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Activin-A signaling promotes epithelial–mesenchymal
transition, invasion, and metastatic growth of breast cancer
Mohsin Bashir1, Surekha Damineni1, Geetashree Mukherjee2 and Paturu Kondaiah1

BACKGROUND: Activins belong to the transforming growth factor-β (TGF-β) superfamily of cytokines. Although the role of TGF-β in
cancer progression has been highly advocated, the role of activin signaling in cancer is not well known. However, overexpression of
activin-A has been observed in several cancers.
AIMS: The gene expression profile indicated higher expression of Activin-A in breast tumors. Hence the aim of this study was to
evaluate the status and role of Activin signaling pathway in these tumors.
METHODS: Microarray analysis was performed to reveal gene expression changes in breast tumors. The results were validated by
quantitative PCR and immunohistochemical analysis in two independent sets of normal and tumor samples. Further, correlation of
activin expression with survival and distant metastasis was performed to evaluate its possible role in tumor progression. We used
recombinant activin-A, inhibitors, overexpression, and knockdown strategies both in vitro and in vivo, to understand the mechanism
underlying the protumorigenic role of this signaling pathway.
RESULTS: We report that activin-A signaling is hyperactivated in breast cancers as indicated by higher activin-A, phosphoSMAD2,
and phosphoSMAD3 levels in advanced breast cancers. Bone morphogenetic proteins and molecules involved in this signaling
pathway were downregulated, suggesting its suppression in breast cancers. Activin-A expression correlates inversely with survival
and metastasis in advanced breast cancers. Further, activin-A promotes anchorage-independent growth, epithelial–mesenchymal
transition, invasion, angiogenesis, and stemness of breast cancer cells. We show that activin-A-induced phenotype is mediated by
SMAD signaling pathway. In addition, activin-A expression affects the tumor-forming ability and metastatic colonization of cancer
cells in nude mice.
CONCLUSIONS: These results suggest that activin-A has a critical role in breast cancer progression and, hence, targeting this
pathway can be a valuable strategy in treating breast cancer patients.
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INTRODUCTION
Activins are members of the transforming growth factor-β (TGF-β)
superfamily of cytokines, which includes TGF-β, activins, nodal,
inhibins, growth and differentiation factors (GDFs), and bone
morphogenetic proteins (BMPs).1,2 Activin-A binds to type II
transmembrane serine–threonine kinase receptor (ActRIIA or
ActRIIB), which in turn activates type I receptor (ActRIB), leading
to phosphorylation of SMAD2/SMAD3. On phosphorylation,
SMAD2/3 forms a complex with SMAD4, which then translocates
to the nucleus. In the nucleus, Smad2/3/4 complex along with
other co-factors regulate the expression of a large number of
genes.3 Activins were initially shown to have an important role in
gonadal function.4 Subsequently, they have been shown to have
an important role in gonadal function,5 embryonic development,6

pancreatic function,7 bone formation,8 mammary gland develop-
ment,9 cell proliferation,10 maintenance of embryonic stem cells,11

and immune response.12

Activin-A has been shown to be overexpressed in metastatic
prostate cancer,13 stage 4 colorectal cancers,14 lung cancer,15

hepatocellular carcinomas,16 and pancreatic cancers.17 Activin
signaling has also been shown to promote aggressiveness of
esophageal squamous cell carcinoma cells18 and skin tumori-
genesis.19 Interestingly, inhibin-α (activin antagonist)-deficient
mice have been shown to develop gonadal and adrenal cortical
tumors.20 The involvement of activin signaling in cancer cachexia

has also been advocated.21 Activin-A has been shown to induce a
protumorigenic phenotype by facilitating tumor cell–tumor micro-
environment interactions, leading to increased levels of cytokine
production and cell motility.22

The role of activins in breast cancer progression is not well
studied. Earlier, downregulation of activin signaling in breast
tumors has been reported.23 On the contrary, increased serum
level of activin has been reported in women with breast cancers.24

We performed global differential expression of genes in breast
cancers with respect to normal tissue samples. The data revealed
INHBA to be one of the highly upregulated genes with no
appreciable change in the expression of any TGF-β isoforms. It is
important to note that TGF-β, which has been implicated in the
progression and metastatic spread of breast cancers, also
functions through the same set of downstream effectors, Smad2
and 3. Hence, it becomes important to evaluate the role of activin-
A in breast cancer progression. In this study we show that activin-
A signaling pathway is activated in breast cancers and provide
data that suggests its active role in breast cancer progression.

