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Abstract

Background: Accurate prediction of protein structure is fundamentally important to understand biological function
of proteins. Template-based modeling, including protein threading and homology modeling, is a popular method
for protein tertiary structure prediction. However, accurate template-query alignment and template selection are still
very challenging, especially for the proteins with only distant homologs available.

Results: We propose a new template-based modelling method called ThreaderAI to improve protein tertiary
structure prediction. ThreaderAI formulates the task of aligning query sequence with template as the classical pixel
classification problem in computer vision and naturally applies deep residual neural network in prediction.
ThreaderAI first employs deep learning to predict residue-residue aligning probability matrix by integrating
sequence profile, predicted sequential structural features, and predicted residue-residue contacts, and then builds
template-query alignment by applying a dynamic programming algorithm on the probability matrix. We evaluated
our methods both in generating accurate template-query alignment and protein threading. Experimental results
show that ThreaderAI outperforms currently popular template-based modelling methods HHpred, CNFpred, and the
latest contact-assisted method CEthreader, especially on the proteins that do not have close homologs with known
structures. In particular, in terms of alignment accuracy measured with TM-score, ThreaderAI outperforms HHpred,
CNFpred, and CEthreader by 56, 13, and 11%, respectively, on template-query pairs at the similarity of fold level
from SCOPe data. And on CASP13’s TBM-hard data, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by
16, 9 and 8% in terms of TM-score, respectively.

Conclusions: These results demonstrate that with the help of deep learning, ThreaderAI can significantly improve
the accuracy of template-based structure prediction, especially for distant-homology proteins.
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Background
Protein structure is fundamentally important to under-
stand protein functions. Computational protein structure
prediction remains one of the most challenging prob-
lems in structural bioinformatics. Recent progress in
protein structure prediction showed that with the help
of deep learning, it’s possible for free modelling (FM)
methods to generate fold-level accuracy models of pro-
teins lacking homologs in protein structure library [1–4].
Meanwhile, as both protein sequence and structure data-
bases expand, template-based modelling (TBM) methods
remain to be very popular and useful [5–7] for the pro-
teins with homologs available in protein structure
library. TBM method predicts the structure of query
protein by modifying the structural framework of its
homologous protein with known structure in accordance
with template-query alignment. The quality of TBM pre-
diction critically relies on template-query alignment and
template selection. It remains to be very challenging for
TBM methods to predict structures accurately when
only remote homologs which are conserved in structure
but share low sequence similarity with query are avail-
able in structure library [5–7].
The model accuracy of TBM method critically

depends on protein features and the scoring functions
that integrate these features. For protein features,
sequence profiles, and protein secondary structures are
widely used by exiting popular TBM methods such as
HHpred [8], CNFpred [9], and Sparks-X [10]. As a result
of recent progress in residue-residue contact prediction,
contact information has been integrated by several
recently developed methods such as DeepThreader [5],
CEthreader [6], and EigenThreader [11]. For scoring
functions, HHpred, Sparks-X, CEthreader, and several
other methods used linear functions, while non-linear
models such as Random Forest model in Boost-
Threader [12] and one-layer dense neural network in
CNFpred have shown their advantages over linear
models. Inspired by the success of non-linear models in
TBM methods, we would like to study if we can improve
TBM methods’ model accuracy using more advanced
neural network architecture such as deep residual net-
work which has proven very successful in protein
residue-residue contacts prediction.
In this paper, we present a new method, called Threa-

derAI, which uses a deep residual neural network to per-
form template-query alignment. More specifically, we
formulate template-query alignment problem as the clas-
sical pixel classification problem in computation vision.
We first adapt the deep residual neural network
model to predict residual-residual aligning scoring
matrix, and then we employ a dynamic programming
algorithm on the predicted scoring matrix to generate
the optimal template-query alignment.

Methods
Overview of the method
For a query protein, ThreaderAI predicts its tertiary
structure through the following steps (Fig. 1a). First,
query protein is aligned to each template in the structure
library using a deep residual neural network model and
a dynamic programming algorithm. Second, all the align-
ments are ranked based on alignment scores. Third, the
final tertiary structures of query are built using Modeller
[13] based on the top-ranked alignments.
For TBM methods, the quality of query-template

alignments critically determines the quality of predicted
structures [5, 9]. ThreaderAI uses a deep residue neural
network model to generate template-sequence alignment
(Fig. 1b). First, protein features are extracted from both
template and query. Second, a deep residue neural net-
work model is used to generate residue-residue aligning
probability matrix. Third, a dynamic programming algo-
rithm is applied on the scoring matrix to generate the
final template-query alignment.

