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Abstract: Experts have predicted that COVID-19 may prevail for many months or even years before
it can be completely eliminated. A major problem in its cure is its early screening and detection,
which will decide on its treatment. Due to the fast contactless spreading of the virus, its screening is
unusually difficult. Moreover, the results of COVID-19 tests may take up to 48 h. That is enough
time for the virus to worsen the health of the affected person. The health community needs effective
means for identification of the virus in the shortest possible time. In this study, we invent a medical
device utilized consisting of composable sensors to monitor remotely and in real-time the health
status of those who have symptoms of the coronavirus or those infected with it. The device comprises
wearable medical sensors integrated using the Arduino hardware interfacing and a smartphone
application. An IoT framework is deployed at the backend through which various devices can
communicate in real-time. The medical device is applied to determine the patient’s critical status
of the effects of the coronavirus or its symptoms using heartbeat, cough, temperature and Oxygen
concentration (SpO2) that are evaluated using our custom algorithm. Until now, it has been found
that many coronavirus patients remain asymptomatic, but in case of known symptoms, a person
can be quickly identified with our device. It also allows doctors to examine their patients without
the need for physical direct contact with them to reduce the possibility of infection. Our solution uses
rule-based decision-making based on the physiological data of a person obtained through sensors.
These rules allow to classify a person as healthy or having a possibility of infection by the coronavirus.
The advantage of using rules for patient’s classification is that the rules can be updated as new
findings emerge from time to time. In this article, we explain the details of the sensors, the smartphone
application, and the associated IoT framework for real-time, remote screening of COVID-19.

Keywords: coronavirus; IoT; Arduino; algorithm; cough; heartbeat

1. Introduction

Coronavirus is a large group of viruses that can be pathogenic in animals or humans.
The novel coronavirus that was recently discovered is responsible for the coronavirus
disease 2019 (COVID-19), which is a contagious illness caused by the last discovered
type of coronavirus, SARS-CoV-2. This new virus and the disease were not known before
the outbreak in Wuhan, China, in December 2019 [1]. According to the Centers for Disease
Control and Prevention (CDC), at least seven different human coronaviruses are known
so far and this number may increase in the future [2]. As of now, COVID-19 epidemic has
resulted in about 2.6 million deaths as well as 117 million cases so far world-wide.

COVID-19 is transmitted through respiratory droplets expelled from the nose or
mouth when a sick person coughs, sneezes, or talks. These drops are relatively heavy

Int. J. Environ. Res. Public Health 2021, 18, 4022. https://doi.org/10.3390/ijerph18084022 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-9367-4340
https://orcid.org/0000-0002-4433-5529
https://orcid.org/0000-0001-8873-9755
https://orcid.org/0000-0003-1585-2962
https://doi.org/10.3390/ijerph18084022
https://doi.org/10.3390/ijerph18084022
https://doi.org/10.3390/ijerph18084022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18084022
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph18084022?type=check_update&version=1


Int. J. Environ. Res. Public Health 2021, 18, 4022 2 of 17

and do not cover large distances. Rather, they fall quickly on the ground [3]. COVID-19
can be contracted if these droplets are inhaled. For this reason, it is so important that we
stay at least one meter away from others [4,5]. These droplets can be found on objects or
surfaces (tables, door handles, ramps, etc.) around a sick person. COVID-19 can then
be contracted if one touches these objects or surfaces and then touches their eyes, nose,
or mouth. The incubation time of COVID-19 coronavirus, which is the period between
contamination and the onset of the first symptoms, ranges generally from three to five
days [6,7]. However, in some cases it may extend to fourteen days [8–10]. During this
period, a person may be contagious: they may carry the virus before the appearance of
the first symptoms.