MATERIALS AND METHODS
Reagents
Recombinant human activin-A (338-AC-010) and activin-A antibody
(AF338) were purchased from R&D Systems (Minneapolis, MN, USA);
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phosphoSMAD2 (3101 and 9510) from Cell Signaling Technology (Boston,
MA, USA); SMAD3 (1735), E-cadherin (1702), N-cadherin (2019), and α-
smooth muscle actin (1184-1) from Epitomics (CA, USA); Vimentin (V2258)
and fluorescein isothiocyanate-conjugated phalloidin (P5282) from Sigma
(St Louis, MO, USA); phosphoSMAD3 (ab52903) and BMP2 (ab14933) from
Abcam (Cambridge, MA, USA); vascular endothelial growth factor-A (VEGF-A)
(M7273) from Dako (Denmark); and PE-CD44 (560533)/PE-cy7 CD24 (555428)
from BD (NJ, USA). The antibodies were used at a dilution of 1:100 or 1:200 for
immunohistochemistry and most of the antibodies were used at a dilution of
1:1,000 for western blotting. Small hairpin RNA against activin-A is from
Dharmacon (Lafayette, CO, USA) and small hairpin RNA for SMAD3 was a kind
gift from Dr Lalage Wakefield. INHBA was overexpressed in mammalian
expression pcDNA3.1 vector. The Student’s t-test was conducted to calculate
the P-value for individual experiments and the median values plotted.

Tissue samples and immunohistochemistry
Normal and tumor tissue samples were procured after obtaining informed
consent of patients who underwent surgery at the Kidwai Memorial
Institute of Oncology, Bangalore. The study has been approved by the
Institute Ethical Committee of Kidwai Memorial Institute of Oncology.
Details about tissue samples and expression analysis are listed with the
Gene Expression Omnibus accession number GSE40206. All the patient
details including histopathology data for expression of estrogen receptor,
progesterone receptor, Her2/neu, tumor stage/grade, size, and lymph
node status were documented for each case. The normal tissue samples
were taken from non-tumor-bearing individuals, whereas all the tumor
tissues belonged to grade III category. Staining was performed using the
standard method of deparaffinization and gradual rehydration, followed by
heat-mediated antigen retrieval in tris-EDTA or citrate buffer. The sections
were further treated with 3% hydrogen peroxide in methanol to block
endogenous peroxidase activity. Primary antibody incubation was done at
room temperature for 2 h followed by incubation with an appropriate
horseradish peroxidase-conjugated secondary antibody for 30min. Detec-
tion was carried out using supersensitive polymer-horseradish peroxidase
immunohistochemistry/diaminobenzidine detection system. The staining for
different proteins was performed using the same set of tumor and normal
samples. Analysis was performed by the pathologist determining the
staining intensity of each section (with minimum of 10% cells positive) and
grading from 0 (no staining) to 3+ (highest intensity). The list of primers
used in the study is provided in Supplementary Table S1.

Proliferation and soft agar assay
Proliferation of MCF-7 and MDA-MB-231 cells (from ATCC, Manassas, VA,
USA) was assayed using bromodeoxyuridine cell proliferation assay kit
(Calbiochem, San Diego, CA, USA) following the manufacturer’s protocol
(24 h). For soft agar assay, 3,000 and 5,000 cells of MDA-MB-231 and MCF-7

(both from ATCC) were seeded for 12 and 18 days, respectively. The
experiments were performed in triplicates for three independent times.

Reporter assay
Matrix metalloproteinase-2 (MMP2) and VEGF reporter constructs were
gifts from Etty Benveniste, University of Alabama, and Gail C. Fraizer, Kent
State University, respectively. Luciferase reporter assays were carried out
using promega kit (E4030, Madison, WI, USA) following the manufacturer’s
protocol. Renilla luciferase under a TK promoter was used as an internal
control. The experiment was performed two independent times in
triplicates.

