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Simple Summary: In most patients with ovarian cancer, their disease eventually becomes resistant
to chemotherapy. The timing and type of treatment given are therefore highly important. Currently,
treatment choice is mainly based on the subtype of cancer (from a histological point of view), prior
response to chemotherapy, and the time it takes for the disease to recur. In this study, we combined
complete genome data of the tumor with clinical data to better understand treatment responses.
In total, 132 tumor samples were included, all from patients with disease that had spread beyond
the primary location. By clustering the samples based on genetic characteristics, we have identified
subgroups with distinct response rates and survival outcomes. We suggest that in the future, this data
can be used to make more informed treatment choices for individuals with ovarian cancer.

Abstract: The majority of patients with ovarian cancer ultimately develop recurrent chemotherapy-
resistant disease. Treatment stratification is mainly based on histological subtype and stage, prior
response to platinum-based chemotherapy, and time to recurrent disease. Here, we integrated clinical
treatment, treatment response, and survival data with whole-genome sequencing profiles of 132 solid
tumor biopsies of metastatic epithelial ovarian cancer to explore genome-informed stratification
opportunities. Samples from primary and recurrent disease harbored comparable numbers of single
nucleotide variants and structural variants. Mutational signatures represented platinum exposure,
homologous recombination deficiency, and aging. Unsupervised hierarchical clustering based on
genomic input data identified specific ovarian cancer subgroups, characterized by homologous
recombination deficiency, genome stability, and duplications. The clusters exhibited distinct response
rates and survival probabilities which could thus potentially be used for genome-informed therapy
stratification for more personalized ovarian cancer treatment.

Cancers 2022, 14, 1511. https://doi.org/10.3390/cancers14061511 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14061511
https://doi.org/10.3390/cancers14061511
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-4857-6346
https://orcid.org/0000-0002-9142-9050
https://orcid.org/0000-0001-5998-8066
https://orcid.org/0000-0003-1829-7773
https://orcid.org/0000-0002-0400-9542
https://doi.org/10.3390/cancers14061511
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14061511?type=check_update&version=2


Cancers 2022, 14, 1511 2 of 18

Keywords: ovarian cancer; whole-genome sequencing; patient stratification; personalized treatment;
treatment response

1. Introduction

Epithelial ovarian cancer (EOC) is a genetically heterogeneous disease that is charac-
terized by high recurrence rates, the development of chemotherapy resistance, and sub-
sequently, poor survival. Over the past decades, survival rates have hardly improved [1].
Worldwide, yearly ~295,000 women are diagnosed with ovarian cancer, and ~185,000 die
of the disease [2]. Primary treatment of advanced disease consists of surgery and platinum-
based chemotherapy. The combination of carboplatin and paclitaxel is the most frequently
used regimen and most patients respond well to this treatment. However, with every
recurrence, the response rates to platinum treatment decline, due to the emergence of
chemotherapy resistance. Subsequent disease-free intervals shorten, eventually leading to
death from disease in the majority of patients [3,4]. There is an urgent need to find new
treatment options, especially for recurrent disease. Patient stratification at recurrence is
still mainly based on prior response to platinum treatment and time to recurrent disease,
and not on molecular or genetic characteristics [5].

Due to advances in sequencing technologies and their decreasing costs, our under-
standing of the molecular basis of ovarian cancer has improved. Targeted and whole-exome
sequencing of primary high-grade serous ovarian cancer (HGSC) revealed mutations in
TP53 in nearly all patients, as well as extensive copy number variation [6,7]. Mutations in
BRCA1 and BRCA2 occur in around 20% of patients (due to a combination of germline and
somatic events) and are the most prominent cause of defective homologous recombination
(HR), which is associated with improved response to platinum-based chemotherapy and
PARP inhibition [6,8]. Potential driver genes, other than TP53 and BRCA1/2, are mostly
observed in only a small subset of patients, illustrating extensive interpatient tumor hetero-
geneity [6,7]. Recently, the genomic landscape across different cancers has been studied in
unprecedented detail [9,10], and it was shown that clustering based on genomic data can
divide patients with the same cancer into clinically meaningful subgroups [11–14].

Here, we studied the genomic landscape of 132 prospectively collected solid tissue
biopsies of 127 patients with metastatic ovarian cancer. Uniquely, our study integrates this
data with detailed clinical data including pre- and post-biopsy treatment data, allowing us
to analyze the impact of previous treatments on the genome and to evaluate the response
to subsequent treatment in relation to specific genomic and mutational characteristics.
We identified subgroups of patients that harbored distinct genomic features such as HR de-
ficiency and genomic stability that could benefit from either traditional chemotherapeutics,
PARP inhibitors, or other targeted drugs.

2. Materials and Methods
2.1. Patient Inclusion, Sample Selection and Clinical Data Collection

For this study, we obtained the WGS data of paired tumor and blood control samples
from patients with advanced or metastatic ovarian cancer that were included in clinical
studies CPCT-02 (NCT0855477) and DRUP (NCT02925234). The Institutional Review Board
of the UMC Utrecht and the Netherlands Cancer Institute (IRB UMCU/NCI) approved both
studies and all patients provided written informed consent. Part of the cohort described
here was previously described (n = 95) as part of a pan-cancer analysis paper [10]. Clinical
data were obtained from the CPCT-02 and DRUP study registries. Additional clinical
data was acquired through a query at the Dutch Cancer Registration (DCR) with the
permission of the local CPCT-02/DRUP principal investigators. This concerned data
routinely collected for clinical use, including data related to primary disease (date of
diagnosis, histopathological diagnosis, FIGO stage, and treatment details), as well as vital
status obtained from the population registry and updated till 31 January 2020. Patients
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with non-epithelial tumors were excluded (n = 7), to limit our cohort to EOC. Patients
with serous ovarian carcinoma were further classified according to differentiation grade.
Poorly (grade 3) and moderately (grade 2) differentiated serous carcinomas were classified
as HGSC, while well (grade 1) differentiated serous carcinomas were classified as LGSC.
In case the differentiation grade was unknown, we classified serous carcinomas as serous
carcinoma not otherwise specified (NOS). Disease status was defined based on treatment
history prior to biopsy collection and subsequent treatment. Patients that had received
systemic treatment prior to biopsy were regarded as having recurrent disease. For none of
the patients that received post-biopsy treatments, this treatment was part of neo-adjuvant
chemotherapy. Patients that were treatment-naive prior to biopsy were regarded as having
primary disease. For these patients, it was confirmed that subsequent treatment consisted
of standard first-line carboplatin and paclitaxel combination treatment. Response to post-
biopsy treatment was registered according to the RECIST criteria for solid tumors based on
CT imaging and ranged from complete response (CR), partial response (PR), and stable
disease (SD) to progressive disease (PD). In one case clinical progression was observed,
which was regarded as PD.

2.2. WGS and Data Analysis

DNA isolation, WGS of tumor and blood control paired samples, and somatic and
germline variant calling (SNV, indel, SV, CNA) were performed using the pipeline of
the Hartwig Medical Foundation (HMF-Pipeline, https://github.com/hartwigmedical/
pipeline, accessed on 1 February 2021) as described previously by Priestley et al. on solid
tumor biopsies with more than 30% tumor purity (according to histopathological as-
sessment) and matching blood samples [10,15,16]. Tumors were sequenced to a me-
dian depth of 103× (range 74–137×) and paired germline reference samples to 38×
(range 27–54×) (Figure S12a, Table S2). Lower tumor purity scores did not result in a
decreased variant detection rate (Figure S12b). In contrast to Priestley et al., we kept
multiple samples from individual patients. For five patients, two subsequent timepoints
of recurrent disease were included (Table S1, biopsy count). The ploidy value and tu-
mor purity (>20%) for each sample were obtained from the HMF tool PURPLE (https:
//github.com/hartwigmedical/hmftools/tree/master/purple, accessed on 1 February
2021). For the ploidy fraction, we defined all ranges with a copy number between 1.5 and
2.5 as diploid, the range below as haploid and the range above as polyploid. Clinical tumor
purity values were not commonly available from the hospitals and were not used. For the
whole genome duplication status, we followed common recommendations as also used in
Priestley et al. [10] and based on the bi-nominal distribution of the frequency of autosomal
chromosome duplication: A sample is defined as having WGD when the major allele ploidy
in more than 10 autosomes is above 1.5.

