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Abstract: Sasa veitchii (S. veitchii) is a traditional herb derived from the bamboo genus, which is
collectively called Kumazasa. Although Kumazasa extract is believed to have various effects on the
skin, there is little scientific evidence for these effects. In this study, we aimed to obtain scientific
evidence regarding the wound-healing and skin-moisturizing effects of Kumazasa extract. Kumazasa
extract was applied to the skin of a mouse wound model for 14 days, and the wound area and
dermal water content were measured. Mice treated with Kumazasa extract had smaller wound
areas than control mice. The dermal water content in the Kumazasa extract-treated group was
significantly higher than that in the control group. The mRNA and protein expression levels of
cutaneous aquaporin-3 (AQP3), which is involved in wound healing and increases in dermal water
content, were significantly increased by treatment with Kumazasa extract. Kumazasa extract-treated
HaCaT cells exhibited significantly higher AQP3 expression and p38 mitogen-activated protein
kinase (MAPK) phosphorylation than control cells. With continuous application, Kumazasa extract
increases AQP3 expression and exerts wound-healing and moisturizing effects. The increase in AQP3
expression elicited by Kumazasa extract may be due to enhancement of transcription via activation
of p38 MAPK signaling.

Keywords: aquaporin; skin; wound healing; Sasa veitchii; kumazasa; mitogen-activated protein
kinase; cosmetics

1. Introduction

The skin is an organ that separates the internal environment of an organism from
the external environment and has important functions in regulating water and body
temperature and protecting the body from physicochemical stimuli [1]. The outermost
layer of the skin is the epidermal layer, approximately 90% of which is formed by epidermal
keratinocytes [2]. When various stresses are applied to the epidermal layer, wounds form.
After skin damage occurs, keratinocytes begin to proliferate actively, resulting in the
formation of a hyperproliferative epithelium on the wound surface [3,4]. These events are
thought to be regulated predominantly by growth factor receptors, integrins, extracellular
matrix components, and matrix metalloproteinases; thus, the skin wound-healing process
is a complex interplay of multiple factors [3,4].

It has recently been reported that aquaporins (AQPs) are important in skin wound
healing. AQPs are channels present in the plasma membrane that transport water and
glycerol [5]. In humans, 13 types (AQP0 to AQP12) have been identified and are distributed
in various tissues. There are two categories of AQPs: AQPs that selectively transport only
water, such as AQP0, AQP2, AQP4, and AQP5, and AQPs that transport both water and
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glycerol, such as AQP3, AQP7, and AQP9 [5]. Of these, AQP3 is expressed predominantly
in skin keratinocytes [2,6]. It has been reported that AQP3-deficient mice have drier skin
and lower skin elasticity than wild-type mice [7,8]. In addition, it has been confirmed that
AQP3 in the skin is involved in cell proliferation and cell migration [9,10] and that wound
healing is delayed in AQP3-deficient mice [11]. Thus, AQP3 is believed to promote wound
healing by enhancing the migration and proliferation of keratinocytes.

Sasa veitchii (S. veitchii) is a traditional herb derived from the bamboo genus, which
is collectively called Kumazasa. The leaves contain lignin, polysaccharides, and chloro-
phyll, among other components [12,13], and are used as a folk medicine for stomachaches.
Recently, Kumazasa extract has been observed to have various pharmacological effects,
such as antioxidant [14], anti-inflammatory [15,16], antibacterial [17,18], and anticancer
effects [19], and to be useful as a health food material. In addition, Kumazasa extract has
been reported to have a wound healing effect [20], and its effect on the skin is also attracting
attention. However, the mechanism of wound healing improvement by Kumazasa extract
is completely unknown. Moreover, other action on the skin, such as the effect of Kumazasa
extract on the moisturizing action, are not known. We considered that obtaining scientific
evidence is important for determining the usefulness of Kumazasa extract.

In this study, we aimed to obtain scientific evidence for the wound-healing and
skin-moisturizing effects of Kumazasa extract. Specifically, a mouse wound model was
created using punch biopsy, and the wound-healing and skin-moisturizing effects of topi-
cally applied Kumazasa extract were observed. In addition, we analyzed the mechanism
by focusing on AQP3, which is involved in both wound-healing and skin-moisturizing
functions [2,6].