Migration/invasion assay
For scratch assay, cells were cultured in a six-well plate till a confluent
monolayer was formed. A scratch was made through the center of the well
with a tip and images were recorded before and after activin-A treatment.
Transwell migration and invasion assays were performed following the
manufacturer’s protocol, using BD BioCoat Matrigel (NJ, USA) invasion/
control chambers. The experiments were performed in triplicates and
repeated two independent times. The images were recorded under a
microscope with a fixed camera (×2 magnification) and cells were counted
from several random fields.

Zymography
Equal number of cells was seeded and the supernatant was collected after
24 h of serum starvation (stable clones) or activin-A treatment (parental
cells). The sample was given a spin and equal volume was loaded into a
non-denaturing gelatin containing gel (0.1%). The gel was incubated for 8–
10 h followed by Coomassie staining. The images were recorded using a
Uvipro platinum gel imaging system (Cambridge, UK).

Mice experiments
For tumor xenograft growth, 5 × 105 of MDA-MB-231 and 20 × 105 MCF-7
cells were injected into the flank region of 4- to 5-week-old female nude
mice. The animals were allocated by the animal facility and 10 animals
were placed in each group randomly. Tumor formation was followed for 8
and 10 weeks, respectively. The tumors were excised and the weight of the
tumors was plotted. To study metastatic spread of tumor cells, 20 × 105

cells were injected into the tail vein of nude mice (5 animals each group).
Mice were killed after 10 weeks of injection and various organs were
analyzed for nodule formation. The size measurement was carried out on a
Gatan Microscopy Suite (Gatan, Pleasanton, CA, USA), using a line scan
that gives the number of pixels in a particular direction. The t-test was
performed using Graphpad prism software (La Jolla, CA, USA) to evaluate
the statistical significance of the data and a P-value above 0.05 was
considered significant. All the experiments were performed in accordance

Table 1. qPCR analysis of normal and breast tumor samples shows that components and regulators of activin-A signaling pathway are deregulated
in breast tumors

Gene Function Median fold change P-value

INHBA A member of TGFβ superfamily of cytokines, activating SMAD2/3 signaling pathway 11.31 o0.0001
INHA Binds to ACTRII and acts as a negative regulator of activin signaling No change —

ACVR2A Cell surface serine–threonine kinase receptor of activin signaling 2.44 0.0007
SMAD2 Acts as a mediator of activin signaling pathway 2.02 0.0453
FST Binds directly to activin and prevents its binding to the receptor − 1.81 0.0050
TGFBR3 Acts as a co-receptor for inhibin binding to ACTRII − 6.49 o0.0001
IGSF1 Binds to activin directly and prevents its binding to the receptor − 2.75 0.0001
IGSF10 Binds to activin directly and prevents its binding to the receptor − 25.63 o0.0001
BMP2 A member of the TGF-β superfamily of cytokines, activating SMAD1/5 signaling pathway − 5.2 0.0003
BMP3 Binds ACTRIIB, however, has no defined type I receptor − 5.81 0.0254
BMP6 A member of the TGF-β superfamily of cytokines, activating SMAD1/5 signaling pathway − 3.07 0.0012
RGMA Acts as a co-receptor in BMP signaling − 8.11 o0.0001
SMAD1 Acts as a signal transducer of BMP signaling − 2.60 0.0217
ZNF521 Acts as a co-transcription factor in association with SMAD1 − 2.65 o0.0001
GDF10 Also known as BMP3B and binds to ACTRII with no defined type I receptor − 13.36 o0.0001
GREMLIN1 Binds to BMPs directly and prevents their binding to the receptor 2.25 0.0060
TWSG1 Forms a ternary complex with BMPs along with chordin 2.12 0.0019

Abbreviations: BMP, bone morphogenetic protein; qPCR, quantitative PCR; TGF-β, transforming growth factor-β.
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with the institutional guidelines established for the Animal Facility at IISc
and the study has approval from the Animal Ethics Committee of IISc.

RESULTS
Activin-A signaling is active in breast cancer
Microarray study done in our laboratory revealed INHBA and
various other genes involved in the activin signaling pathway to
be differentially expressed in breast cancers (invasive ductal
carcinoma) compared with normal tissue samples, suggesting
activation of this signaling pathway (Supplementary Figure S1).