2.3. Gene Mutation Burden Analysis

To find significantly mutated driver genes in our cohort we used the R package
dNdSCV [17]. We combined the VCFs for each of the five patients that had two samples.
We ran dNdSCV on the whole cohort and also on the primary and recurrent subsets.
We used a qglobal_cv cut-off of <0.1.

To identify genes with driver capacities on a per sample basis, we employed the
method described in Priestley et al. [10]. Additionally, we extracted germline mutations in
BRCA1 and BRCA2 with expected pathogenic effects, by selecting frameshift and nonsense
variants. Samples with a germline variant in BRCA1 or BRCA2 were additionally assessed
for loss of heterozygosity. The top 10 genes that were affected in most of our samples were
included in the annotation of the cluster plot, as well as BRCA1 and BRCA2. The tumor
mutational burden (TMB; mutations per Mb) for each sample was derived by dividing
the sum of mutations across the entire genome (SNVs, MNVs, and indels) by the total
mappable sequence length of the GRCh37 FASTA file (2858674662) divided by 106, as has
been described previously [11].

https://github.com/hartwigmedical/pipeline
https://github.com/hartwigmedical/pipeline
https://github.com/hartwigmedical/hmftools/tree/master/purple
https://github.com/hartwigmedical/hmftools/tree/master/purple
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2.4. Mutational Signatures

We counted the occurrence of SNV, indel, and double base substitutions (DBS) contexts
that are described at https://cancer.sanger.ac.uk/cosmic/signatures, accessed on 15 May
2020. This included: (i) 96 trinucleotide contexts, which are composed of one of six classes
of base substitutions (C > A, C > G, C > T, T > A, T > C, T > G) in combination with
the immediate 5′ and 3′ flanking nucleotides, double base substitutions (DBS); (ii) indels
stratified by homopolymer length, the presence of flanking repeats or the presence of
flanking homology. Additionally, structural variation contexts were extracted by counting
translocations, insertions, inversions, deletions, and duplications, categorized below and
above 10 Kb.

Mutational signature analysis was performed with the bioconductor R package “Mu-
tationalPatterns” [18]. We derived the absolute contribution of the COSMIC v.3 signatures
from the mutation context counts for each sample using the “golden ratio search” method.
We initially included all COSMIC signatures and ranked them in a top-list by their overall
contribution to our samples. We then evaluated which COSMIC signatures contribute
consistently to a high number of our samples in runs with fewer signatures from that
top-list (Figure S5a). We decided on eight SBS, five DBS, and five ID COSMIC signatures
that contribute consistently to our samples.

2.5. Determining HR-Status

We assessed HR status using the Classifier of HOmologous Recombination Deficiency
(CHORD), a random forest model that uses the relative counts of various mutation contexts
(primarily deletions with flanking microhomology and 1–100 kb structural duplications)
for predicting HR deficiency [19].

2.6. Cluster Analysis

As input for the clustering, we used the categorized SNV, DBS, indels and SV counts,
and the ploidy fraction. Normalization for each feature was done by mean-centering the
values and then dividing them by the standard deviation. Features that are not independent
of each other were centered and normalized together instead of feature-wise to preserve in-
dividual differences, i.e., the SNVs (C > A, C > G, C > T, T > A, T > C, T > G) were processed
together, as well as the indels and the SVs. The distance measure used was (1-Pearson cor-
relation) and hierarchical clustering was performed with the “ward.D” method. To identify
the optimal number of clusters, we first attempted to use the elbow method but no clear
elbow was visible (Figure S13). We therefore applied bootstrapping using the “pvclust”
package [20] to determine at which cluster number stable clusters (p-value above 95%)
occur (Figure S8c). We also performed principal component analysis (PCA) on the data
and found that seven principal components explained 95% of the variance (Figure S7b).
We decided on seven clusters as the optimal number after assessing the results from the
bootstrapping and the PCA.

2.7. Actionability Analysis

To identify actionable targets per patient, driver genes were explored in three databases:
CIViC [21], CGI [22], and OncoKB [23]. Both approved (level A-validated association) and
experimental (level B-clinical evidence) therapies were extracted, and a further differentia-
tion was made based on on- and off-label availability for ovarian cancer patients. Drugs
available as standard treatments for primary and or recurrent ovarian cancer (platinum
agents and PARP inhibitors) were excluded from this actionability analysis.

2.8. Statistics

Plotting and statistical analyses were performed using R (software package, version 3.5.2).
Kaplan–Meier plots were created using the R package Survival (https://cran.r-project.
org/web/packages/survival/, accessed on 8 May 2020). Statistical tests were performed

https://cancer.sanger.ac.uk/cosmic/signatures
https://cran.r-project.org/web/packages/survival/
https://cran.r-project.org/web/packages/survival/
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with the Wilcoxon rank-sum test. Correction for multiple testing was performed with the
Bonferroni correction.

3. Results
3.1. Patients with Metastatic Ovarian Cancer Have Diverse Treatment Histories

We analyzed the paired tumor and blood control whole-genome sequencing (WGS)
and clinical data of 132 tissue biopsy samples from 127 patients with metastatic ovarian
cancer, partially included in the pan-cancer analysis described by Priestley et al. (meth-
ods section) [10]. In this study, a tumor biopsy of a patient with metastatic disease was
obtained and response to subsequent treatment was monitored as depicted in the flowchart
(Figure 1a). The majority of samples were collected at the time of recurrent disease (86%,
n = 113/132), while a minority was included at the time of primary disease, prior to any
systemic treatment (14%, n = 19/132) (Table 1, Table S1). The most common histopathologi-
cal subtype at time of diagnosis was high-grade serous carcinoma (HGSC; 56%, 74/132)
followed by low-grade serous carcinoma (LGSC; 12%, 16/132) and serous carcinoma not
otherwise specified (serous NOS; 10%, 13/132). Non-serous subtypes included clear cell
carcinoma (n = 5) and endometrioid carcinoma (n = 5) (Table 1). The majority of tumors
were initially diagnosed at advanced disease (FIGO stage III (n = 69) and IV (n = 40)).
Nearly half of the biopsies were taken from metastatic sites in the peritoneum or omentum
(48%, 63/132), followed by lymph node (25%, 33/132) and liver metastases (11%, 14/132).
The median patient age at the time of biopsy was 63 (range 31–85).

Figure 1. Study flowchart and treatment prior to biopsy. (a) Study timeline for biopsy samples ob-
tained at recurrent disease (top) and primary disease (bottom). (b) UpSet plot with treatment history
prior to the time of biopsy, categorized by treatment type, for samples that were obtained at recurrent
disease (n = 113). Horizontal bars (set size) indicate the number of patients that received a treatment
type. Vertical bars (intersection size) indicate the number of patients that received a combination
of treatment types. All patients with recurrent disease received chemotherapy. (c) Scatterplot with
diagnosis-biopsy interval in days versus the number of drugs prior to the time of biopsy. NOS = not
otherwise specified. A longer diagnosis-biopsy interval was correlated with was associated with a
higher number of drugs (p = 0.01, R2 = 0.058).
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Table 1. Baseline table with clinical cohort characteristics of 132 patients.