2. Materials and Methods
2.1. Kumazasa Extract

Kumazasa hot water extract concentrate (Kumazasa extract) was provided by Hoshi
Pharmaceutical Co., Ltd. (Tokyo, Japan). In the experiment, a mixture of equal amounts of
three different lots of Kumazasa extract (H30YH1, A20YK1, and H15KG3) was used.

2.2. Animals

Seven-week-old HR-1 hairless mice (male) were obtained from Hoshino Laboratory
Animals, Corp. (Ibaraki, Japan). The mice were used in the experiment after prebreeding
for 1 week. The animals were bred in a facility with a temperature of 24 ± 1 ◦C, a humidity
of 55 ± 5%, and lights on from 08:00 to 20:00. We carefully considered the ethical aspects
of the animal experiments in our study and obtained approval (approval number: 30-125)
from the animal experiment committee of Hoshi University. The protocols were conducted
in accordance with the animal experiment guidelines of Hoshi University.

2.3. Treatments

Under isoflurane anesthesia, the skin on the back of each mouse was injured us-
ing a punch biopsy to establish a wound model [21,22]. Beginning on the day after
wounding, a 50% aqueous ethanol solution or 1% Kumazasa extract solution was applied
(100 µL/mouse) to the skin for 14 days, and the wound area and dermal water content were
measured on the 15th day. The dermal water content was measured using a Corneometer
(CM825, Courage & Khazaka, Cologne, Germany) at a temperature of 23 ± 1 ◦C and a
humidity of 60 ± 10%. The skin was removed under isoflurane anesthesia, instantly frozen
in liquid nitrogen, and then stored at −80 ◦C.

2.4. Cell Culture

The human keratinocyte cell line HaCaT (Cell Line Service, Eppelheim, Germany)
was maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing streptomycin,
penicillin G potassium, and 10% fetal bovine serum. The HaCaT cells were seeded on plates
and incubated in a CO2 incubator. DMEM containing Kumazasa extract (200–1000 µg/mL)
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was prepared and replaced with the medium of the subcultured cells. The cells were
cultured for 1, 6, 24, or 72 h.

2.5. Real-Time RT-PCR

Total RNA was extracted from mouse skin or HaCaT cells using TRI reagent (Sigma-
Aldrich Co. LLC, St. Louis, MO, USA), and cDNA was synthesized from the RNA using
a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA,
USA). In each well of the PCR plate, SsoAdvanced Universal SYBR Green Supermix (Bio-
Rad Laboratories, Hercules, CA, USA), cDNA solution, and primer solution for the target
gene (Table 1) were added. The fluorescence intensity of the amplification process was
monitored with a CFX Connect Real-Time System (Bio-Rad Laboratories). The mRNA
expression levels of the target genes were normalized using m18s rRNA (in vivo study) or
hRPL30 (in vitro study).

Table 1. Primer sequences.

Gene Forward (5′ to 3′) Reverse (5′ to 3′)

mAqp3 AGACAGCCCCTTCAGGATTT TCCCTTGCCCTGAATATCTG
mFilaggrin AAGGAAATCAGTCTTGCCGT CTGACCTTCTGAGACACACC
mLoricrin GCCGATGGGCTTAACTTTCT CAGGATACACCTTGAGCGAC
mAcer1 CCGAGTTCTACAATACGTTCA CATACGGATGCATGAGGAAC
mAsah1 CTGTCCTCAACAAGCTGACTG TCTCAGTACGTCCTCAAGGC
mSptlc1 TCCCCTTCCAGAACTGGTTAAA CCATAGTGCTCGGTGACT
mSptlc2 GTCAGGAAATTGGAAACCTGG AGCTTCCACACCTAAGAACC
mHyal1 TTTCTTTGAGCCTGGAGCTA GTAGTTTCCTTTCGTTGGCT
mHas2 CGTGGATTATGTACAGGTGTGT CCAACACCTCCAACCATAGG

mCol1a1 CCCGAGGTATGCTTGATCTG GGTGATACGTATTCTTCCGGG
mCol1a2 TCTCACTCCTGAAGGCTCTA GTAGTAATCGCTGTTCCACTC

m18S rRNA GTCTGTGATGCCCTTAGATG AGCTTATGACCCGCACTTAC
hAQP3 AGACAGCCCCTTCAGGATTT TCCCTTGCCCTGAATATCTG
hRPL30 GAAGACGAAAAAGTCGCTGG GACCAATTTCGCTTTGCCTT

