats and also the utilization of several dis-
tributed computing resources. The main user interface is done by
shell commands where the analysis setup is stored in an XML con-
figuration file. Two graphical components are provided: an XML
editor and a n-dimensional volume-based data browser.

This package provides valuable insights on the dynamics of the
cognitive processes that are not available in classical software such
as SPM or FSL. Hence, it offers interesting perspectives to under-
stand the differences in the neuro-vascular coupling of different
populations (infants, children, adults, patients, etc.).
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