Characteristics Median/n Range/%

Age at biopsy 63 31–85
Disease status

primary disease 19 14%
recurrent disease 113 86%

Biopsy Site
Peritoneum/omentum 63 48%
Lymph node 33 25%
Liver 14 11%
Skin 6 5%
Vagina 5 4%
Ovary 4 3%
Other/unknown 7 5%

Histopathological subtype (at diagnosis)
High grade serous carcinoma 74 56%
Low grade serous carcinoma 16 12%
Serous carcinoma, NOS 1 13 10%
Adenocarcinoma, NOS 1 6 5%
Clear cell carcinoma 5 4%
Endometrioid carcinoma 5 4%
Carcinosarcoma 3 2%
Mucinous carcinoma 2 2%
Unknown 8 6%

Differentiation grade (at diagnosis)
Well 18 14%
Moderate 13 10%
Poor 72 55%
Unknown 29 22%

FIGO stage (at diagnosis)
I 4 3%
II 9 7%
III 69 52%
IV 40 30%
unknown 10 8%

1 NOS: not otherwise specified.

Most patients with recurrent disease had been heavily treated prior to the time of
biopsy, and treatment history varied widely between patients (Figures 1 and S1a). The me-
dian time between diagnosis and study biopsy in patients with recurrent disease was
37 months (including 10 patients with an interval of more than 10 years). Patients were
exposed to a mean of 4.1 drugs in this period (range 1–20) and a longer diagnosis-biopsy
interval was associated with a higher number of drugs (p = 0.01, R2 = 0.058) (Figure 1,
Table S1). All patients with recurrent disease were treated with chemotherapeutic agents
prior to biopsy (Figure 1b). A subset of the cohort was additionally treated with targeted
drugs (34%, 38/113), hormonal therapy (19%, 22/113), and immunotherapy (5%, 6/113).
In total, 28 different drugs were administered to the patients in this cohort (Figure S1a,
Table S1). Nearly all patients were exposed to the standard first-line treatment for ovarian
cancer, carboplatin (110/113, 97%) and paclitaxel (103/113, 91%). Other commonly admin-
istered drugs were pegylated liposomal doxorubicin (PLD) (34/113, 30%), bevacizumab
(31/113, 27%), gemcitabine (28/113, 25%), and tamoxifen (19/113, 17%). The remaining
22 drugs were distributed to less than 10 patients each. A detailed per-sample treatment
history plot is provided for the HGSC patients (Figure S1b–d). The majority of patients
received a unique combination of systemic treatments, illustrating the heterogeneity in
therapies even in the absence of molecular guidance, and reflecting the clinical challenges
in defining optimal treatment strategies for this patient group (Figure S1a). A subset of
patients was additionally treated with radiotherapy (20%, 23/113) (Table S1).
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3.2. The Correlation of Known Clinical Determinants and Drug Response

We evaluated which treatments were administered after the biopsy was obtained,
and how patients responded to the given treatment (Figure 2a, Table S1). In total, 109 patients
started a treatment following biopsy collection. Similar to the time period prior to biopsy
collection, there was great variety in the treatments administered after biopsy. The most
commonly used treatment regimens consisted of carboplatin and paclitaxel ((n = 26), includ-
ing 16 patients with primary disease), carboplatin, gemcitabine and bevacizumab (n = 15),
and carboplatin and PLD (n = 11) (Figure 2a). Response to treatment was monitored
radiologically by CT-scanning and assessed according to the RECIST criteria version 1.1
(Figure 2a) [24]. For 95/109 patients (87%), the RECIST response was available, which
ranged from complete response (CR 4/95, 4%), partial response (PR 31/95, 33%), and sta-
ble disease (SD 43/95, 45%) to progressive disease (PD 17/95, 18%). We confirmed that
the group with a favorable response (CR + PR) contained a higher proportion of pa-
tients with primary disease compared to the poor response group (SD + PD), 29% vs 13%
(Figure 2b) [25]. Further, all tumors that were initially diagnosed as well differentiated
exhibited a poor response (Figure 2b).

Figure 2. Post-biopsy treatment and RECIST response. (a) UpSet plot with post-biopsy treatment.
Treatments and treatment combinations given less than twice are cropped from this plot (complete
data supplied in Table S1). Horizontal bars (set size) indicate the number of patients that received a
single treatment (including all patients that received a unique combination which is cropped from
this plot). Vertical stacked bars (intersection size) indicate the number of patients that received
a treatment combination and the response to this treatment combination according to RECIST
(version 1.1). CR = complete response, PR = partial response, SD = stable disease, PD = progressive
disease. (b) Favorable RECIST response (CR + PR) and poor RECIST response (SD + PD) assessed
for patients with primary versus recurrent disease, and according to the differentiation grade at
diagnosis. (c) Response to platinum according to RECIST, for patients with a platinum free interval
of less and more than six months. The majority of patients that were re-exposed to platinum had a
PFI of more than 6 months. In this group, a favorable response to subsequent platinum treatment
was observed in 56% (14/25) of patients.

A shorter platinum-free interval (PFI), defined as the time between the last platinum
treatment and the next recurrence, has been associated with a poorer response to subsequent
platinum treatment [26]. We investigated whether the PFI correlated with a response based
on radiological RECIST assessment in 27 patients [24]. Only two patients experienced a
recurrence within six months, of whom one experienced a favorable response to platinum-
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based (combination) therapy (Figure 2c). Of the patients with a PFI of over six months,
56% (14/25) had a favorable response. Our analysis did not support the clinical prognostic
value of the PFI, likely due to a combination of small numbers and a mix of the number of
relapses (Figure S1e).

3.3. Primary and Recurrent Samples Have Comparable Mutational Loads

We subsequently analyzed the WGS data of the 132 EOC tissue biopsies. On average,
a total of 10,729 mutations were detected per sample. The total number of mutations did not
differ significantly for primary versus recurrent samples (primary mean 10,202 (SD 7548);
recurrent mean 10,818 (SD 6108); Wilcoxon rank-sum test p = 0.4, Figure S2), in line with
recent observations in other tumor types [10]. In contrast, a previous WGS study in ovarian
cancer identified a higher mutation frequency in recurrent versus primary samples [7].
Notably, in that study, the majority of samples in the recurrent disease cohort were derived
from ascites, while our cohort was entirely made up of solid tumor biopsies. Our primary
and recurrent samples contained a comparable number of mutations with high or moderate
predicted impact (primary mean 84, SD 72); (recurrent mean 92, SD 55) (Wilcoxon rank-sum
test p = 0.27, Figure S2).

To detect driver genes in our cohort based on mutational status, we assessed which
genes had a higher somatic mutation rate than expected based on the background mutation
rate [17]. We identified four genes in this cohort, TP53, KRAS, PIK3CA, and NF1, all known
drivers in ovarian cancer (Table S3) [6,7]. In a sub-analysis restricted to primary samples,
only TP53 reached significance, whereas in the recurrent group all four genes were detected.
Of note, the power to detect driver genes relies on the sample size which was markedly
larger in the recurrent group (n = 120) compared to the primary group (n = 19).

3.4. Copy Number Aberrations Characterize Ovarian Cancer beyond HGSC

HGSC is known for extensive copy number aberrations (CNA). We therefore eval-
uated CNA on a genome-wide and gene level both across the cohort and per subtype.
The average tumor genome ploidy in our cohort was 2.8 (range 1.6–5.9) and the majority
of samples (61%, n = 80/132) had undergone whole-genome duplication (WGD). This was
recently also observed in multiple other types of metastatic cancer [10]. WGD was ob-
served in both primary (68%) and recurrent samples (59%), suggesting that WGD is an
early event in tumor evolution, in line with the results of a recent detailed analysis on the
evolution of ovarian cancer by Gerstung et al. [27]. There was no difference in the median
tumor genome ploidy of samples from primary disease versus samples from recurrent
disease (primary 3.1 (SD 1.1), recurrent 2.7 (SD 0.8), Wilcoxon rank-sum test p = 0.28,
Figure S2). In a cohort-wide analysis, multiple genomic regions containing recurring
amplifications and deletions were identified, encompassing copy number gains in genes
marked as drivers in ovarian cancer such as MYC and CCNE1 (Table S4) [9,28]. On aver-
age, 412 structural variants (SVs) were detected (range 1–2135), including balanced and
unbalanced events. The number of SVs was comparable in the primary disease group
(mean 478, SD 495) versus the recurrent disease group (mean 400, SD 338) (Wilcoxon
rank-sum test p = 0.64, Figure S2).