2.6. Electrophoresis and Immunoblotting

Samples were prepared from mouse skin and HaCaT cells for western blotting in
the same manner as previously reported [23,24]. The protein concentration was mea-
sured by the bicinchoninic acid method using bovine serum albumin as a standard. After
adding an equal amount of loading buffer (20% glycerol, 100 mM Tris, 4% sodium dodecyl
sulfate, 0.004% bromophenol blue, and 10% 2-mercaptoethanol) to the sample solution,
electrophoresis was performed using a polyacrylamide gel. The protein was transferred to
a polyvinylidene difluoride membrane, and the membrane was blocked with skim milk
solution. The membrane was then reacted with the following primary antibodies: rabbit
anti-rat AQP3 (Alomone Labs, Jerusalem, Israel), mouse anti-rabbit Na/K-ATPase (Merck
Millipore, Darmstadt, Germany), rabbit anti-human phospho-p38 mitogen-activated pro-
tein kinase (MAPK) (Thr180/Tyr182) (Cell Signaling Technology, Beverly, MA, USA), and
rabbit anti-human p38 MAPK (Cell Signaling Technology) antibodies. After washing, the
membrane was reacted with the secondary antibodies donkey anti-rabbit IgG-HRP (Santa
Cruz Biotechnology Inc., Santa Cruz, CA, USA) and goat anti-mouse IgG-HRP antibody
(Merck Millipore). The membrane was then reacted with ECL Prime Western Blotting
Detection Reagents (GE Healthcare, Fairfield, CT, USA). The membrane was photographed
with a cooled CCD camera (ImageQuant LAS500, GE Healthcare), and the band density was
analyzed. The AQP3 expression levels were normalized using Na/K-ATPase expression.

2.7. Wound Healing Scratch Assay

The HaCaT cells were seeded on plates and incubated in a CO2 incubator. The
confluent cells were mechanically scratched with a yellow chip. The cell debris was
removed by exchanging medium. DMEM containing Kumazasa extract (1000 µg/mL) was
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prepared and replaced the medium of the subcultured cells. The cells were cultured for 24
or 72 h.

2.8. Statistical Analysis

The experimental values are shown as the mean ± standard deviation (SD). Statistics
were analyzed by Student’s t-test or one-way analysis of variance (ANOVA) followed by
Dunnett’s multiple comparison tests using using the BellCurve for Excel (Social Survey
Research Information Co., Ltd., Tokyo, Japan).

3. Results
3.1. Skin Wound-Healing Effect of Kumazasa Extract

After Kumazasa extract was applied to a murine cutaneous wound model for 14 days,
the wound area was analyzed (Figure 1). The skin wound area on day 15 in the Kumazasa
extract-treated group was significantly smaller than that in the control group.
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Figure 1. Skin wound-healing effect of Kumazasa extract. A mouse wound model was prepared, and Kumazasa extract
solution was applied to the wound surface for 14 days. The wound area was measured on day 15, and the mean value of
the control group is expressed as 100% (mean ± SD, n = 5, *: p < 0.05 vs. control group).

3.2. Skin-Moisturizing Effect of Kumazasa Extract

Kumazasa extract was applied to the skin of mice for 14 days, and the dermal water
content was measured (Figure 2). The dermal water content on the 15th day in the Ku-
mazasa extract-treated group was significantly (approximately 20%) higher than that in the
control group.

3.3. AQP3 Expression Level in Mouse Skin

AQP3 is highly expressed in the skin and is involved in cell migration and intercellular
water transport. Therefore, we investigated whether changes in the expression of cutaneous
AQP3 are involved in the wound-healing and skin-moisturizing effects of Kumazasa extract
(Figure 3).