Protein features
We included the following features as inputs for our
deep residual neural network model (also see Table 1).
Sequence profile (40 features): HHblits [14] was used

to generate the sequence profile for both template and
query. The feature vector for each residue-residue align-
ing pair is from the concatenation of the sequence pro-
files of template and query.
Sequential Structural features (29 features): For tem-

plate, we generated its 8-class secondary structure types,
real-valued solvent accessibility, and backbone dihedral
angles using DSSP [15]. We also calculated the contact
numbers of template with Cα- Cα and Cβ- Cβ distances
of 8 Å as threshold. And for Glycine, we only used its Cα

coordinates. For query, we predicted its 3-class second-
ary structure types, real-valued solvent accessibility,
backbone dihedral angles, disordered regions, and
residual level interfaces using NetSurfP2 [16]. We also
predicted these sequential structural features for tem-
plate. The features of a residue-residue aligning pair are
the concatenation of the structural properties of these
two residues.
Residue-residue contacts (8 features): The residue-

residue contacts of template are defined as the residue
pairs with Cβ- Cβ distance less than 8 Å. For query, we
predict its contact map using ResPRE [17]. The eigen-
vectors and eigenvalues of the residue-residue contact
matrix can capture the intrinsic properties of protein’s
tertiary structure and have been used as features by
recently developed threading methods [6, 11]. Given
contact matrix M of the protein, the i th residue can be
represented as ð ffiffiffiffiffi
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p

v1i;
ffiffiffiffiffi
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vj. is the j th eigenvalue and eigenvector of matrix M,
respectively. Here we set K as 8. Given template and
query’s contact matrices MT and MQ, the features of the
i th residue of template aligning the j th residue of query

are defined as ð
ffiffiffiffiffiffiffiffiffiffiffi
λT1 λ

Q
1

q
jvT1ivQ1 jj;

ffiffiffiffiffiffiffiffiffiffiffi
λT2 λ
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2
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Q
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Q
KjjÞ. Heuristically, we set the sign of each eigenvector as

positive. Previous methods [6, 11] enumerated a total of 2K

possible alignments to decide the sign of each involved
eigenvector which is very time-consuming and infeasible
for neural network-based models.

Neural network architecture
We employed a deep residual neural network [18] (ResNet)
model to predict residue-residue aligning probability matrix.
ResNet has proven very successful in computer vision and
also in structural bioinformatics. First, convolutional layers in
ResNet are capable of extracting hierarchical features or
spatial patterns from images or image-like data automatic-
ally. Second, the residual component in ResNet can effi-
ciently mitigate the issue of vanishing/exploding gradients
and makes it possible to train an ultra-deep neural network
model on a large scale of training data.

Fig. 1 Overview of ThreaderAI. a. The procedure of protein structure prediction using ThreaderAI. b. The procedure of aligning query with
template using a deep residual neural network model and a dynamic programming algorithm

Table 1 Protein features used in ThreaderAI

sequence profiles (20 × 2 features) Amino acid type distribution in multiple sequence alignment (20 features for
template and 20 features for query)

sequential structural features only for template (13 features) 8-class secondary structure types (8 features)

solvent accessibility (1 feature)

backbone dihedral angles (2 features)

contact numbers (2 features)

predicted sequential structural features for both template and
query (8 × 2 features)

predicted 3-class secondary structure types (3 features)

predicted solvent accessibility (1 feature)

predicted backbone dihedral angles (2 features)

predicted residual level interfaces (1feature)

predicted disordered regions (1 feature)

residual-residual contacts (8 features) the dot products of the corresponding elements of top 8 eigenvectors of contact
matrices of template and query
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Specifically, for a template-query pair, the input fea-
ture tensor for our neural network model has dimen-
sions of LT × LQ × d where LT and LQ denotes the
lengths of template and query, respectively, and d is the
number of features for each residue-residue pair. And
the output for our model has dimensions of LT × LQ each
element of which representing residue-residue aligning
probability. Our model includes 16 residue blocks [18]
each of which includes 2 convolutional layers. Each con-
volutional layers used 16 filters and a kernel size of 3 ×
3. We used ELU [19] as nonlinear activation function.
Sigmoid function was used as the final layer to output
residue-residue aligning probabilitites.