Next, we evaluated differences in copy number states between the different histological
subtypes. As expected, genome-wide copy number aberrations were most distinct in HGSC.
Interestingly, the other subtypes also harbored extensive copy number aberrations, although
in LGSC samples to a lesser extent (Figure S3a). The average non-diploid fraction (combined
haploid and polyploid fraction) was 0.58 for HGSC samples, compared to 0.26 for LGSC
and 0.38 and 0.37 for endometrioid and clear cell carcinoma samples respectively. Merged
CNA profiles per subtype revealed common changes such as a gain of chromosomes 1q
and 8q (Figure S3b).
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3.5. HR-Deficient Samples Harbor High TMB and Are Likely to Be HGSC

We have classified 42 samples (33%) as HR deficient using the HR classifier CHORD [19].
That number matches previously published findings [29]. Within CHORD, a further dis-
tinction can be made between BRCA1- and BRCA2-subtype HR deficiency. Both sub-
types occurred similarly often (20 BRCA1 type vs. 22 BRCA2 type), and both resulted
in a significantly higher TMB compared to the HR-proficient samples (Figure S4). While
56% of all samples are diagnosed as HGSC, 86% of the HR-deficient samples have that
diagnosis (Figure S4).

We compared the CHORD results with the available clinical BRCA1/2 genetic test
results, which were available for 72 samples. For 60 samples, clinical genetic testing
was performed, although no BRCA1/2 hit could be identified. Of those, 15 (25%) were
defined as HRD by CHORD. The predicted underlying damaging gene was non-BRCA in
9 cases (ATM, FANCA, FANCM, FANCD2). For 12 samples, a BRCA1 or BRCA2 mutation
was identified in the clinic. Of those, 10 were identified as HRD by CHORD (except
HMF002316A and HMF000892A). A comprehensive table with all gene hits, TMB and
BRCA, status from CHORD, predicted damaging genes and the clinical data can be found
in Table S8.

3.6. Mutational Signatures Reflect Treatment History and Tumor Biology

To assess the footprint of biological factors and treatment effects on the tumor
genome, we assessed which mutational signatures were present in our cohort. We de-
rived the contribution of COSMIC v.3 mutation profiles to our samples and identified
major contributing profiles for eight single bases substitutions (SBS), five double-base
substitutions (DBS), and five indel (ID) signatures (Figure S5a–c, Table S5). The iden-
tified signatures (Figure S5d–f) represented mutational processes previously linked to
aging (SBS1, 5, 40, DBS2 and 4, ID1, 2, 5, 8), platinum exposure (SBS31 and 35, DBS5),
and defective HR (SBS3, ID6). Our findings confirm a recent analysis that identified
these mutational signatures in a similar-sized cohort of primary and metastatic ovarian
cancer samples [30]. Increased exposure to platinum was associated with higher absolute
contributions of the platinum-associated signatures SBS31, SBS35, and DBS5 (Figure 3a–c).
Further, samples classified as homologous recombination (HR) deficient according to
HR classifier CHORD [19] had a significantly higher contribution of SBS3, ID6, and ID8
(Figure 3d–f). Both ID6 [30] and ID8 have been linked to double-strand break repair
through non-homologous end joining (NHEJ) [30]. Double-strand breaks can be induced
by radiotherapy [31], though we did not observe an association between ID8 and prior
exposure to ionizing radiation therapy nor for other main treatments (Figures 3g and S6).
Taken together, the genomic landscape of metastatic EOC is shaped by both endogenous
and exogenous clinically relevant mutational processes as multiple mutational processes
are simultaneously active in every patient.
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Figure 3. Mutational signatures reflect treatment history and endogenous processes. (a–c) The
absolute contribution of SBS31 (a), SBS35 (b), and DBS5 (c) correlates with increasing platinum
exposure. One platinum episode includes multiple platinum cycles. (d–f) The absolute contribution
of SBS3 (d), ID6 (e), and ID8 (f) is significantly increased in patients with HR-deficient tumors.
HR deficiency is classified by CHORD. (g) The absolute contribution to ID8 is not related to exposure
to ionizing radiation therapy (p = 0.81). * p-value < 0.007 indicated statistical significance (after
Bonferroni correction), Wilcoxon signed-rank test.

3.7. Unsupervised Clustering Based on Genomic Input Reveals Seven Distinct Clusters

We subsequently performed unsupervised hierarchical clustering analysis of the en-
tire cohort based on genomic features to identify subgroups with distinct characteristics
(Figure 4). Input consisted of sample ploidy (haploid/diploid/polyploid fraction), the num-
ber and relative mutation frequencies of single base substitutions (C > A, C > G, C > T, T > A,
T > C, T > G), double base substitutions, indels (insertions and deletions in the context of
repetitive regions, regions with microhomology and others), and SV categories (deletions,
duplications, inversions, insertions, and translocations, divided in long and short events
(≥ or <10,000 bp)). PCA analysis on the clustered data identified short structural deletions
(<10,000 bp), small deletions with microhomology, and ploidy state as the most important
discriminating features of the cohort (Figure S7a,b). We annotated the cluster plot with
clinical and genetic data and identified seven distinct clusters (Figure 4 and Figure S8a,b).
Bootstrapping analysis revealed a high degree of stability of the clusters (Figure S8c). Next,
we analyzed the distribution of clinical features across the seven clusters. Primary disease
samples did not cluster together but were distributed across six clusters. This is in line with
our observation that primary samples are comparable to samples from recurrent disease,
regarding average ploidy, WGD status, and the total number of SNVs and SVs. While the
main histological subtype, HGSC, was present in all clusters, LGSC samples concentrated
in cluster III. No obvious clustering of the other subtypes was observed, likely due to low
numbers in these groups. Further, no clustering was observed according to the biopsy site,
patient age at biopsy, or disease spread at primary diagnosis (FIGO stage).
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Figure 4. Unsupervised hierarchical clustering based on genomic features reveals distinct subgroups.
Dendrogram and cluster plot with seven clusters. Input for clustering consisted of single nucleotide
variants (SNVs), dinucleotide variants (DBSs), insertions and deletions (indels), structural variants
(SVs), and ploidy fraction (top rows). The plot has been annotated with genetic and clinical data to
interpret specific features of each cluster. For oncogenes (indicated by ˆ) a single row is shown which
indicates amplification or a mutation, while tumor suppressor genes are represented by two rows to
visualize the effect on both alleles. For five patients, two time points were included (indicated by *),
four pairs clustered together.
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3.8. Clusters with Specific Genomic and Clinical Features Have Potential Clinical Impact

Assessment of the individual clusters revealed distinct genomic and clinical character-
istics with potential prognostic importance. The first two clusters, I and II, were character-
ized by a large number of mutations and structural variants. Of these, the most prominent
were small deletions with flanking microhomology and short structural deletions and
duplications (<10,000 bp) (Figures 4 and S8a–b).

On average, the length of structural deletions in clusters I and II (202 and 235 bp)
was markedly shorter compared to the remaining clusters (24,473 bp) (p = 2.2×10−16)
(Figure S9a). Notably, the HR classifier CHORD independently classified 100% of the
samples in clusters I and II as HR deficient based on genome-wide mutation patterns [19].
In contrast, all of the samples in the remaining clusters were classified as HR proficient.
BRCA1- and BRCA2-type HR-deficient samples were randomly distributed across clusters I
and II. Biallelic inactivation of BRCA1 or BRCA2 that explained the HR-deficiency genotype
was observed in 16/42 (38%) samples in cohorts I and II, while 3/42 (7%) samples harbored
a single somatic variant. Samples in clusters I and II were among the samples with the
highest contribution of mutational signature ID6, which is characterized by deletions with
flanking microhomology and associated with HR deficiency (Figure S9b). Additionally,
SBS3, which has been attributed to HR deficiency, was highly represented in these two
clusters (Figure S9b). Clusters I and II consisted mainly of HGSC, but also included a
poorly differentiated endometrioid and a clear cell carcinoma. The majority of samples
in the HR-deficient clusters had an aberration in TP53 (40/42, 95%), in line with the high
number of HGSC samples in these clusters. The main difference between clusters I and
II was related to sample ploidy. Cluster II was largely polyploid and all samples had
undergone whole-genome duplication (WGD), whereas the average genome ploidy of
cluster I was two. Additionally, NF1 aberrations were present in the majority of cluster
I (9/17, 53%), while they were rarely observed in cluster II (2/25, 8%). Despite missing
data, a trend of improved response to treatment after biopsy was observed in clusters I and
II. 17/35 tumors (49%; n = 7 missing data) were sensitive to subsequent treatment (CR or
PR), versus 18/60 tumors (30%; n = 30 missing data) in the remaining cohort (Figure 4).
Additionally, survival in the two HR-deficient clusters was among the highest in the cohort.
One-year survival from biopsy was 88% (15/17) and 72% (18/25) in clusters I and II,
respectively, compared to 52% (47/90) in the remaining cohort, indicating a prognostic
advantage for patients within these clusters (Figure S10).