The mRNA expression level of AQP3 was analyzed by real-time RT-PCR and was
found to be approximately 1.4 times higher in the Kumazasa extract-treated group than in
the control group.
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Figure 2. Skin-moisturizing effect of Kumazasa extract. Kumazasa extract solution was applied to the
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n = 5, ***: p < 0.001 vs. control group).
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Figure 3. AQP3 expression level in mouse skin. Kumazasa extract solution was applied to the
skin of mice for 14 days, and the skin was removed on the 15th day. The mRNA (a) and protein
(b) expression levels of AQP3 were analyzed by real-time RT-PCR and western blotting, respectively
(mean ± SD, n = 5, *: p < 0.05, ***: p < 0.001 vs control group).

When the protein expression level of AQP3 was analyzed by western blotting, bands
of AQP3 were detected at approximately 27 kDa and approximately 30–40 kDa. It has been
reported that these bands are nonglycosylated AQP3 (27 kDa) and glycosylated AQP3
(30–40 kDa), respectively [25,26]. Although these two forms exhibit differences in AQP
stability and the amount of transfer to the cell membrane, their water permeability does not
differ [27–29]. Therefore, in this study, the levels represented by these bands were added
to determine the total AQP3 expression level. The protein expression level of cutaneous
AQP3 in the Kumazasa extract-treated group was significantly (approximately 1.6 times)
higher than that in the control group.

3.4. Expression Levels of Function-Regulating Genes in Mouse Skin

Skin function is controlled by various factors, such as filaggrin, loricrin, hyaluronic
acid, ceramide, and collagen [30–32]. Since changes in the amounts of these factors are
involved in wound healing and skin moisturization, we hypothesized that Kumazasa
extract may affect factors other than AQP3. Therefore, we analyzed the expression levels of
genes associated with these skin function regulators (Figure 4).
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Figure 4. Expression levels of function-regulating genes in mouse skin. A 50% ethanol solution (C) or Kumazasa extract
solution (K) was applied to the skin of mice for 14 days, and the skin was removed on the 15th day. The mRNA expression
levels of filaggrin (a), loricrin (b), Has2 (c), Hyal1 (d), Sptlc1 (e), Sptlc2 (f), Acer1 (g), Asah1 (h), Col1a1 (i), and Col1a2
(j) were analyzed by real-time RT-PCR (mean ± SD, n = 5).

The mRNA expression levels of filaggrin and loricrin in the skin were not changed by
application of Kumazasa extract. In addition, the expression levels of enzymes involved
in the degradation and synthesis of hyaluronic acid and ceramide were not affected by
treatment with Kumazasa extract. Furthermore, there was no difference in the amount of
collagen between the control group and the Kumazasa extract-treated group.

3.5. AQP3 Expression Level in HaCaT Cells

We also investigated whether the Kumazasa extract-induced increase in AQP3 expres-
sion observed in mouse skin also occurred in HaCaT cells, which are human epidermal
keratinocytes (Figure 5).

Six hours of treatment with Kumazasa extract increased the mRNA expression level
of AQP3 in treated HaCaT cells compared with control cells in a concentration-dependent
manner. In particular, significant differences were observed at Kumazasa extract concentra-
tions of 500 µg/mL and higher.

The protein expression level of AQP3 showed an increasing tendency 24 h after the
addition of Kumazasa extract, although there was not a significant difference between the
treated cells and the control cells. In contrast, 72 h after the addition of Kumazasa extract,
the AQP3 protein level was significantly (approximately two times) higher in treated cells
than in control cells.

3.6. Wound-Healing Effect of Kumazasa Extract in HaCaT Cells

A scratch assay was used to observe whether wound healing could be confirmed at
the concentration of Kumazasa extract, which showed increased expression of AQP3 in
HaCaT cells. As a result, it was confirmed that the addition of Kumazasa extract enhances
wound healing in HaCaT cells as compared with the control (Figure 6).
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Figure 6. Wound-healing effect of Kumazasa extract in HaCaT cells. Kumazasa extract (1000 µg/mL) was added to the
mechanically scratched HaCaT cells, and the cells was observed under a microscope.