This differential expression of the INHBA was not dependent on
the category of breast tumors such as estrogen receptor,
progesterone receptor, or Her2 status. We used an independent
set of 15 normal (from non-cancer individuals) and 30 breast
cancer samples (grade 3), to analyze the expression of various
components of activin-A signaling pathway. As summarized in
Table 1 and shown in Figure 1a, we observed upregulation of
various components of activin-A signaling pathway including
INHBA, SMAD2, and activin type II receptor. Interestingly, some of
the negative regulators of activin signaling pathway such as
follistatin, β-glycan, IGSF1, and IGSF10 showed downregulation in
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Figure 1. Expression of activin and correlation with breast tumor progression. (a) Quantitative PCR analyses of INHBA, SMAD2, FST, and BMP2
expression in breast tumors compared with that in normal breast tissues. It is worth noting the significant increase in the expression of INHBA
(activin-A) and Smad2. (b) Immunohistochemistry of activin-A (i), pSMAD2 (ii), pSMAD3 (iii), and BMP2 (iv) in normal and breast tumor sections.
Breast tumors show higher levels of activin-A, pSMAD2, and pSMAD3, whereas normal samples have higher levels of BMP2 compared with
tumor samples. Each graph below shows the intensity score of individual normal and tumor sample on a scale of 0 to 3. The statistical
significance is indicated in the representative graph. (c) GOBO gene set analysis shows that INHBA expression inversely correlates with overall
survival (OS) of high-grade breast cancer patients (ii). In addition, INHBA expression correlates inversely with the distant metastasis-free
survival (DMSF) of breast cancer patients (iii and iv). (d) GOBO box plot expression analysis shows that expression levels of negative regulators
of activin signaling pathway, FST and TGFβR3, decrease progressively from grade 1 to grade 3.
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breast tumors compared with normal samples. Furthermore,
although TGF-β1 expression was upregulated, TGFβRII showed a
very significant downregulation in tumors, compared with normal
tissues (Supplementary Figure S2). We also analyzed various
available breast cancer gene expression data sets (oncomine.org).
In accordance with our study, analysis of these data sets shows
that activin-A signaling components are frequently deregulated in
breast cancers (Supplementary Table S2). TGF-β/activin signaling
has been shown to be opposed by BMP signaling pathways in
development and disease.1,25,26 In congruent with this, BMP
isoforms 2, 3, and 6, and various other genes involved in BMP
signaling such as SMAD1, ZNF521, RGMA, and Gremlin1 were found
to be downregulated. To confirm our results, we performed
immunohistochemistry with another set of 13 normal and 29
tumor samples. As shown in Figure 1b (i), most of the tumors have
higher levels of activin-A compared with normals tissues. Activation
of activin signalling results in phosphorylation of SMAD2 and
SMAD3. In good correlation, breast tumors showed increased

phosphoSMAD2 and phosphoSMAD3 levels compared with normal
tissues (Figure 1b, ii and iii). In addition, in the same set of tumors,
BMP2 staining showed a reduced expression pattern (Figure 1b, iv),
compared with normal tissues. We also analyzed the expression of
inhibin in some normal and breast tumor samples (data not shown)
and found that most of the tumor samples have very low levels of
inhibin compared with normal tissues. This suggests that over-
expression of INHBA results in reduced inhibin expression, possibly
due to INHβA homo-dimerization. In conclusion, our data shows
that breast tumors have higher levels of activin-A and low levels of
various BMPs, suggesting activation of activin signaling pathway in
these tumors.
Further, we also analyzed various publicly available breast

cancer clinical data sets (co.bmc.lu.se/gobo/gsa.pl). As represented
in Figure 1c (ii), the analysis shows that INHBA expression is
negatively correlated with the overall survival of grade 3 breast
cancer patients. However, there was no significant correlation
between INHBA expression and overall patient survival, when all
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Figure 1. Continued.
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the grades are taken together (Figure 1c, i). Further, the analysis
revealed that INHBA expression correlates negatively with the
distant metastasis-free survival of breast cancer patients
(Figure 1c, iii and iv). Interestingly, expression of two important
negative regulators of activin signaling pathway, FST and TGFBR3,
is progressively reduced from grade 1 to grade 3 (Figure 1d). This
suggests that activin signaling may progressively increase from
grade 1 to grade 3, even without any significant change in the
expression of INHBA. On the other hand, expression of FST and
TGFBR3 is positively correlated with the distant metastasis-free
survival of breast cancer patients (Supplementary Figure S3). All
these results suggest that activin-A signaling pathway has an
important role in the metastasis and, hence, survival of breast
cancer patients.