Alignment labels and training loss function
We built training template-query pairs from proteins
with known structures. For each template-query pair in
training data, we used DeepAlign [20] to generate its
structural alignments as ground truth. For a template
with a length of LT and a query with a length of LQ,
there are LT × LQ residue-residue pairs in total, in which
the aligned pairs in the structural alignment are labeled
as positives while the others as negatives.
Following CNFpred [9], we weighted the conservation

of aligned residue pairs using local TM-score [21]. Given
a structure alignment of two proteins and the corre-
sponding superimposition, the local TM-score of an
aligned residue pair Ti and Qj is defined as follows:

wij ¼ 1

1þ dij=d0
� �2

where dij is the distance deviation between the two
aligned residues and d0 is a normalization constant
depending only on protein length. The TM-score ranges
from 0 to 1, with higher values indicating more highly
conserved aligned positions. And for a gap in the align-
ment, the local TM-score wij is equal to 0.
The labels from the structure alignments are highly

imbalanced in which the ratio of negatives over positives
is proportional to the lengths of template and query. To
mitigate this imbalanced labeling issue, we weighted the
aligned pairs in the reference alignments with the aver-
age length of template and query.
We used cross-entropy loss as our training loss func-

tion which is defined as follows:

1
N
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where N is the number of protein pairs in training data
and n iterates over all training samples, and L(n) equals

ðLðnÞT þ LðnÞQ Þ /2 meaning the average length of template

and query, and pðnÞij and wðnÞ
ij are residue-residue

aligning probability from our neural network model
and local TM-score, respectively.

Training algorithm
We used AdamW algorithm [22] to minimize the object-
ive function with a weight decay rate of 1e-4. For the
warmup stage, we increased the learning rate from 0 to
0.01 over the first 2 epochs. We also decayed the learn-
ing rate to 1e-4 with a polynomial decay policy in the
following 16 epochs [22]. Early-stopping with validation
error as a metric was performed during training. The
model architecture and training algorithm was imple-
mented by TensorFlow2 [23] and run on 3 NVIDIA
GeForce-1080 GPUs in parallel. We set training batch
size as 2 and we didn’t try a larger batch size due to the
limited GPU memory.

Maximum accuracy algorithm
Given the residue-residue aligning probability matrix of
LT × LQ from our neural network model, we used a
dynamic programming algorithm called Maximum
Accuracy algorithm (MAC) [8, 14] to generate the final
template-query alignment. MAC creates the local align-
ment through maximizing the sum of probabilities for
each residue pair to be aligned minus a penalty α which
can control the alignment greediness. To find the best
MAC alignment path, an optimal sub-alignment score
matrix S is calculated recursively using the probability pij
as substitution scores:

Si; j ¼ max

pij − α
Si; j − 1 − α=2
Si − 1; j − α=2

0

8><
>:

Then standard traceback procedure of dynamic pro-
gramming [24] was then applied on the score matrix S
to generate the optimal local alignment. We rank the
template-query alignments based on the optimal align-
ment scores from MAC.
The parameter α was determined by a grid search and

the α with the best TM-scores on validation pairs was
chosen. Finally, the α was set as 0.3.

Dealing with proteins of variable lengths
Our model has an architecture of fully convolutional
neural network [25] in which no fully-connected layers
were used. As a result, the number of parameters of our
model is independent of the lengths of both template
and query. Hence, our model can deal with proteins of
variable lengths. In particular, zero paddings were
applied so that each training sample in the same
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minibatch has the same size. We also filtered out the
padded positions when we aggregated the final training
loss.

Training and test data
We built the training set, validation set, and independent
testing set from proteins in SCOPe40. We also included
CASP13 data for testing.

