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Abstract: In observational studies, control of confounding can be done in the design and 

analysis phases. Using examples from large health care database studies, this article provides 

the clinicians with an overview of standard methods in the analysis phase, such as stratification, 

standardization, multivariable regression analysis and propensity score (PS) methods, together 

with the more advanced high-dimensional propensity score (HD-PS) method. We describe the 

progression from simple stratification confined to the inclusion of a few potential confounders 

to complex modeling procedures such as the HD-PS approach by which hundreds of potential 

confounders are extracted from large health care databases. Stratification and standardiza-

tion assist in the understanding of the data at a detailed level, while accounting for potential 

confounders. Incorporating several potential confounders in the analysis typically implies the 

choice between multivariable analysis and PS methods. Although PS methods have gained 

remarkable popularity in recent years, there is an ongoing discussion on the advantages and 

disadvantages of PS methods as compared to those of multivariable analysis. Furthermore, the 

HD-PS method, despite its generous inclusion of potential confounders, is also associated with 

potential pitfalls. All methods are dependent on the assumption of no unknown, unmeasured 

and residual confounding and suffer from the difficulty of identifying true confounders. Even 

in large health care databases, insufficient or poor data may contribute to these challenges. 

The trend in data collection is to compile more fine-grained data on lifestyle and severity of 

diseases, based on self-reporting and modern technologies. This will surely improve our ability 

to incorporate relevant confounders or their proxies. However, despite a remarkable develop-

ment of methods that account for confounding and new data opportunities, confounding will 

remain a serious issue. Considering the advantages and disadvantages of different methods, 

we emphasize the importance of the clinical input and of the interplay between clinicians and 

analysts to ensure a proper analysis.

Keywords: observational studies, confounding, adjustment, stratification, multivariable analysis, 

propensity score

Introduction
During the era of modern epidemiology, we have seen large health care databases 

and registries emerging, contemporary with technological achievements in com-

puting, which has paved the way for a remarkable increase in observational stud-

ies. Confounding is the concept of comparability in observational studies, which 

hampers causal inference.1–3 Confounding arises when a factor is associated with 

both the exposure (or treatment) and the outcome, eg, a disease or death, and is not 

part of the causal pathway from exposure to outcome. Hence, if we study the effect 

of hypertension on the risk of stroke, we cannot just compare hypertensive people 
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against people without hypertension. The reason is that we 

may obtain spurious results, if we do not consider confound-

ing factors, such as smoking, diabetes, alcohol intake and 

cardiovascular diseases, that are likely associated with both 

stroke and hypertension and are not on the causal pathway 

from hypertension to stroke. The effect on odds ratio (OR) 

estimates when controlling for these confounding factors 

was illustrated in a UK registry-based case–control study 

that among other things examined the association between 

stroke and untreated hypertension. The estimated OR for 

the association of interest increased from 2.9 to 3.5 after 

controlling for confounding.4 In this example, the magnitude 

of the association was underestimated, if not adjusting for 

confounding; however, confounding may also result in an 

overestimated effect, if not accounted for.

Once a potential confounding problem has been rec-

ognized, it may be dealt with in the design or the analysis 

phase.5 Standard methods used in the design phase involve 

randomization, restriction and matching. In randomized stud-

ies, patients are assigned randomly to exposure categories. 

Restriction means that only subjects with certain values for 

the potential confounders are selected (eg, certain sex and 

age groups), while matching involves the selection of the 

groups to be compared (exposed vs not exposed or cases vs 

controls) to be comparable with respect to the distribution 

of potential confounders. In registry-based observational 

studies, it is often insufficient to control for confounding 

only during the design phase of the study. Usually, we wish 

to account for several potential confounders, which may not 

be possible by either restriction or matching. For example, by 

restriction, we may end up with a very small cohort, limiting 

both the precision and the generalizability of the results of the 

analysis. Likewise, matching on several potential confound-

ers may reduce the likelihood of finding comparison people 

for the people in the patient cohort. The two approaches are 

not mutually exclusive. In the UK example with stroke, diag-

nosed cases were matched with a group of controls with the 

same sex and age in the design phase, and then, a multivari-

able regression analysis was performed in which hypertension 

status and the potential confounders were incorporated in 

the analysis phase.4 In general, the control of confounding 

may involve design, analytical, and statistical concepts by 

which we can perform statistical adjustment, restructure 

data, remove certain observations or add comparison groups 

with certain characteristics (negative controls) to deal with 

confounding.6,7

In the history of control of confounding during the analysis, 

we have advanced from simple stratification with only a few 

potential confounders collated from small manageable hospital 

files to complex modeling procedures, using high-dimensional 

propensity scores (HD-PSs) by which hundreds of potential 

confounders are extracted from large health care databases.