In contrast to clusters I and II, cluster III comprises a genomic stable subgroup
(Figure 4). The tumors in this cluster harbor the lowest numbers of SNVs and SVs and have
diploid genomes (Figure S8b). The majority of samples were wild type for TP53 (16/20,
80%). Most samples in this cluster were of the LGSC subtype. However, five HGSC were
also present in this cluster, of which three harbored a mutation in TP53. Genomic stable
tumors tend to respond poorly to chemotherapeutic treatment [32]. The overall response to
treatment in this cluster was poor (SD/PD 11/14, 79%; n = 6 missing data) and the one-year
survival from biopsy was 53% (10/19) (Figures 4 and S10).

The distinguishing feature of cluster IV is the abundance of long duplications
(Figures 4, S8 and S9a,c). Long duplications comprised 51% of SVs in cluster IV compared
to 16% in the remaining clusters. A tandem duplicator phenotype (TDP) was previously
identified in ovarian cancer and distinguished six subgroups based on tandem duplication
span size [33]. The duplication length in cluster IV peaked at around 231 Kb, correlating
with TDP group two. TDP group two is characterized by TP53 mutations and addition-
ally CCNE1 pathway activation in a third of samples. Likewise, the majority of samples
in our duplication cluster IV harbored a TP53 mutation (10/11, 91%) and in 27% (3/11)
the CCNE1 pathway was activated, either through CCNE1 amplification (HMF002954)
or a mutation in FBXW7 (HMF001177 and HMF002316) (Table S6). In contrast, only 7%
(8/121) of the samples outside cluster IV had an amplification of CCNE1 and no other
FBXW7 mutations were observed.
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Cluster VII harbored most indels at repeat regions and most C > T SNVs (Figures 4 and S8).
The majority of patients either had a mutation in TP53 or a mutation in KRAS (15/18, 83%).
Mutations in KRAS and TP53 were mutually exclusive, indicating distinct underlying tumor
biology processes. Notably, across all cohorts, missense mutations in KRAS and aberrations
of TP53 were rarely observed simultaneously (2/16, 13%), while amplification of KRAS
was only observed in the presence of TP53 aberrations (7/7, 100%). Cluster VII further
consisted of a mix of all histological subtypes. The majority of patients in this cluster were
treated with platinum-based agents after biopsy and, interestingly, the one-year survival in
this cluster was the worst in the cohort (8/18, 44%) (Figures 4 and S10).

Samples in clusters driven by clear mutational patterns such as clusters I and II
also show unique mutational signature compositions that are different from the other
samples. Other clusters, such as III, V, and VII, contained samples with less unique
signature compositions. On average, the signature similarity of samples within the clusters
was significantly higher than for the samples in different clusters (Figure S11).

3.9. High Frequency of Actionable Targets in the Poor Response Cluster

We assessed whether the genomic data revealed actionable targets in our cohort.
We evaluated both level A (approved) and level B (experimental) drugs, for on- and off-
label indications. We restricted this analysis to drugs not available as standard of care for
patients with metastatic ovarian cancer (excluding platinum agents and PARP inhibitors).
In total, 15 actionable genes were identified for which 59 different therapies were potentially
available (Table S7). Nine genes were affected by mutations, three by an amplification
and one by a deletion. Moreover, four fusion genes were detected. In 57 samples (43%),
an actionable target was identified, yet none of these patients were actually treated accord-
ingly. In nearly all cases it concerned category B off-label drugs, which refers to drugs for
which experimental evidence is available based on studies on other cancer types. The genes
with a potential actionable target in most people were KRAS (hotspot mutation in 16 pa-
tients, amplified in seven additional patients), NF1 (11 patients), and PIK3CA (7 patients)
(Table S7). Targetability per cluster varied widely (16–83%) (Figure 5). Despite a high num-
ber of duplications in cluster IV, the patients in this cluster did not harbor any targetable
amplified genes. Importantly, in the cluster with the worst survival, most patients were
treated with platinum-based agents (cluster VII), while this cluster contained the highest
fraction of patients with an actionable target, 83% (15/18 samples). Genome-informed
treatment stratification might therefore improve the prognosis of the patients in this cluster.

3.10. Intrapatient Genomic Stability and Actionability Over Time

For five patients, two subsequent time points during recurrent disease were sequenced.
Four pairs were assigned next to each other in the same cluster, indicating that for these
patients genomic profiling of recurrent disease was not influenced by the timing of the
biopsy (Figure 4, sampleIDs indicated with an asterisk). In line with this, no difference
in targetability between the two biopsies of these patients was observed. In contrast,
the two biopsies obtained from the fifth patient (HMF000019) had distinct genomic profiles
and were clustered apart from each other in clusters II and V, respectively (Figure 4,
Table S6). These biopsies were sampled 10 months apart from distinct tumor locations.
Additionally, the mutational profile of both samples showed a completely different pattern.
The biopsy obtained at the first time point presented with inactivation of TP53 and KMT2C
(HMF000019B), while the second biopsy lacked these mutations and harbored an actionable
KRAS variant (HMF000019A), indicating the presence of two primary tumors. Finally,
we did not identify any cases of BRCA1/2 reversions in the samples with two time points
in our cohort [34].
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Figure 5. Actionability per cluster. The percentage of samples per cluster with an actionable target
(level A/B, on/off label). Purple bar indicates the number of samples per cluster with any actionable
target. Most targets are classified as level B off-label. Cluster VII yielded the highest percentage of
samples with an actionable target.

4. Discussion

In conclusion, we analyzed WGS data and clinical data of patients with metastatic
ovarian cancer. The described cohort is representative of the mixed clinical population of
patients with (recurrent) ovarian cancer, including both serous and non-serous histological
subtypes and varying treatment histories.

Genomic analysis revealed that primary and recurrent samples have comparable
mutational loads. Further, HGSOC samples are characterized by extensive copy number
changes including recurrent genes in line with what has previously been reported [6,7].
Simple genomic clustering of this heterogeneous cohort resulted in subgroups with po-
tential clinical impact. We identified seven clusters including two HR-deficiency clusters
(I + II), a genomic stable cluster (III), a duplication cluster (IV), and a poor survival cluster
(VII) in which clustering-based stratification could potentially improve outcomes. Patients
in the HR-deficiency cluster may benefit more from platinum-based chemotherapeutics
and PARP inhibitors compared to patients from the genome-stable cluster. Actionability
analysis revealed potential targets for treatment, with special promise for cluster VII in
which an actionable target was identified in 83% of the patients. Importantly, most of the
patients in this cluster were treated with platinum, and one-year survival from biopsy was
only 44%. In contrast to a previous hypothesis on a higher rate of actionable amplified
genes in samples with a duplication phenotype [33], we did not find evidence to support
this claim in cluster IV, possibly due to low numbers.

Previous studies have shown the role of CCNE1 amplification on chemotherapy resis-
tance and poor survival [35,36]. The 15 patients in our cohort with CCNE1 amplification
had a tendency of worse survival compared to the other patients, although (and probably
due to small sample size) the result was not statistically significant (Figure S10b).