Training data
We prepared template-query pairs from SCOPe40 [26].
First, for testing purpose, we excluded the domains which
share larger than 25% sequence identity with the domains in
CASP13 data [7]. Here we used MMseqs2 [27] to evaluate
sequence identity with the default E-value of 1e-3. Second,
we excluded families with single domains. Third, for each
class of α, β, α/β, and α+ β of SCOPe40, we randomly
selected 5 folds as independent testing data and the
remaining folds as training data. The testing and training
template-query pairs were generated from testing and train-
ing folds respectively.
Template-query pairs at the similarity of fold, super-

family and family levels were generated separately. When
generating family level pairs, at most 10 pairs were ran-
domly selected for each family. And when generating
superfamily and fold level pairs, for each family pairs
from the same fold, we randomly selected 1 domain
from each family as its representative to form pairs. And
all protein pairs with TM-score less than 0.3 were
excluded. Finally, we have 53,734 training pairs and
2000 validation pairs from the training folds, and 3106
pairs from testing folds.

Test data
We used two test datasets to test ThreaderAI in terms
of alignment accuracy and protein threading perform-
ance, respectively. For testing alignment accuracy, we
used 3106 template-query pairs (denoted as SCOPe3K
data) created together with training pairs and validation
pairs. The testing template-query pairs belong to differ-
ent folds with training and validation pairs. The second
test set consists of 61 officially-defined CASP13 [7] tar-
get domains under the category of Template-Based
Modelling (TBM). The CPSP13 TBM data are divided
into two groups by difficulty level: TBM-easy (40 targets)
and TBM-hard (21 targets).
To test the threading performance of ThreaderAI

using CASP13 TBM data, we built our template database
from PDB90 in which any two proteins share less than
90% sequence identity. We only included the structures
deposited before CASP13. We also excluded the struc-
tures with more than 800 amino acids and the structures
with more than 50% unobserved residues. Finally, our
template library includes 50,099 proteins.

Evaluating metrics
Evaluating alignment accuracy
For a query protein and one of a candidate template
from the template library, we evaluated the alignment
accuracy by evaluating the quality of the structure built
from this alignment. In particular, for each template-
query pair, we first used ThreaderAI to generate an
alignment, then built a 3D structure for the query using
MODELLER [13] based on the alignment, and finally
evaluate the similarity between the predicted structure
and the ground truth structure. Here, we evaluated the
quality of a 3D model by GDT [28] and TM-score, two
widely used metric for measuring the similarity of two
protein structures. GDT score is calculated based on the
largest set of residue-residue pairs falling in a defined
distance cutoff when superposing these two structures.
GDT ranges from 0 to 100, but we normalize it by 100
so that it has a scale between 0 and 1. TM-score is
designed to be length-independent by introducing a
length-dependent normalization factor. TM-score ranges
from 0 to 1 with 1 indicating the perfect model quality.

Evaluating threading performance
We evaluated threading performance by measuring the
quality of 3D models built from the top-ranked tem-
plates. Specifically, for a query protein, we used Threa-
derAI to generate alignments for all the templates in
template library, ranked these alignments by alignment
scores, and then built 3D models using MODELLER
from the top five alignments. Finally, we evaluated the
quality of the first-ranked and the best of top five 3D
models by TM-score and GDT.

Compare with previously published methods
We compared ThreaderAI with several widely used
threading methods including HHpred [8], CNFpred [9],
and CEthreader [6], a new threading method built upon
contacts predicted by ResPre [17]. Here, HHpred was
run with the option mact 0.1, real secondary structures
for template, and predicted secondary structures for
query proteins. And CEthreader was run with the mode
of EigenProfileAlign in which sequence profile, second-
ary structures, and contact maps are used. For protein
threading, we used CEthreader’s suggested strategy to
speedup. That is, we first run CEthreader’s greedy
algorithm and then selected top the 1000 templates for
refinement using its enumerative algorithm. DeepThrea-
der [5] is another recently developed threading software
in which a linear function was used to combine local
potentials from CNFpred and pairwise potentials from
predicted residue-residue contacts. DeepThreader’s per-
formance wasn’t shown here because its package is
unavailable to the public. To be fair, for all methods we
used the same template database and used HHblits [14]
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to build sequence profiles against sequence database
uniclust30_2017_10 built before CASP13. We used
HHblits’ utility script to convert HHBlits’ profile format
to BLAST’s [29] profile format used by CNFpred.