The questions are, however, what have we achieved by 

this change in the setting of epidemiological research? Did 

we lose important aspects in the analysis? Are novel analysis 

methods to control for confounding that have become widely 

used in recent years, such as PS methods, our main response 

to the confounding issue in large and complex data sets? In 

the present article, we attempted to answer these questions, 

focusing on a registry-based setting. We considered the topic 

from a hands-on perspective and tried to demystify the control 

for confounding during analysis by explaining and discussing 

the nature of the various methods and referring to examples 

from epidemiological studies.

From the simple to the complex – 
stratification, standardization and 
multivariable analysis
Stratification
Stratification is the starting point in many textbooks dealing 

with confounding in the analysis phase.8,9 This is probably 

due to the simplicity of this method in which a data set is 

broken into a manageable number of subsets, called strata, 

corresponding to the levels of potential confounders (eg, age 

groups and sex). By comparing the overall cross-tabulation 

for the association between an exposure and an outcome (eg, a 

2¥2 table for alcohol consumption and myocardial infarction 

[MI]) with stratum-specific (eg, age group) cross-tabulations, 

it becomes evident whether a factor introduces confounding 

in the analysis. Thus, the stratum-specific associations (eg, 

measured as ORs) would deviate markedly from the overall 

association – refer the example in the study by Mannocci10 

on the confounding effect of age on the association between 

alcohol consumption and MI. Age was a confounder since it 

was associated with alcohol consumption (alcohol consump-

tion was most frequent among younger people) and with MI 

(MI was most common among the middle-aged people). The 

Mantel–Haenszel method11 is commonly used to deal with 

confounding using stratification. The method summarizes the 

stratum-specific ORs by using a weighted average of them. 

This approach is generally attractive because of its applica-

bility to a number of epidemiological measures such as OR, 

risk difference, risk ratio and incidence rate difference.9,10

Stratification is an attractive method because of its sim-

plicity; however, there are limitations to the number of factors 
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that can be stratified, so that information can be extracted 

from the analysis.9 For example, 10 dichotomous factors 

would result in 210=1,024 strata, and some strata may contain 

little or no data. In epidemiological research, we are expected 

to build on the current knowledge base and select numer-

ous potential confounders, previously recognized, from the 

wealth of data that are potentially accessible from registries. 

Hence, when we attempt to control for confounding in the 

analysis, we will soon face the limitations of the stratification 

method regarding the number of potential confounders that 

are practically manageable. Stratification is therefore rarely 

used exclusively to control for confounding in studies that 

emanate from large health care databases. These days, it is 

used as an assisting tool in combination with other methods, 

and stratification may be used to identify effect measure 

modifications, ie, to demonstrate that the strength of the 

association between an exposure and an outcome depends 

on the value of another factor.

Standardization
Standardization provides another tool that can cope with con-

founding, although hampered by some of the same constraints 

as in stratification. Typically, disease or death rates are only 

standardized to age, and perhaps to sex and race, even in large 

registry-based studies. If more factors are considered, then 

separate analyses must be undertaken for specific subgroups. 