Activin-A promotes anchorage-independent growth of breast
cancer cells
In order to understand the role of activin-A in breast tumors, we
used MCF-7 and MDA-MB-231 cells as models to study the
response of these cell lines to activin-A. Both these cell lines are
responsive to activin-A treatment (addition of recombinant
human activin-A) as determined by an increase in phosphoSMAD2
levels (Supplementary Figure S6). Although these two cell lines
represent different categories of breast tumors, one being
estrogen receptor positive and the other being triple negative,
there was no difference in the expression of activin in these
tumors, as mentioned in the previous section. Most importantly,
we chose these cells based on their INHBA expression levels for
overexpression and knockdown studies. We evaluated the effect

of activin-A signaling on proliferation and anchorage-independent
growth of these cell lines in monolayer and anchorage-
independent culture conditions. On activin-A treatment MCF-7
cells showed a decrease, whereas MDA-MB-231 cells showed no
change in proliferation as assessed by bromodeoxyuridine
incorporation assay (Figure 2a, i and iii). We cloned and
overexpressed INHBA (activin-A) in MCF-7 and knocked down its
expression using small hairpin RNA in MDA-MB-231 cells
(Supplementary Figure S7). Stable overexpression or knockdown
of activin-A in MCF-7 and MDA-MB-231 cells, respectively, did not
affect their proliferation (Figure 2a, ii and iv). In contrast to activin-
A treatment, which resulted in a decrease in proliferation of MCF-7
cells, activin A-expressing clones may represent cell populations
that have overcome the growth inhibitory action of activin-A. In
addition, given the heterogeneous nature of cell lines, there may
be a subpopulation that is refractory to growth inhibition by
activin. It is likely to be that during the process of selection, cells
that are sensitive to growth inhibition by activin get eliminated
and cells refractory to the growth inhibitory signals of activin-A
get selected, which mimics the actual tumor progression.
Interestingly, even treatment of activin-A-overexpressing MCF-7
cells with TGF-β did not result in any inhibition in their
proliferation (Supplementary Figure S8). On activin-A treatment,
MCF-7 cells showed a decrease, whereas there was no significant
change in number of colonies formed by MDA-MB-231 cells, in
soft agar (Figure 2b, i and iii). MDA-MB-231 cells are considered to
be aggressive with enriched CD44high and CD24low population.
Hence, addition of Activin-A may not result in any further increase
in number of colonies. Intrestingly, MCF-7 cells overexpressing
activin-A showed an increase, whereas its knockdown showed a
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Figure 2. Activin-A promotes anchorage-independent growth but not proliferation of breast cancer cells. (a) Bromodeoxyuridine (BrdU)
incorporation assay following activin-A treatment of MCF7 (i) and MDA-MB-231 (iii) cells. Overexpression of INHBA in MCF7 cells (ii) and
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effect (iii) and stable knockdown of activin-A in MDA-MB-231 cells results in a significant decrease in colony formation (iv).
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decrease in the number of colonies formed by MCF-7 and MDA-
MB-231 cells, respectively (Figure 2b, ii and iv). In conclusion,
activin-A promotes anchorage-independent growth of cancer cells
in a context-dependent manner.