Results
Alignment accuracy on SCOPe3K data
We measured the sequence similarity using SCOPe’s
hierarchical classification for proteins. We split all the
template-query pairs into three groups: the pairs similar
at family level, at superfamily level, and at fold level.
Two proteins are similar at fold level if both query and
template belong to the same fold but different superfam-
ilies. The similarity at superfamily level and family level
are defined in the same way. Two proteins similar at fold
level are conserved in structure but diverges in sequence,
and are usually considered as remote homologs, while
two protein similar at family level share high sequence
similarity and are usually considered as close homologs.
To avoid that the homologs of testing proteins lie in the
training data, we randomly selected testing proteins
from the folds which the training proteins don’t belong
to (see Methods).
As shown in Table 2 and Fig. 2, on SCOPe3K data,

ThreaderAI outperforms all other competitors including
HHpred, CNFpred, and CEThreader in terms of align-
ment accuracy. In particular, ThreaderAI achieved aver-
age TM-score and GDT of 0.510 and 0.437, respectively.
In terms of TM-score, ThreaderAI outperforms HHpred,
CNFpred, and CEthreader by 23, 9, and 12%, respect-
ively. The advantage of ThreaderAI over the second-best
method is the largest when the similarity between tem-
plate and query falls into fold level, which indicates
ThreaderAI’s power in modelling of remote homologs.
In particular, at the fold level, ThreaderAI outperforms
HHpred, CNFpred, and CEthreader by 56, 13, and 11%
in terms of TM-score, respectively. The advantages of
ThreaderAI over other methods decreases at the family
level, which is not surprising since it is easy to align two
closely-related proteins. At the superfamily level, Threa-
derAI outperforms HHpred, CNFpred, and CEthreader
by 18, 9, and 14% in terms of TM-score, respectively.
We also used a t-test to assess the statistical signifi-

cance of the comparison results. On 3206 template-
query pairs, in terms of TM-score, the p-values

between ThreaderAI and HHpred, CNFpred, and
CEthreader are 2e-65, 9e-16, and 5e-29, respectively.
Figure 2 shows more details on the difference of
alignment accuracy between ThreaderAI and the
competing methods. In terms of TM-score, Threa-
derAI achieved better alignment quality than
CNFpred for 2743, 2395, and 2343 pairs, while worse
for 363, 711, and 763 pairs, respectively. It confirms
that ThreaderAI can generate better alignments than
our competing methods.

Threading performance on CASP13 data
We further evaluated the threading performance of our
method on the 61 CASP13 TBM domains. Among the
TBM domains, 40 and 21 domains belong to the
categories of TBM-easy and TMB-hard, respectively.
Here ThreaderAI and all competitors used the same
template database (see Methods).
As shown in Table 3, on all TBM targets, ThreaderAI

outperforms all the competing methods no matter
whether the models are built from the first-ranked or
the best of top five templates. ThreaderAI achieves a
TM-score 0.761 for first-ranked models, which outper-
forms HHpred, CNFpred, and CEthreader 10, 5, and 6%,
respectively. Overall, ThreaderAI shows larger advan-
tages on the TBM-hard group in which only remote
homologs are available. Specifically, on TBM-hard
group, ThreaderAI outperforms HHpred, CNFpred, and
CEthreader by 16, 9, and 8%, respectively. This again
indicates ThreaderAI’s great advantages in modelling of
remote homologs.

Running time
Figure 3 shows the running time of the four methods in
protein threading. The running time includes residue-
residue scoring, alignment generation, and templates
ranking. With the help of GPUs’ computational power,
ThreaderAI is very efficient in protein threading. As far
as we know, ThreaderAI is the first template-based mod-
elling method which can take advantage of GPUs.
ThreaderAI first uses 3 GeForce-1080 GPUs to generate
the scoring matrices for all templates in the template
library and meanwhile uses 4 CPU cores to maintain the
data stream for the model. And then ThreaderAI runs
the Maximum Accuracy Algorithm for all scoring

Table 2 Alignment accuracy measured by TM-score and GDT on SCOPe3K data

Fold level Superfamily level Family level All

TM-score GDT TM-score GDT TM-score GDT TM-score GDT

ThreaderAI 0.419 0.348 0.483 0.409 0.705 0.633 0.510 0.437

HHpred 0.268 0.226 0.411 0.353 0.675 0.607 0.416 0.362

CNFpred 0.371 0.307 0.443 0.375 0.681 0.612 0.470 0.404

CEThreader 0.377 0.313 0.425 0.356 0.641 0.568 0.456 0.389
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matrices on 1 CPU core. CEthreader and CNFpred were
run on 8 CPU cores, while HHpred were run on 4 CPU
cores.
The running time of ThreaderAI mainly depends on

protein length. The protein threading can be finished
within 20 min for proteins with less than 200 amino
acids. And it takes ThreaderAI less than 1 h to finish
protein threading even for the proteins with length
larger than 500. ThreaderAI is highly scalable as it can
use more GPUs.