While stratification of confounders relies on information at 

the individual level in a study population, standardization 

involves the use of a reference population, obtained either 

from the data set or from an external source, such as data from 

a larger geographical scale. As an example, in a study based 

on the Korean Stroke Registry, age- and sex-standardized 

mortality ratios in stroke patients were calculated and com-

pared across reasons for stroke, using the overall Korean 

population in 2003 as the reference population.12

There are two main approaches that handle confound-

ing by standardization: direct and indirect standardization, 

resulting in adjusted rates and standardized ratios. Detailed 

descriptions of the two methods can be found in most 

introductory textbooks to epidemiology (eg, Kirkwood and 

Stern13). In general, direct standardization is recommended, 

because the consistency of comparisons is maintained, ie, 

a higher rate in one study population compared to another 

will be preserved also after direct standardization. That said, 

the very rate is dependent on characteristics of the selected 

reference population.14 When unstable rates are encountered 

across strata, eg, because of small numbers of patients in each 

stratum, indirect standardization should also be considered.13 

In the example from Korea, indirect standardization was used 

to show that the standardized mortality ratios were higher 

among patients with unknown stroke etiology compared to 

patients with known etiology.12

Multivariable analysis
Multivariable regression analysis has been one of the most 

frequently used methods to control for confounding, and 

the use of this approach was particularly enhanced at a time 

when modeling tools were made readily available. With 

multivariable analysis, we get around the main limitation of 

stratification, as we obtain the possibility to adjust for many 

confounding variables in just one (assumed true) model.15 

Thus, we can take advantage of more of the information 

available in a registry than when we use stratification. In epi-

demiology, multivariable analysis is typically seen in analyses 

in which ORs or hazard ratios (HRs) are estimated. Control 

for confounding by multivariable analysis relies on the same 

principles as stratification, ie, the factors of interest (eg, a 

risk factor, treatment or exposure) are investigated while the 

potential confounders are held constant. In multivariable anal-

ysis, this is done mathematically in one integrated process, 

however, under certain assumptions (Table S1) – here as an 

example of linearity for linear models. This assumption may 

be compromised when confounders with nonlinear effects 

are incorporated in a linear model as continuous variables. 

This leads to residual confounding (confounding remains 

despite controlled for in the analysis) unless other measures 

are taken (refer the study by Groenwold et al16 for examples 

and solutions).

Selection of potential confounders for multivariable 

models has been the subject of controversy.17 Confounder 

selection would typically rely on prior knowledge,18 pos-

sibly supported by a directed acyclic graph (DAG), that is a 

graphical depiction of the causal relationship between, eg, an 

exposure and an outcome together with potential confound-

ers.6 In large study populations, the researcher would in many 

cases include all known measured potential confounders in 

the regression model. In a registry-based German study, 16 

potential confounders were included in the analysis of the 

effect of treatment with tissue plasminogen activator (t-PA) 

on death (361 cases) among 6,269 ischemic stroke patients.19 

There was indeed a remarkable drop in the OR between t-PA 

and death derived from a multivariable model, when adjusting 

for confounding (OR=1.93 compared to OR=3.35 in the crude, 

unadjusted analysis). Such generous inclusion of potential 

confounding factors in the multivariable model is unlikely 

to be a problem in this example, given that there are >20 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Epidemiology 2017:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

198

Kahlert et al

outcome events (deaths) per factor included in the model.20 

Factors may be omitted from a multivariable model based on 

preliminary data-driven procedures, such as stepwise selec-

tion, change-in-estimate procedure, least absolute shrinkage 

and selection operator (LASSO),21 and model selection based 

on information criteria (eg, Akaike information criterion).22 It 

is important to recognize that data-driven variable selection is 

not related to the presence of confounding factors in the data 

set, and hence, there is a possibility that important confound-

ers are discarded during such procedures.23

Modifications of the multivariable model have been devel-

oped to better comply with the underlying assumptions or to 

avoid discarding variables. These include transformations of 

variables,16 shrinkage of parameter estimates23 and random 

coefficient regression models.24 Despite great flexibility when 

exploring associations between an exposure and an outcome 

while controlling for potential confounders, multivariable 

analysis does not directly identify whether a factor is a true 

confounder. Therefore, it is not clear whether residual con-

founding remains in the model.25

PS – our main response 
to confounding?
In recent years, PS methods have become very popular as an 

approach to deal with confounding in observational studies. 