We showed that genomic clustering can classify tumors beyond the traditional
histopathological classification parameters. While most LGSC samples clustered in the
genomic stable cluster (III), two LGSC samples (both wildtype for TP53 and KRAS mutant)
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ended up in the cluster with the worst prognosis, cluster VII. These samples had few SVs,
like the other LGSC samples, but with much more nucleotide variants, with one of them
having undergone whole-genome duplication. Furthermore, we identified five HGSC
samples in an unexpected cluster, the genomic stable cluster (III). These five samples had
lower mutation and SVs counts compared to most HGSC samples. Notably, two out of five
samples were wildtype for TP53, which, according to updated histopathological guidelines
(taking P53 staining into account), might classify them as LGSC. However, the other three
samples are likely true HGSC samples, based on the biallelic inactivation of TP53 in two of
them and a TP53 missense mutation in the other. Identifying these outliers could improve
treatment stratification. While (HGSC) samples in cluster III could benefit from a more
targeted approach as they might not respond well to standard chemotherapeutics, (LGSC)
samples in cluster VII might benefit from early targeted treatment to improve their poor
prognosis. These hypotheses should be confirmed in prospective trials with larger cohorts.

Previously, Tothill et al. identified six molecular subtypes of ovarian cancer based
on gene expression data, of which four were confirmed as HGSC subtypes in the TCGA
dataset [6,37]. The data in our cohort were restricted to WGS and therefore we were not
able to correlate our clusters with these transcriptomic subtypes. Integrated WGS and
RNA-seq analysis of larger datasets should be conducted to identify overlap between
the transcriptomic subtypes and the genomic clusters described here. As the applica-
tions of exome and WGS are emerging in the clinic, this opens the way for actionability
analysis which can identify therapeutic options for individual patients beyond standard
treatment regimens [38–40]. Integrating WGS in randomized controlled trials will allow us
to evaluate whether treatment allocation can be improved using both histopathological and
genomic information. The results from such trials will bring us closer to an individualized
treatment approach [41,42], and ultimately, to increasing survival rates for patients with
ovarian cancer.

5. Conclusions

In-depth analysis of whole-genome sequencing data of ovarian cancers revealed
subgroups of tumors with different genomic features which may reflect different func-
tional characteristics. Indeed, we identified different responses to common treatments and
survival between subgroups indicating that treatment stratification and/or prognosis of
ovarian cancer patients may benefit from tumor genome-derived parameters.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14061511/s1. Figure S1: Treatments before biopsy and
recurrence patterns; Figure S2: Primary-recurrence comparison; Figure S3: Genome-wide copy num-
ber aberrations by histological subtype; Figure S4: Tumor mutational burden of HRD samples and
histological categories per cluster; Figure S5: Mutational signatures; Figure S6: Contribution of indel
signatures ID6 and ID8 to the profiles for different treatments; Figure S7: Principal components and
feature contributions; Figure S8: Distribution of features of the unsupervised hierarchical cluster-
ing; pvclust bootstrapping; Figure S9: Distribution of SVs and mutational signatures per cluster;
Figure S10: Survival probability per cluster and depending on CCNE1 amplification; Figure S11:
Cosine similarity of mutational signatures (SNV, DBS, INDEL combined) of samples within and
in between clusters; Figure S12. WGS quality control; Figure S13: Elbow plot for the hierarchical
clustering; Table S1: Clinical data; Table S2: Genomic data; Table S3 dNdScv results; Table S4: GISTIC
results; Table S5: Mutational signatures; Table S6: Driver genes; Table S7: Actionability results;
Table S8: CHORD HR deficiency results.

Author Contributions: Conceptualization, C.J.d.W., J.K., R.P.Z., E.C. and P.O.W.; methodology,
C.J.d.W., J.K., R.P.Z., E.C. and P.O.W.; software, C.J.d.W., J.K., A.v.H. and L.N.; validation, C.J.d.W.
and J.K.; formal analysis, C.J.d.W., J.K., A.v.H. and L.N.; investigation, C.J.d.W. and J.K.; resources,
C.J.d.W., I.A.B., M.J., P.B.O., C.v.S.-v.d.M., M.S., R.P.Z. and P.O.W.; data curation, C.J.d.W. and J.K.;
writing—original draft preparation, C.J.d.W., E.C., R.P.Z. and P.O.W.; writing—review and editing,
all authors; visualization, C.J.d.W. and J.K.; supervision, W.P.K., R.P.Z., E.C. and P.O.W.; project

https://www.mdpi.com/article/10.3390/cancers14061511/s1
https://www.mdpi.com/article/10.3390/cancers14061511/s1


Cancers 2022, 14, 1511 16 of 18

administration, C.J.d.W. and J.K.; funding acquisition, W.P.K., R.P.Z. and P.O.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Gieskes Strijbis Foundation, grant number 1816199 and the
Dutch Cancer Society, grant number UU2015-7743.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Ethics Committee of UMC Utrecht (CPCT-02 study, NCT0855477)
and the Institutional Review Board of the Netherlands Cancer Institute (DRUP study, NCT02925234).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Genomics and clinical data used in this study is available for free for
academic research through an access-controlled mechanism from the Hartwig Medical Foundation.
Procedures for requesting access can be found at: https://www.hartwigmedicalfoundation.nl/
applying-for-data/, accessed on 23 February 2022.

Acknowledgments: This publication and the underlying data have been made possible partly on the
basis of the data that Hartwig Medical Foundation and the Center of Personalised Cancer Treatment
(CPCT, The Netherlands) have made available to the study. We thank all local principal investigators,
medical specialists, and nurses of all participating centers for their contribution to patient inclusion
for this study. We thank the members of the Cuppen and van Haaften laboratories for their valuable
input. We acknowledge the Dutch Cancer Registration and thank Maaike van der Aa and Reini
Bretveld for their help with obtaining additional clinical data. Figure 1a was created with icons from
www.flaticon.com and the graphical abstract using biorender.com.

Conflicts of Interest: M. Jalving reports the following competing interests: Advisory Board, honoraria
to institution: Merck, BMS, Novartis, Pierre Fabre, Tesaro, AstraZeneca. Clinical studies: BMS,
AbbVie, Merck, Cristal Therapeutics. The other authors declare no competing interests. The funders
had no role in the design of the study; in the collection, analyses, or interpretation of data; in the
writing of the manuscript, or in the decision to publish the results.

References
1. Timmermans, M.; Sonke, G.S.; Van de Vijver, K.K.; van der Aa, M.A.; Kruitwagen, R.F.P.M. No Improvement in Long-Term

Survival for Epithelial Ovarian Cancer Patients: A Population-Based Study between 1989 and 2014 in the Netherlands. Eur. J.
Cancer 2018, 88, 31–37. [CrossRef] [PubMed]

2. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of
Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]

3. Giornelli, G.H. Management of Relapsed Ovarian Cancer: A Review. SpringerPlus 2016, 5, 1197. [CrossRef] [PubMed]
4. Giornelli, G.H.; Mandó, P. A Theoretical View of Ovarian Cancer Relapse. EMJ 2017, 2, 128–135.
5. Colombo, N.; Sessa, C.; du Bois, A.; Ledermann, J.; McCluggage, W.G.; McNeish, I.; Morice, P.; Pignata, S.; Ray-Coquard, I.;

Vergote, I.; et al. ESMO-ESGO Consensus Conference Recommendations on Ovarian Cancer: Pathology and Molecular Biology,
Early and Advanced Stages, Borderline Tumours and Recurrent Disease. Int. J. Gynecol. Cancer 2019, 30, 672–705. [CrossRef]

6. Cancer Genome Atlas Research Network. Integrated Genomic Analyses of Ovarian Carcinoma. Nature 2011, 474, 609–615,
Erratum in 2012, 490, 292.