Discussions
We developed ThreaderAI, a new template-based
method for predicting protein structure using a deep
residual neural network. We show that Threader outper-
forms the existing popular TBM methods including
HHpred, CNFpred, and CEthreader, in both alignment
accuracy and threading performance, especially on pro-
teins that only have remote homologs with known struc-
ture. In particular, ThrederAI outperforms CNFpred,
another neural network based-method, in which only
one dense layer is used. This demonstrates that
advanced neural network models are more capable of
capturing complex sequence-structure relationship.
ThreaderAI formulates the template-query alignment

problem as the classical pixel classification problem in

computer vision. To fulfill this, residue-residue pair scor-
ing is separated from alignment generation. It’s still pos-
sible to design an end-to-end model to produce template-
query alignment by combining a deep residual neural net-
work and a chain graphical model such as Hidden Markov
Model [30] and Condition Random Fields [31]. However,
in the hybrid model, the gradients of neural network will
entangle with the gradients of chain graphical model
which makes it very inefficient to train a deep model on a
large scale of training samples [32].
ThreaderAI could be improved in several directions.

First, besides deep residual neural network, other deep
learning models such as deep autoregressive models [33]
may improve alignment accuracy. Second, deep attention
model [34] may provide a more efficient way to integrate
residue-residue contact information. ThreaderAI inte-
grates residue-residue contacts indirectly by including
the eigenvectors of the contact matrix in which the sign
of eigenvectors are decided very heuristically. Local
potentials and pairwise potentials related to the residue-
residue contact pairs and non-contacting pairs can be
weighted directly with the help of attention mechanisms.
To train a comprehensive deep learning model, one of

the key steps is to build a training set that includes not
only protein pairs similar in sequence but also the pairs
that are only structurally similar. To this end, we

Fig. 2 Comparison of ThreaderAI and previously published methods using alignment accuracy on SCOPe3K. Each point in the figure represents
alignment accuracy of ThreaderAI versus the other competing method

Table 3 Threading performance on 61 CASP13 TBM domains. Each cell shows the average quality of the 3D models built from the
first-ranked and the best of top five templates

TBM-easy TBM-hard TBM-all

TM-score GDT TM-score GDT TM-score GDT

ThreaderAI 0.813/0.831 0.752/0.776 0.663/0.702 0.554/0.608 0.761/0.787 0.684/0.719

HHpred 0.753/0.779 0.704/0.733 0.570/0.629 0.477/0.554 0.690/0.728 0.626/0.672

CNFpred 0.785/0.805 0.727/0.751 0.611/0.659 0.520/0.571 0.726/0.755 0.656/0.689

CEThreader 0.770/0.795 0.715/0.740 0.615/0.665 0.533/0.582 0.717/0.751 0.653/0.686
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measured the sequence similarity using SCOPe’s hier-
archical classification for proteins. We split all the
template-query pairs into three groups: the pairs similar
at family level, at superfamily level, and at fold level, and
our training pairs can cover all of the three categories.
Also, re-training the models of existing methods on the
same training set is an ideal way to benchmark the per-
formance. However, it’s usually difficult to access or re-
peat the training procedures of the existing methods.

Conclusions
We developed a new template-based method called
ThreaderAI for predicting protein tertiary structure pre-
diction. ThreaderAI formulates the task of aligning
query sequence with template as the classical pixel clas-
sification problem in computer vision and naturally
applies deep residual neural network in prediction. The
results on both SCOPe data and CASP13 data show that
ThreaderAI outperforms the existing popular TBM
methods including HHpred, CNFpred, and CEthreader,
especially on proteins that only have remote homologs
with known structure.
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