The idea of this method is to modify the study so that expo-

sure or treatment groups that we want to compare become 

comparable without influence from confounding factors.26 

In a cohort study, we want to get rid of confounding due 

to factors measured at baseline – typically defined as the 

period before a drug use or treatment of interest. Already in 

the early history of modern epidemiology, stratification by a 

multivariate confounder score was recognized as an attrac-

tive approach.27 This is comparable to the PS approach, as 

it combines information on a number of variables (potential 

confounders) into a single score for each individual person 

in a data set. This score is equivalent to the probability of 

an exposure, given the characteristics measured at baseline. 

There are four conceptual steps in the PS methods: 1) selec-

tion of potential confounders; 2) estimation of the PS; 3) use 

of the PS to make treatment/exposure groups comparable 

(covariate balance) and assessment of group comparabil-

ity and 4) estimation of the association between treatment/

exposure and outcome.

In the German study on stroke patients mentioned earlier, 

PS methods were applied in addition to a multivariable analy-

sis.19 We will use the setting from this example to outline the 

principles of the underlying conceptual steps; further details 

on the methods can be found elsewhere.26 In the example, we 

would start estimating the probability of the treatment with 

t-PA as a function of a number of baseline characteristics, 

such as the presence or absence of comorbidities (hyperten-

sion, diabetes, etc.), or person characteristics (age and sex).

Based on the PS values, we can now group individu-

als according to baseline characteristics – here, untreated 

patients and patients treated with t-PA. This can be done in 

several ways: matching, stratification, covariate adjustment 

and inverse probability (of treatment) weighting. There is an 

extensive literature on the different variants and the associ-

ated pros and cons26,28–30 (Table S2). Different variants were 

applied in the example, and eventually, affected the results, ie, 

the ORs between t-PA and death ranged from 1.17 to 1.96,19 

potentially leading to different conclusions, if considered 

separately. However, it is important to recognize that differ-

ent variants may imply answering different research ques-

tions.26,31 We discriminate between approaches that estimate 

the average effect of a treatment on the population (both 

treated and untreated individuals) and the average effect of 

treatment on those individuals who actually received the 

treatment. In the example with t-PA, the authors mentioned 

that differences in ORs between two weighting variants 

(inverse probability of treatment weighting and standardized 

mortality ratio weighting) likely derive from the fact that 

the two approaches are associated with different research 

questions,19 and this may also apply to other methods that 

are evaluated in the study.

An important step is to evaluate whether the treated and 

untreated groups are comparable. The evaluation cannot be 

offset by a goodness-of-fit (GOF) test, which is a general 

approach that provides a measure of how well a statisti-

cal model fits the data. However, this approach is usually 

meaningless in the large data sets that are typically extracted 

from health care databases. Furthermore, the GOF test may 

not tell the researcher whether important confounders were 

excluded from the analysis, neither in multivariable analysis 

nor in PS modeling.26,32

The evaluation of the comparability of the groups of 

interest may involve measures of difference, testing or visual 

inspection of the PS distributions of the two groups – refer 

the study by Franklin et al33 for a discussion under what cir-

cumstances the different approaches are considered useful. 

Imbalances between the two groups may necessitate that 

the estimation of the PS is reconsidered, meaning that the 

specification of the model that provides the PS is changed, 

another PS variant is applied or the data set is trimmed.34 By 

trimming, a subset of data is extracted according to certain 
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rules, and thus, the sample size is reduced, which in some 

cases may hamper the feasibility and interpretability of the 

results obtained by the PS method.

It may be difficult to balance the treatment groups in 

small samples or if the comparison groups are very different. 

Hence, the evaluation of balance represents an assurance that 

eventually we analyze comparable groups in the final analysis 

of the possible association between treatment and outcome, 

adjusted for (measured) confounding.