3.7. Expression Level of Phospho-p38 MAPK

MAPK signaling pathways consisting of p38 MAPK, extracellular signal-regulated
kinase 1/2 (ERK1/2) and c-Jun NH2-terminal kinase 1/2 (JNK1/2) regulate the expression
of various genes. Among these components, p38 MAPK has been shown by various
studies to be involved in wound healing [33–35] and to be part of an important regulatory
mechanism for AQP3 expression [11,36]. Therefore, we investigated the mechanism by
which Kumazasa extract increased AQP3 expression, focusing on the activation of p38
MAPK signaling (Figure 7).
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Figure 7. Expression level of phospho-p38 MAPK. HaCaT cells were cultured with Kumazasa extract
(1000 µg/mL) for 1 h, and the protein expression levels of p38 MAPK and phospho-p38 MAPK were
analyzed by western blotting (mean ± SD, n = 4, **: p < 0.01 vs. control cells).

Kumazasa extract was added to HaCaT cells, and the expression levels of total p38
MAPK and phospho-p38 MAPK were analyzed to evaluate the degree of phosphorylation.
The expression level of phospho-p38 MAPK was significantly increased (by approximately
1.7 times) by treatment with Kumazasa extract.

4. Discussion

A mouse wound model was prepared with previously described methods [21,22], and
the wound-healing effect of Kumazasa extract was investigated. We found that the wound
area was significantly smaller in the group treated with Kumazasa extract for 14 days than
in the control group (Figure 1). In addition, treatment with Kumazasa extract increased the
dermal water content (Figure 2). The above findings suggest that Kumazasa extract has a
wound-healing effect and a skin-moisturizing effect.

AQP3 is expressed in the basal layer of the skin and is involved in the transport of
water and glycerol. It has been reported that wound healing is delayed in AQP3-deficient
mice due to decreased proliferation of keratinocytes and that this decreased proliferation
is reversed by supplementation with glycerol [11]. It has also been suggested that AQP3
expression is decreased in the skin of diabetic rats, which is associated with impaired
wound healing during diabetes [37]. On the other hand, the dermal water content and skin
elasticity are significantly reduced in AQP3-deficient mice [7,8]. In addition, lower skin
AQP3 levels are observed in old mice than in young mice, suggesting that AQP3 loss is
involved in skin dryness in old age [38]. Cutaneous AQP3 levels are also decreased at the
onset of diabetes mellitus [23,39], vitiligo [40,41], and psoriasis [42], in which dry skin is
observed. Moreover, skin disorders such as dry skin caused by epidermal growth factor
receptor inhibitor administration may also be associated with decreased skin expression of
AQP3 [24]. Thus, AQP3 is considered to be a key molecule that plays important roles in
wound healing and skin moisturization. Therefore, we focused on AQP3 to analyze the
mechanisms of the wound-healing and skin-moisturizing effects of Kumazasa extract. Both
the mRNA and protein expression levels of AQP3 in the skin were significantly higher
in the mice to which Kumazasa extract was applied than in the control mice (Figure 3).
In addition, in HaCaT cells, which are human epidermal keratinocytes commonly used
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for AQP3 research (including research seeking to identify substances that increase the
expression of AQP3), Kumazasa extract increased the mRNA expression level of AQP3 in a
concentration-dependent manner (Figure 5a). Moreover, treatment of HaCaT cells with
Kumazasa extract in the culture medium for 72 h increased the protein expression level of
AQP3 (Figure 5b). In addition, in the scratch assay using HaCaT cells, Kumazasa extract
showed a wound healing effect (Figure 6). It was also found that the Kumazasa extract
has a proliferative effect on HaCaT cells (Figure S1). These findings reveal that Kumazasa
extract effectively increases AQP3 expression and that this effect may be involved in the
wound-healing and skin-moisturizing effects of the extract. The degree of the increase in
AQP3 protein expression in HaCaT cells was smaller after 24 h of treatment than after 72 h
of treatment with Kumazasa extract (Figure 5b), suggesting that this effect of the extract
requires continuous stimulation. However, after Kumazasa extract was orally administered
to mice for 14 days, the AQP3 expression level did not differ between the Kumazasa extract-
treated mice and the control mice (data not shown). Although direct skin application and
oral administration of Kumazasa extract result in different concentrations of the extract in
the skin, the greater effectiveness of topical application is consistent with the expectation
that the extract affects the skin.