Activin-A induces epithelial–mesenchymal transition in breast
cancer cells
Epithelial–mesenchymal transition (EMT), a process in which
epithelial cells lose some of their characteristics and acquire
properties of mesenchymal cells, has been proposed to have a
pivotal role in invasion/metastasis of cancer cells. Unlike TGF-β,
the role of activin-A in this regard is unknown. Western blot
analysis shows that treatment or overexpression of activin-A leads
to a decrease in the expression of E-cadherin and an increase in
the expression of various mesenchymal markers in MCF-7 cells
(Figure 3a, i and ii). Interestingly, we could also observe a
mesenchymal phenotype in activin-A-overexpressing MCF-7 cells
(Supplementary Figure S9). EMT is also marked by stress fiber
formation associated with changes in the cytoskeleton. Confocal
microscopy indicated that treatment with activin-A leads to
downregulation of E-cadherin, induction of α-smooth muscle
actin, and stress fibre formation in MCF-7 cells (Figure 3b). Similar
results were observed on treatment or knockdown of activin-A in
MDA-MB-231 cells (Figure 3a, iii and iv). In conclusion, similar to
TGF-β, activin-A also is an inducer of EMT in cancer cells.

Activin-A promotes migration and invasion of MDA-MB-231 breast
cancer cells
EMT has been associated with migratory and invasive behavior of
cancer cells.27 Hence, we studied whether activin-A has any effect
on migratory and invasive behavior of MDA-MB-231 cells. Wound-
healing (scratch) assay showed that activin-A treatment of MDA-
MB-231 cells promotes their migration, whereas knockdown of
activin-A results in decreased migration of these cells (Figure 4a, i
and ii). We also performed transwell migration assay and observed
that treatment of activin-A increases, whereas stable knockdown
of activin-A decreases migration of MDA-MB-231 cells (Figure 4b, i
and ii). To assess whether activin-A affects the invasive behavior of
MDA-MB-231 cells, we performed Matrigel invasion assay and
observed that treatment with activin-A increases, whereas knock-
down of activin-A reduces invasive potential of MDA-MB-231 cells
(Figure 4c, i and ii). Next, we performed zymography to analyze
MMP2 and MMP9 activity. The results show that activin-A
treatment increases, whereas its knockdown decreases MMP2
activity in MDA-MB-231 cells (Figure 4d, i and ii). Further, we used
Luciferase-conjugated MMP2 promoter and assayed its inducibility
by activin-A. Activin-A treatment of HEK-293T cells transfected
with the reporter construct showed a significant increase in the
promoter activity (Figure 4e). These results suggest that activin-A
can activate transcription of MMP2 and promote migration and
invasion of breast cancer cells.
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show cytoskeletal changes marked by decreased E-cadherin, increased α-smooth muscle actin (SMA) and stress fibre formation (phalloidin-
fluorescein isothiocyanate staining).
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Many recent studies have shown that SMAD3 has an impor-
tant role in TGF-β-induced EMT, migration, and invasion.28,29

Hence, we used a specific inhibitor (SIS3) and small hairpin
RNA-mediated stable knockdown of SMAD3 in MDA-MB-231
cells. The results show that ablation of SMAD3 activity leads to
blockade of activin-A-induced EMT and invasion in these cells
(Figure 4f–i). Together, these results suggest that activin-A-
induced phenotype is dependent on SMAD3 signaling in MDA-
MB-231 cells.

Activin-A promotes tumorigenicity of breast cancer cells
The process of tumor formation is highly complex. TGF-β signaling
has been shown to have an important role in the establishment of
tumors in vivo.30–32 Hence, we wanted to investigate how activin-
A would affect the tumor-forming ability of cancer cells in vivo.
We injected activin-A-overexpressing MCF7 cells in the flank of
immunocompromised mice and followed till the tumors reached
to a prominent size. Our results show that activin-A-
overexpressing MCF-7 cells have better tumor-forming ability in
comparison with control cells (Figure 5a, i). We also injected only

half a million activin-A knockdown MDA-MB-231 and control cells
(optimal cell number generally used is two million) subcuta-
neously in nude mice. Although 7 out of 10 animals formed
tumors in control mice, only 3 out of 10 animals injected with
activin-A knockdown cells could lead to tumor formation
(Figure 5a, ii). Significant differences in the weight of the tumors
were also observed. We also performed immunohistochemistry on
the tumors formed by MCF7 cells (Figure 5b). We observed that
MCF7 overexpressing activin-A tumors have higher Ki-67 percen-
tage (~80%) as compared with control tumors (~50%). In addition,
staining for various EMT markers confirmed the mesenchymal
state of tumors formed by activin-A-overexpressing MCF-7 cells.
Recruitment of blood vessels or de-novo formation of blood
vessels can influence the tumor growth in vivo. Hence, we
investigated the expression of VEGF, which is known to promote
angiogenesis. Activin-A treatment or its stable overexpression in
MCF-7 cells induced VEGF expression (Figure 5c, i and ii). Further,
we performed Luciferase reporter assay to study the regulation of
VEGF promoter by activin-A. Activin-A treatment of HEK-293T
transfected with Luciferase-conjugated VEGF promoter showed
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Figure 4. Activin promotes migration and invasion of breast cancer cells. (a and b) Activin-A treatment (i) increases, whereas its stable
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Activin-A promotes breast cancer
M Bashir et al