In the German study on stroke patients, there was an 

imbalance between the t-PA-treated and -untreated groups 

with a limited overlap of PSs among the two groups due to 

an exceptionally high proportion of untreated patients with 

low PS. The authors then restricted the study population to 

patients with a PS ≥0.05, which increased the comparability 

of the groups. In this setting, the results were also less sensi-

tive to the choice of PS variant (matching and several regres-

sion adjustments) compared to the unrestricted approach.19

As with multivariable analysis, there is a possibility that 

unknown, unmeasured and residual confounding still exists 

after having applied the PS approach. In order to attempt to 

reduce this drawback, the HD-PS approach was developed.35 

The HD-PS method involves a series of conceptual steps,35 

which in essence can be condensed to: 1) specification of 

data source; 2) data-driven selection of potential confound-

ers; 3) estimation of PS; 4) use of the PS to make groups of 

interest comparable and assessment of group comparability 

and 5) estimation of the association between treatment/

exposure and outcome. Essentially, it is the selection process 

of confounders that makes the HD-PS method differ from 

the conventional PS methods. For the HD-PS method, large 

numbers of variables (often hundreds) are selected as poten-

tial confounders. As an example in a nationwide study in 

Taiwan, the HD-PS method was used to adjust for confound-

ing.36 Well-known prespecified confounders, eg, sex, age and 

comorbidities related to lifestyle, were incorporated in the 

analysis together with 500 additional potential confounders. 

The rationale is that some of these many variables are likely 

proxies for unmeasured confounders that are not available in 

the database or the researcher is not aware of. Accordingly, 

we may be able to deal with at least some of the unmeasured 

confounding that would not be considered in a conventional 

PS approach. However, there is little empirical evidence that 

the HD-PS method is better at controlling for unmeasured 

confounding than other methods, and adding several hundred 

empirically identified factors in an HD-PS setting may lead to 

comparable results to those that could also be obtained from 

a conventional PS setting.37 In addition, despite examples of 

HD-PS analyses that provided estimates closer to the esti-

mates obtained in randomized trials,38 we cannot conclude 

that HD-PS is almost as good a tool as randomization.

Given the data greediness of the HD-PS method, its 

application is dependent on access to large databases, 

although it has also been demonstrated to be quite robust in 

a small sample setting (down to 50 exposed patients with an 

event).38 It is important to be aware that variable selection 

in the HD-PS method is mainly data driven and in principle 

associated with the risk of omitting important confound-

ers. That said, the benefit of including an excessive number 

of proxies for potential unmeasured confounders possibly 

outweighs the risk of discarding important confounders. 

In multivariable analysis and conventional PS analysis, we 

select the potential confounders to adjust for from a pool of 

variables that are thought to be possible true confounders. 

Despite measures taken during the variable selection process 

in the HD-PS method,38 the generous inclusion of variables 

from databases may increase the likelihood that variables 

are not confounders but mediator, collider or instrumental 

variables – see definitions elsewhere.39–41 This may lead to 

inappropriate adjustment that potentially provides spurious 

results. However, we are limited in our understanding of all 

the prospects and pitfalls of the HD-PS method, given its 

relatively recent origin, although exploration and refinements 

of the approach have already emerged.42–44

Overall, we can conclude that the PS methods have 

several attractive characteristics in a registry-based setting. 

For example, PS seems more robust in situations with rare 

outcomes and common exposures than multivariable analy-

sis.45,46 However, even in a large sample setting, we may face 

the challenge of rare exposure (or treatment). The disease risk 

score (DRS) method is suitable to use under these circum-

stances, such as in the early market phase of a drug when 

reduction in confounder dimensions is likely important.47–49 

DRS is comparable to PS in so far that information from 

several variables is summarized in one single score.

The PS method cannot handle treatment defined as a 

continuous variable (eg, drug dosage), unless dosage is cat-

egorized, typically dichotomized into the presence or absence 

of treatment, associated with the risk of losing important 

information on the association between an exposure and base-

line characteristics. DRS may again be an alternative to PS. 

That said, methods that are based on the inverse probability 

weighting (IPW) principle represent alternatives with a wide 

range of applications, because IPW may be generalized to a 

suite of different circumstances also including dichotomous 

and non-dichotomous exposure.50 The German study of 
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stroke comprised an additional analysis, which controlled 

for confounding by using the IPW principle.19 Time-varying 

exposure and thus time-dependent confounding may also be 

dealt with by methods based on IPW in the form of marginal 

structural models51 or structural nested models based on 

G-estimation.52

What did we achieve and what have 
we lost?
It is important to stress that during selection of a method, there 

is no book of answers, and in many cases, simple methods 

may be equally valid as the complex methods. In addition to 

all the pros and cons of the different methods (Table S1), we 

may face an unusual setting or a data set with an odd structure 

that necessitates further consideration of the method that 

controls for confounding. Moreover, the specific research 

question that we wish to answer may determine the method 

selected to control for confounding (Table S2).