7. Patch, A.-M.; Christie, E.L.; Etemadmoghadam, D.; Garsed, D.W.; George, J.; Fereday, S.; Nones, K.; Cowin, P.; Alsop, K.;
Bailey, P.J.; et al. Whole-Genome Characterization of Chemoresistant Ovarian Cancer. Nature 2015, 521, 489–494. [CrossRef]

8. Mirza, M.R.; Monk, B.J.; Herrstedt, J.; Oza, A.M.; Mahner, S.; Redondo, A.; Fabbro, M.; Ledermann, J.A.; Lorusso, D.;
Vergote, I.; et al. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. N. Engl. J. Med. 2016,
375, 2154–2164. [CrossRef]

9. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-Cancer Analysis of Whole Genomes. Nature 2020,
578, 82–93. [CrossRef]

10. Priestley, P.; Baber, J.; Lolkema, M.P.; Steeghs, N.; de Bruijn, E.; Shale, C.; Duyvesteyn, K.; Haidari, S.; van Hoeck, A.;
Onstenk, W.; et al. Pan-Cancer Whole-Genome Analyses of Metastatic Solid Tumours. Nature 2019, 575, 210–216. [CrossRef]

11. Angus, L.; Smid, M.; Wilting, S.M.; van Riet, J.; Van Hoeck, A.; Nguyen, L.; Nik-Zainal, S.; Steenbruggen, T.G.;
Tjan-Heijnen, V.C.G.; Labots, M.; et al. The Genomic Landscape of Metastatic Breast Cancer Highlights Changes in Mu-
tation and Signature Frequencies. Nat. Genet. 2019, 51, 1450–1458. [CrossRef]

12. Van Dessel, L.F.; van Riet, J.; Smits, M.; Zhu, Y.; Hamberg, P.; van der Heijden, M.S.; Bergman, A.M.; van Oort, I.M.; de Wit, R.;
Voest, E.E.; et al. The Genomic Landscape of Metastatic Castration-Resistant Prostate Cancers Reveals Multiple Distinct Genotypes
with Potential Clinical Impact. Nat. Commun. 2019, 10, 5251. [CrossRef] [PubMed]

https://www.hartwigmedicalfoundation.nl/applying-for-data/
https://www.hartwigmedicalfoundation.nl/applying-for-data/
www.flaticon.com
http://doi.org/10.1016/j.ejca.2017.10.030
http://www.ncbi.nlm.nih.gov/pubmed/29179135
http://doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://doi.org/10.1186/s40064-016-2660-0
http://www.ncbi.nlm.nih.gov/pubmed/27516935
http://doi.org/10.1136/ijgc-2019-000308
http://doi.org/10.1038/nature14410
http://doi.org/10.1056/NEJMoa1611310
http://doi.org/10.1038/s41586-020-1969-6
http://doi.org/10.1038/s41586-019-1689-y
http://doi.org/10.1038/s41588-019-0507-7
http://doi.org/10.1038/s41467-019-13084-7
http://www.ncbi.nlm.nih.gov/pubmed/31748536


Cancers 2022, 14, 1511 17 of 18

13. Macintyre, G.; Goranova, T.E.; De Silva, D.; Ennis, D.; Piskorz, A.M.; Eldridge, M.; Sie, D.; Lewsley, L.-A.; Hanif, A.;
Wilson, C.; et al. Copy Number Signatures and Mutational Processes in Ovarian Carcinoma. Nat. Genet. 2018, 50, 1262–1270.
[CrossRef]

14. Nones, K.; Johnson, J.; Newell, F.; Patch, A.M.; Thorne, H.; Kazakoff, S.H.; de Luca, X.M.; Parsons, M.T.; Ferguson, K.;
Reid, L.E.; et al. Whole-Genome Sequencing Reveals Clinically Relevant Insights into the Aetiology of Familial Breast Cancers.
Ann. Oncol. 2019, 30, 1071–1079. [CrossRef] [PubMed]

15. Shale, C.; Baber, J.; Cameron, D.; Wong, M.; Cowley, M.J. Unscrambling Cancer Genomes via Integrated Analysis of Structural
Variation and Copy Number. bioRxiv 2020. [CrossRef]

16. Roepman, P.; de Bruijn, E.; van Lieshout, S.; Schoenmaker, L.; Boelens, M.C.; Dubbink, H.J.; Geurts-Giele, W.R.R.;
Groenendijk, F.H.; Huibers, M.M.H.; Kranendonk, M.E.G.; et al. Clinical Validation of Whole Genome Sequencing for
Cancer Diagnostics. J. Mol. Diagn. 2021, 23, 816–833. [CrossRef]

17. Martincorena, I.; Raine, K.M.; Gerstung, M.; Dawson, K.J.; Haase, K.; Van Loo, P.; Davies, H.; Stratton, M.R.; Campbell, P.J.
Universal Patterns of Selection in Cancer and Somatic Tissues. Cell 2017, 171, 1029–1041.e21. [CrossRef]

18. Blokzijl, F.; Janssen, R.; van Boxtel, R.; Cuppen, E. MutationalPatterns: Comprehensive Genome-Wide Analysis of Mutational
Processes. Genome Med. 2018, 10, 33. [CrossRef]

19. Nguyen, L.; Martens, J.W.M.; Van Hoeck, A.; Cuppen, E. Pan-Cancer Landscape of Homologous Recombination Deficiency. Nat.
Commun. 2020, 11, 5584. [CrossRef]

20. Suzuki, R.; Shimodaira, H. Pvclust: An R Package for Assessing the Uncertainty in Hierarchical Clustering. Bioinformatics 2006,
22, 1540–1542. [CrossRef]

21. Griffith, M.; Spies, N.C.; Krysiak, K.; McMichael, J.F.; Coffman, A.C.; Danos, A.M.; Ainscough, B.J.; Ramirez, C.A.; Rieke, D.T.;
Kujan, L.; et al. CIViC Is a Community Knowledgebase for Expert Crowdsourcing the Clinical Interpretation of Variants in Cancer.
Nat. Genet. 2017, 49, 170–174. [CrossRef] [PubMed]

22. Tamborero, D.; Rubio-Perez, C.; Deu-Pons, J.; Schroeder, M.P.; Vivancos, A.; Rovira, A.; Tusquets, I.; Albanell, J.; Rodon, J.;
Tabernero, J.; et al. Cancer Genome Interpreter Annotates the Biological and Clinical Relevance of Tumor Alterations. Genome
Med. 2018, 10, 25. [CrossRef]

23. Chakravarty, D.; Gao, J.; Phillips, S.M.; Kundra, R.; Zhang, H.; Wang, J.; Rudolph, J.E.; Yaeger, R.; Soumerai, T.; Nissan, M.H.; et al.
OncoKB: A Precision Oncology Knowledge Base. JCO Precis. Oncol. 2017, 1, 1–16. [CrossRef]

24. Eisenhauer, E.A.; Verweij, J. 11 New Response Evaluation Criteria in Solid Tumors: Recist Guideline Version 1.1. Eur. J. Cancer
Suppl. 2009, 7, 5. [CrossRef]

25. Hanker, L.C.; Loibl, S.; Burchardi, N.; Pfisterer, J.; Meier, W.; Pujade-Lauraine, E.; Ray-Coquard, I.; Sehouli, J.; Harter, P.;
du Bois, A.; et al. The Impact of Second to Sixth Line Therapy on Survival of Relapsed Ovarian Cancer after Primary
Taxane/Platinum-Based Therapy. Ann. Oncol. 2012, 23, 2605–2612. [CrossRef] [PubMed]

26. Alsop, K.; Fereday, S.; Meldrum, C.; deFazio, A.; Emmanuel, C.; George, J.; Dobrovic, A.; Birrer, M.J.; Webb, P.M.; Stewart, C.; et al.
BRCA Mutation Frequency and Patterns of Treatment Response in BRCA Mutation-Positive Women with Ovarian Cancer: A
Report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 2012, 30, 2654–2663. [CrossRef]

27. Gerstung, M.; Jolly, C.; Leshchiner, I.; Dentro, S.C.; Gonzalez, S.; Rosebrock, D.; Mitchell, T.J.; Rubanova, Y.; Anur, P.; Yu, K.; et al.
The Evolutionary History of 2,658 Cancers. Nature 2020, 578, 122–128. [CrossRef] [PubMed]

28. Mermel, C.H.; Schumacher, S.E.; Hill, B.; Meyerson, M.L.; Beroukhim, R.; Getz, G. GISTIC2.0 Facilitates Sensitive and Confident
Localization of the Targets of Focal Somatic Copy-Number Alteration in Human Cancers. Genome Biol. 2011, 12, R41. [CrossRef]
[PubMed]

29. Ledermann, J.A.; Drew, Y.; Kristeleit, R.S. Homologous Recombination Deficiency and Ovarian Cancer. Eur. J. Cancer 2016,
60, 49–58. [CrossRef]

30. Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.N.; Tian Ng, A.W.; Wu, Y.; Boot, A.; Covington, K.R.; Gordenin, D.A.;
Bergstrom, E.N.; et al. The Repertoire of Mutational Signatures in Human Cancer. Nature 2020, 578, 94–101. [CrossRef]

31. Borrego-Soto, G.; Ortiz-López, R.; Rojas-Martínez, A. Ionizing Radiation-Induced DNA Injury and Damage Detection in Patients
with Breast Cancer. Genet. Mol. Biol. 2015, 38, 420–432. [CrossRef] [PubMed]

32. McCluggage, W.G. Morphological Subtypes of Ovarian Carcinoma: A Review with Emphasis on New Developments and
Pathogenesis. Pathology 2011, 43, 420–432. [CrossRef] [PubMed]

33. Menghi, F.; Barthel, F.P.; Yadav, V.; Tang, M.; Ji, B.; Tang, Z.; Carter, G.W.; Ruan, Y.; Scully, R.; Verhaak, R.G.W.; et al. The Tandem
Duplicator Phenotype Is a Prevalent Genome-Wide Cancer Configuration Driven by Distinct Gene Mutations. Cancer Cell 2018,
34, 197–210.e5. [CrossRef] [PubMed]

34. Pettitt, S.J.; Frankum, J.R.; Punta, M.; Lise, S.; Alexander, J.; Chen, Y.; Yap, T.A.; Haider, S.; Tutt, A.N.J.; Lord, C.J. Clinical
Reversion Analysis Identifies Hotspot Mutations and Predicted Neoantigens Associated with Therapy Resistance. Cancer Discov.
2020, 10, 1475–1488. [CrossRef]

35. Etemadmoghadam, D.; deFazio, A.; Beroukhim, R.; Mermel, C.; George, J.; Getz, G.; Tothill, R.; Okamoto, A.; Raeder, M.B.;
Harnett, P.; et al. Integrated Genome-Wide DNA Copy Number and Expression Analysis Identifies Distinct Mechanisms of
Primary Chemoresistance in Ovarian Carcinomas. Clin. Cancer Res. 2009, 15, 1417–1427. [CrossRef] [PubMed]

36. Gorski, J.W.; Ueland, F.R.; Kolesar, J.M. CCNE1 Amplification as a Predictive Biomarker of Chemotherapy Resistance in Epithelial
Ovarian Cancer. Diagnostics 2020, 10, 279. [CrossRef] [PubMed]

http://doi.org/10.1038/s41588-018-0179-8
http://doi.org/10.1093/annonc/mdz132
http://www.ncbi.nlm.nih.gov/pubmed/31090900
http://doi.org/10.1101/2020.12.03.410860
http://doi.org/10.1016/j.jmoldx.2021.04.011
http://doi.org/10.1016/j.cell.2017.09.042
http://doi.org/10.1186/s13073-018-0539-0
http://doi.org/10.1038/s41467-020-19406-4
http://doi.org/10.1093/bioinformatics/btl117
http://doi.org/10.1038/ng.3774
http://www.ncbi.nlm.nih.gov/pubmed/28138153
http://doi.org/10.1186/s13073-018-0531-8
http://doi.org/10.1200/PO.17.00011
http://doi.org/10.1016/S1359-6349(09)70018-7
http://doi.org/10.1093/annonc/mds203
http://www.ncbi.nlm.nih.gov/pubmed/22910840
http://doi.org/10.1200/JCO.2011.39.8545
http://doi.org/10.1038/s41586-019-1907-7
http://www.ncbi.nlm.nih.gov/pubmed/32025013
http://doi.org/10.1186/gb-2011-12-4-r41
http://www.ncbi.nlm.nih.gov/pubmed/21527027
http://doi.org/10.1016/j.ejca.2016.03.005
http://doi.org/10.1038/s41586-020-1943-3
http://doi.org/10.1590/S1415-475738420150019
http://www.ncbi.nlm.nih.gov/pubmed/26692152
http://doi.org/10.1097/PAT.0b013e328348a6e7
http://www.ncbi.nlm.nih.gov/pubmed/21716157
http://doi.org/10.1016/j.ccell.2018.06.008
http://www.ncbi.nlm.nih.gov/pubmed/30017478
http://doi.org/10.1158/2159-8290.CD-19-1485
http://doi.org/10.1158/1078-0432.CCR-08-1564
http://www.ncbi.nlm.nih.gov/pubmed/19193619
http://doi.org/10.3390/diagnostics10050279
http://www.ncbi.nlm.nih.gov/pubmed/32380689


Cancers 2022, 14, 1511 18 of 18

37. Tothill, R.W.; Tinker, A.V.; George, J.; Brown, R.; Fox, S.B.; Lade, S.; Johnson, D.S.; Trivett, M.K.; Etemadmoghadam, D.;
Locandro, B.; et al. Novel Molecular Subtypes of Serous and Endometrioid Ovarian Cancer Linked to Clinical Outcome. Clin.
Cancer Res. 2008, 14, 5198–5208. [CrossRef]

38. Chen, A.P.; Eljanne, M.; Harris, L.; Malik, S.; Seibel, N.L. National Cancer Institute Basket/Umbrella Clinical Trials: MATCH,
LungMAP, and Beyond. Cancer J. 2019, 25, 272–281. [CrossRef]

39. Nangalia, J.; Campbell, P.J. Genome Sequencing during a Patient’s Journey through Cancer. N. Engl. J. Med. 2019, 381, 2145–2156.
[CrossRef]

40. Mandelker, D.; Zhang, L.; Kemel, Y.; Stadler, Z.K.; Joseph, V.; Zehir, A.; Pradhan, N.; Arnold, A.; Walsh, M.F.; Li, Y.; et al. Mutation
Detection in Patients With Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs
Guideline-Based Germline Testing. JAMA 2017, 318, 825–835. [CrossRef]

41. Dion, L.; Carton, I.; Jaillard, S.; Nyangoh Timoh, K.; Henno, S.; Sardain, H.; Foucher, F.; Levêque, J.; de la Motte Rouge, T.;
Brousse, S.; et al. The Landscape and Therapeutic Implications of Molecular Profiles in Epithelial Ovarian Cancer. J. Clin. Med.
Res. 2020, 9, 2239. [CrossRef] [PubMed]

42. deFazio, A.; Gao, B.; Mapagu, C.; Moujaber, T.; Harnett, P.R. Chapter 1—Epithelial Ovarian Cancer: Genomic Landscape and
Evolving Precision Treatment. In Overcoming Ovarian Cancer Chemoresistance; Samimi, G., Annunziata, C., Eds.; Academic Press:
Cambridge, MA, USA, 2021; Volume 11, pp. 1–23.

http://doi.org/10.1158/1078-0432.CCR-08-0196
http://doi.org/10.1097/PPO.0000000000000389
http://doi.org/10.1056/NEJMra1910138
http://doi.org/10.1001/jama.2017.11137
http://doi.org/10.3390/jcm9072239
http://www.ncbi.nlm.nih.gov/pubmed/32679669

	Introduction 
	Materials and Methods 
	Patient Inclusion, Sample Selection and Clinical Data Collection 
	WGS and Data Analysis 
	Gene Mutation Burden Analysis 
	Mutational Signatures 
	Determining HR-Status 
	Cluster Analysis 
	Actionability Analysis 
	Statistics 

	Results 
	Patients with Metastatic Ovarian Cancer Have Diverse Treatment Histories 
	The Correlation of Known Clinical Determinants and Drug Response 
	Primary and Recurrent Samples Have Comparable Mutational Loads 
	Copy Number Aberrations Characterize Ovarian Cancer beyond HGSC 
	HR-Deficient Samples Harbor High TMB and Are Likely to Be HGSC 
	Mutational Signatures Reflect Treatment History and Tumor Biology 
	Unsupervised Clustering Based on Genomic Input Reveals Seven Distinct Clusters 
	Clusters with Specific Genomic and Clinical Features Have Potential Clinical Impact 
	High Frequency of Actionable Targets in the Poor Response Cluster 
	Intrapatient Genomic Stability and Actionability Over Time 

	Discussion 
	Conclusions 
	References