7

© 2015 Breast Cancer Research Foundation/Macmillan Publishers Limited npj Breast Cancer (2015) 15007



that activin-A induces activity of VEGF promoter significantly
(Figure 5d). We also performed tail vein injections with activin-A-
overexpressing MCF-7 cells. Even though we did not find a
significant difference in the number of nodules formed, we
observed that activin-A-overexpressing cells formed much bigger
nodules as compared with the control cells (Figure 5e, iii and iv).
This suggests that growth of colonized MCF-7 cells is promoted by
activin-A expression. Tumor-forming ability of cancer cells and
aggressiveness of various cancers has been associated with the
presence of cells having stem-like phenotype.33,34 Activin-A has
been shown to regulate expression of various stemness markers
such as Nanog, Sox2, and Oct4 in various cells.35,36 Hence, to
investigate whether activin-A expression affects stemness of
breast cancer cells, we analyzed population of CD44high and
CD24low cells. Fluorescence-activated cell sorting analysis of
activin-A-overexpressing MCF-7 cells and activin-A knockdown
MDA-MB-231 cells shows that activin-A expression leads to

enrichment of breast cancer stem-like cells (Figure 5f, i). In
addition, treatment of MCF-7 and MDA-MB-231 cells with activin-A
leads to an increase in expression of several stemness markers
(Figure 5f, ii). Taken together, these results suggest that activin-A
has multiple effects on tumor establishment and progression
in vivo.

DISCUSSION
Activin-A, a member of the TGF-β superfamily, binds to its cognate
receptor and activates SMAD2/3 signaling pathway. However,
unlike TGF-β, the role of activin in cancer is not well known. Here
we show that high-grade breast tumors have activation of activin-
A signaling pathway. Interestingly, we did not observe much
significant change in the expression of TGF-β ligands. We also
demonstrate that many components and regulators of activin-
signaling pathway are deregulated, favoring the activation of this
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signaling pathway in these tumors. Our results show that breast
tumors have higher phosphoSMAD2 and phosphoSMAD3 levels as
compared with normals, which shows that this signaling pathway
is active in these tumors. Cellular response towards various
environmental stimuli is a highly complex process. Response

towards a factor is modulated by the presence or the absence of
many other molecules, which is further governed by cellular
context. Here we show that BMPs and various components, as well
as regulators, of this signaling pathway are deregulated, favoring
suppression of BMP signaling in breast tumors. In addition, breast
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tumors revealed significant downregulation of SMAD1, which acts
as a downstream mediator of the BMP signaling pathway.
Downregulation of SMAD1 in breast tumor cells will abrogate
any BMP signaling (locally or at a distant site) in these cells. BMP
signaling pathway has been shown to have an antagonistic role to
TGF-β/activin signaling in various physiological and pathological
conditions.37,38 In addition, recent studies have shown that BMP
signaling has a tumor-suppressive function in cancers.39 Hence,
hyperactivation of activin-A signaling and loss of BMP signaling
may have a critical role in the clinical outcome of breast cancers.
We show that INHBA expression correlates negatively with the
overall survival of high-grade breast tumors and metastasis-free
survival of breast cancer patients. In agreement with these results,
FST and TGFBR3 expression confers a good prognosis for breast
cancers. It suggests that activin-A signaling has an important role
in the dissemination of breast cancer cells and, hence, may
determine the outcome of the disease. We show that over-
expression or knockdown of activin-A affects anchorage-
independent growth of breast cancer cells. We also show that
activin-A induces EMT and promotes migration and invasion in
breast cancer cells. Primarily, the SMAD2/3 signaling pathway
inhibits proliferation of normal epithelial cells and, hence, is
considered to have a tumor-suppressor function. Similar to TGF-β,
proliferation of normal or tumor cells in the earlier stages of tumor
development may be inhibited by activin-A. However, it is
interesting to note that this signaling pathway still remains intact