Both stratification and standardization represent ways of 

learning about the data, as we look at smaller units of the data 

set, and we may use these methods as preliminary analysis, 

before we use other methods such as multivariable analysis 

or PS methods to adjust for confounding. Thus, applying 

stratification or standardization assists in the understanding 

of the data at a detailed level, and we may become aware of 

associations in specific strata, otherwise overlooked. By the 

era of multivariable analysis, we may have lost some of this 

basic understanding of the data, because of the complexity 

introduced by incorporating numerous potential confounders 

in models. Nevertheless, we are still capable of understand-

ing which factors substantially confound an association, and 

we can directly explore interactions between an exposure 

and other factors. After the introduction of the PS method, 

there has been an ongoing discussion on the advantages and 

disadvantages of this method as compared to multivariable 

analysis. Glynn et al53 noticed that in the majority of studies 

that used both multivariable analysis and PS methods, there 

were no important differences in the results, and this was fur-

ther confirmed by simulation studies. However, comparable 

results across different methods do not prove that proper 

adjustment of confounding was undertaken, eg, if the data 

quality of important confounders is poor or unmeasured con-

founding exists. The trend in analysis methods has dictated 

that we extract more and more information from databases, 

when attempting to account for confounding. This could 

potentially entail that we reduce unmeasured confounding 

just by chance, most notably in the HD-PS approach with 

the inclusion of hundreds of variables. However, there is no 

evidence that this method is superior to others, and even 

the HD-PS method would be flawed in the case that data on 

important confounders or their proxies are not available or 

if variables that are not true confounders are adjusted for.

Given the complexities of registries and data analysis, 

we wish to emphasize the critical importance of clinical 

input and of the interplay between clinicians and analysts 

(statisticians) during the statistical analysis. Clinicians may 

contribute with important scientific input regarding the initial 

list of potential confounders that should be considered and 

their availability in health care databases; if potential con-

founders are missing, which surrogate factors could then be 

used as a replacement? Clinicians may also provide essential 

information on technical elements of the statistical analysis 

such as how variables should be categorized, the functional 

forms of continuous variables (eg, linear vs nonlinear) and 

temporal aspects (eg, the relative importance of an event of 

MI 1 week vs 1 year ago). Finally, clinicians have expert 

knowledge on the nature of treatments and treatment alloca-

tion that can guide the analyst.

Requirements to the analysis in 
the future
In the future, it would be an achievement if we were better 

at identifying confounding factors. At present, the selection 

of potential confounders in models largely relies on assess-

ments, eg, prior knowledge, DAGs and arbitrarily defined 

differences between crude and adjusted results, or on data-

driven procedures decoupled from the confounder issue.17,54 

It would be desirable to minimize the uncertainty of a factor 

being a true confounder. In addition, confounder selection 

is commonly compromised by limited access to appropri-

ate variables in registries.18 In this respect, it would also be 

desirable that information on lifestyle and severity of diseases 

were more widespread in registries, as these elements likely 

represent important confounding factors.55–57 Software that 

extracts information from medical records and translates it 

into analyzable data has already been developed58 and may 

likely assist in compiling data on lifestyle and severity of 

diseases. Furthermore, self-reporting systems, remote sens-

ing technologies and automated data logging already exist 

to accumulate data on, eg, blood pressure, physical activity 

and heart rate. This could potentially develop into health care 

monitoring in a citizen science setting, just as this concept has 

evolved in other science disciplines.59,60 The use of such less 

aggregated data than those present in the registries of today 

will surely improve our ability to incorporate relevant con-

founders or their proxies; however, most likely it necessitates 
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novel and innovatory methods to deal with the confounder 

issue in the analysis phase. However, despite a remarkable 

development of methods that control for confounding and 

new data opportunities, it is unlikely that we will be able to 

account completely for confounding in the data collection 

process in a foreseeable future. Hence, confounding will 

remain a serious issue that needs to be acknowledged in the 

interpretation of our analyses.
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Supplementary materials