The expression level of AQP3 is regulated by the MAPK pathway members p38
MAPK, ERK1/2, and JNK1/2 [43]. Of these three major MAPK pathway members, p38
MAPK is significantly involved in wound healing. For example, it has been reported
that (1) transforming growth factor-β (TGF-β), one of the important growth factors for
wound healing, regulates p38 MAPK signaling in human peritoneal mesothelial cells to
increase AQP3 expression [36]; that (2) mitogen-induced cell proliferation is disturbed in
AQP3-deficient keratinocytes, which exhibit reduced p38 MAPK activity [11]; and that
(3) p38 MAPK signaling is involved in the increase in AQP3 expression induced by agerarin
from Ageratum houstonianum [44]. In the current study, the phosphorylation of p38 MAPK
was confirmed to be enhanced in Kumazasa extract-treated HaCaT cells compared with
control cells (Figure 7). Therefore, activation of p38 MAPK may be involved in one of the
mechanisms by which Kumazasa extract increases the expression of AQP3. Since it is also
known that transcription of AQP3 is enhanced by protein kinase A or protein kinase C
activators [45,46] and peroxisome proliferator-activated receptor-γ agonists [47,48], further
multifaceted analysis is required to discover the active component and to elucidate its
expression regulation mechanism.

Various factors in the skin are involved in wound healing and skin
moisturization [30–32]. Our analysis of the expression levels of function-regulating genes
in mouse skin revealed that Kumazasa extract application did not affect filaggrin, loricrin,
hyaluronic acid synthase 2 (Has2), hyaluronic acid-degrading enzyme (hyaluronidase
1; Hyal1), ceramide synthase (serine palmitoyltransferase 1; Sptlc1, serine palmitoyl-
transferase 2; Sptlc2), ceramide-degrading enzyme (alkaline ceramidase 1; Acer1, N-
acylsphingosine amidohydrolase 1; Asah1), or type I collagen (collagen type I alpha 1
chain; Col1a1, collagen type I alpha 2 chain; Col1a2) expression levels (Figure 4). There-
fore, AQP3 may be involved in the main mechanism underlying the wound-healing and
skin-moisturizing effects of Kumazasa extract.

In a preliminary study, we investigated the effect of different lots of Kumazasa extract
on AQP3 expression. Although there was a slight difference in the degree of activity, a
concentration-dependent effect of increasing the AQP3 expression was observed in all lots.
Based on these results, we decided to evaluate the average action of Kumazasa extract.
Therefore, we conducted the study with a mixture of equal amounts of three different lots
of Kumazasa extract, not a single lot.

From the above results, although the mechanism by which Kumazasa extract increases
cutaneous AQP3 expression was presumed, detailed analysis requires studies using knock-
down and overexpression systems. We are also interested in the effects of Kumazasa extract
on ERK1/2 and JNK1/2, which are involved in the regulation of AQP3 expression, as well



Healthcare 2021, 9, 761 10 of 12

as p38 MAPK. Clarifying these points, including the search for active ingredients, may
reveal new effects of Kumazasa extract.

The results of this study suggest that continuously applied Kumazasa extract increases
cutaneous AQP3 expression and exerts wound-healing and moisturizing effects. In ad-
dition, the AQP3-increasing effect of Kumazasa extract may be due to enhancement of
AQP3 transcription due to activation of p38 MAPK signaling. Since the AQP3 expression-
increasing effect of Kumazasa extract was observed not only in mouse skin but also in
human epidermal keratinocytes, this effect may occur in humans as well. Currently, active
searches are underway for substances that increase the expression of AQP3, which is a
functional molecule in the skin [49,50]. In the future, development of adhesive plasters and
cosmetics containing Kumazasa extract that have AQP3-increasing effects can be expected
to support new strategies for wound healing and alleviation of dry skin.

5. Conclusions

In conclusion, the results of this study suggest that with continuous application,
Kumazasa extract increases AQP3 expression and exerts wound-healing and moisturizing
effects. The increase in AQP3 expression elicited by Kumazasa extract may be due to
enhancement of transcription via activation of p38 MAPK signaling.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/healthcare9060761/s1, Figure S1: Effects of Kumazasa extract on cell proliferation in Ha-
CaT cells.
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