in majority (~98%) of the breast cancers.40 With the disease
progression, these cells may become refractory to the growth
inhibitory effect of activin-A signaling, as exemplified in prostate
cancer. Activin has been shown to inhibit proliferation of LNCaP
and DU145 (low- and moderate-grade PCa) but not PC3 cell line
(high grade). Interestingly, circulating levels of activin-A were
demonstrated to increase significantly in metastatic prostate and
breast cancers.41,42 In addition, SMAD deletions are observed only
in 1–2% of breast cancers.40 In other words, this signaling pathway
remains intact in most of the breast cancers. Given the abundant
expression of activin-A in tumor cells and the presence of an intact
signaling pathway, it is reasonable to believe that these cells have
acquired resistance to the growth inhibitory effect of activin-A.
Moreover, it is quite comprehensible that SMADs may then have
an important role in tumor progression. Although TGF-β is well
known to induce EMT in various cell lines, not much is known
about activin-A in this regard. EMT is considered to be a
prerequisite for tumor cells to migrate and invade into neighbor-
ing tissues, and hence lead to metastasis. In recent times, even
nodal, another member of the TGF-β superfamily that signals
through the activin receptors has been reported to promote
cancer progression. Our results demonstrate that activin-A-
induced expression of EMT markers and invasion is SMAD3
dependent. SMAD3 has been shown to promote growth of breast
cancer cells in nude mice.43 However, activin-A may also activate
non-SMAD signaling pathways, which may contribute to its pro-
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tumorigenic actions. We observed that activin affects tumor
formation and colonization of tumor cells in nude mice. The data
suggest that activin-A expression affects the establishment of
tumors, which is a very complex process. Establishment of tumors
or metastasis is also influenced by interaction between tumor cells
and the microenvironment. Hence, factors that can modulate the
tumor microenvironment can have a key role in cancer progres-
sion. In this context, activin may also be important in the
establishment of metastases from disseminated cells by modifying
the tumor niche.22 One of the factors known to be important for
tumor growth is VEGF, which leads to recruitment of blood
vessels, hence providing nourishment to the tumor cells. As we
have demonstrated here, activin-A induces VEGF expression and
may influence the proliferation of the cancer cells in vivo. It may, to
some extent, also explain how activin overexpression promotes
proliferation of tumor cells in vivo. It will be interesting to evaluate
how activin-A expression would affect the response of breast
cancer patients to various conventional treatments. Activin-A is

known to have an important role in maintenance of stem cell
phenotype11 and stemness.36 In addition, EMT has been shown
to induce drug resistance and stem cell-like phenotype in cancer
cells.44 It has also been shown that tumors that are more
aggressive are less differentiated and vice versa. We show that
activin-A expression affects the stemness of breast cancer cells
and hence may contribute to the aggressiveness of the disease.
Our study highlights the importance of activin signaling in the
progression of breast tumors. Administration of a circulating
dominant-negative type II TGF-β receptor in mice has been shown
to prevent metastasis of breast tumors.45 However, our study
emphasizes the role of activins and the expression pattern of
these ligands should be considered from a clinical perspective. It is
possible that different tumors may use either TGF-β or activin in a
context-dependent manner. Hence, it is important to carefully
examine the expression of these ligands while designing
strategies to block their actions. Although most studies in the
past have focussed on the role of TGF-β, this study emphasizes
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activin-A’s role in the progression of breast tumors. Interestingly,
many other cancers have been reported to have increased
expression of activins, suggesting that activation of the activin
signaling pathway may be widely involved in carcinogenesis. As
activins have multiple roles in physiological context, their role in
cancer may be equally diverse. Importantly, our study emphasizes
the role of SMAD pathway in the progression of breast tumors and
targeting this pathway may be a useful strategy in the treatment
of breast cancers. In conclusion, we show that activin-A induces
EMT, promotes invasion, and enhances the tumor-forming ability
and metastatic growth of breast cancers.
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