Table S1 Summary of the pros and cons of five methods used to control confounding in observational studies

Method Advantages Disadvantages

Stratification Simple and transparent method
Provides insight into the data at a detailed level
Few assumptions

Limitations on the number of strata that are practically 
manageable
Sensitive to sparse data in strata

Standardization Specifically developed to compare rates and ratios
Few assumptions
Variants (direct and indirect standardization) 
developed to meet limitations in data availability

Sensitive to the choice of standard or reference 
population
Cumbersome analysis with many confounders
Sparse data may result in unstable rates across strata

Multivariable regression analysis Easy to include a large number of potential 
confounders with standard statistical software
Great flexibility when exploring effects1

Outcome can be of any type (eg, multiple levels)

Many assumptions such as linearity in linear models, 
no collinearity between factors, normality and 
homoscedasticity of error terms
Less efficient when few events/outcomes per variable2

In some variants, variable selection is data driven with 
the risk of discarding important confounders

PS methods Robust method when exposure is common and 
outcome is rare3

Outcome can be of any type (eg, multiple levels)
Robust when few events/outcomes per variable (<8)4

The PS model may be changed until groups are 
comparable5

Can be used for calculation of ratios, risk differences 
and relative risks

Exposure must be a categorical variable (information 
potentially lost)
Appropriate balancing of PSs between comparison 
groups may not be possible
Data set may be reduced when balancing the PSs of 
comparison groups (information loss)
Less efficient when exposure is rare6

HD-PS method The very large number of variables included in the 
analysis may comprise proxies for unmeasured 
confounders (although there is no guarantee)
Outcome can be of any type (eg, multiple levels)

Data greediness
Complex procedure with many steps in the selection 
of confounders
Possible increase in the risk of including variables that 
are not confounders

Abbreviations: PS, propensity score; HD-PS, high-dimensional propensity score.
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Table S2 Summary of the methodological pros and cons of four different types of PS methods

Method Methodology Advantages Disadvantages

Stratification People are assigned to a stratum 
based upon their PS. Strata are 
typically defined by percentiles of the 
PS, eg, quintiles. Hence, within each 
stratum, treated and untreated people 
roughly share the same characteristics. 
A treatment effect is calculated within 
each stratum, and the overall effect is 
a weighted average across strata
The typical approach estimates ATE7

Simpler approach in comparison with 
matching and weighting
Across strata, effects are measured

Comparability of treatment groups must 
be checked for all strata
Comparability of all strata may be difficult 
to obtain
Potentially less efficient in removing 
differences between treatment groups5

Low number of strata may create residual 
confounding7

The range of PS values within strata may 
create residual confounding7

Matching For each treated person, one or 
more untreated person(s) with 
a comparable PS are selected. A 
comparable PS can be defined in 
different ways, eg, nearest neighbor or 
caliper width
The typical approach estimates ATT7

Potentially more efficient in providing 
comparable treatment groups5

Treated people may not have a match with 
the untreated people, leading to biased 
results
Only reasonable to use if the untreated-
to-treated ratio is large

Covariate adjustment An outcome regression model is used. 
As a minimum, the treatment and the 
PS must be included in the model as 
independent variables. Other variables 
may also be included

Simple approach: PS is used to 
balance treatment groups and is 
incorporated directly in an outcome 
regression model

Stronger assumptions than other methods7

In certain circumstances, it is not clear 
which effect is estimated5

No separation of study design and analysis5

Inverse probability of 
treatment weighting

Weights are used to create a 
pseudo‑population in which the 
characteristics are comparable across 
the treatment groups. Thus, weights 
are increased for those people 
who have received the treatment 
unexpectedly
The typical approach estimates ATE7

Potentially more efficient in providing 
comparable treatment groups5

A setting involving treated people with 
a low PS (or untreated people with a 
high PS) will generate large weights and 
variances8

Abbreviations: PS, propensity score; ATE, average treatment effect for the population (both treated and untreated people); ATT, average treatment effect among treated 
people.
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