Like other known viruses and disease, scientists and researchers have identified some
symptoms that may describe a person as infected with a coronavirus. The most common
symptoms of COVID-19 are: fever, dry cough, and fatigue [11–15]. Other less common
symptoms, like wheezing and pain, nasal congestion, headache, arthritis, sore throat,
diarrhea, loss of taste or smell and rash or discoloration of the fingers or toes, may be
observed in some cases [16–18]. These symptoms, appearing gradually, are usually mild.
However, some patients experience very cautious symptoms [19]. As we can see, scientists
are still unable to declare exact and definitive symptoms for detection of the coronavirus.

Considering all these factors related to the difficulty in the diagnosis of the coronavirus
and the difficulty in its treatment due to its contactless spread in the patient’s environment,
it is highly desirable to devise a solution for detecting the presence of coronavirus in a
patient using non-invasive and remote methods with minimum involvement of the medical
staff. Current solutions focus on taking blood samples or patient’s saliva using a swab
test or using X-rays of the lungs [20]. Because of the immediate risk of infections, it is
highly desirable to develop contactless, remote solutions for coronavirus detection. One of
the solutions is to use cheap medical devices that can be distributed in the community and
can be discarded after its use to avoid potential spread of the virus from person-to-person.
In the related work, we identify some efforts in this direction, and in the continuity of
the previous such efforts, we devise an improved screening mechanism utilizing the latest
findings of the disease.

1.1. Importance of Remote Screening

While diagnostic tests are used to establish the presence or absence of a disease, the ob-
jective of screening is to detect potential indicators. Thus, screening is for high sensitivity,
while diagnosis serves for high specificity and demands better accuracy and precision.
Screening usually proceeds the diagnosis when there is a large number of potentially at-risk
individuals, including those who are asymptomatic. An advantage of screening is that
it is inexpensive, simple, and acceptable to both the patients and the medical staff, while
diagnosis is usually an expensive and invasive procedure. In many cases, screening is
carried out to remove any suspicion of the disease and is often used in combination with
other risk factors (diabetes, blood pressure, cardiac complications, FPG levels, etc.) Because
screening is cheaper, it can be beneficial to screen a large population that may contain
a small number of potential cases. Successful screening may result in identification and
successful investigation and treatment of patients at-risk of the disease.

Thus, considering the prevalence of coronavirus disease, rapid screening is highly
advantageous, particularly in the areas where advanced medical facilities cannot be found.
Due to the shortage of medical staff and lack of administrative resources, a medical device
that can be used by the non-experts or that can transmit the results to the medical experts
at remote locations is a need of the time.

1.2. Detection of COVID-19 Using Wearable Devices

The idea of using sensors for screening or detection of COVID-19 is not new, but many
of the existing solutions propose proprietary devices and the focus has been mainly on
making ventilators and personal protective equipment (PPE) [21], 3D-printed medical
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equipment [22], nanotechnology-enabled solutions [23], etc. In the market, many smart-
phones and wearable devices also offer some sensors for monitoring heartbeat, respiratory
rate, sleep quality, etc. and some of them also have API’s for accessing their data in
third-party apps. However, due to privacy issues with such devices and given that the pro-
prietary solutions do not provide any flexibility and extensibility, we chose to develop
our solution using open-source components. As such the concept of using Free and Open
Source scientific and medical Hardware (FOSH) has led to some efforts in combining
sensors for the treatment of coronavirus [21–23].

In the literature, numerous solutions have been proposed for detection of COVID-19.
As time is passing, new information about the disease is constantly appearing, particularly,
there have been efforts to make its identification possible with minimum involvement of
humans. In the next section, we describe some of these approaches.

1.3. Novel Contributions of this Work

Similar to some of the previous approaches, we propose a framework for screening
of COVID-19 remotely, with the help of wearable sensorial devices. However, unlike
existing approaches, our proposed solution has several novel features. First, the sensors
utilized in our approach are cheaper, available off-the-shelf, and can be easily integrated
to detect various symptoms, as described above. Each sensor used in our device costs
only a few dollars. The advantage is a device can easily be discarded if it is found to be
contaminated. Since the sensors are generic, they can be replaced or recomposed into an
improved device in the future. Second, the novelty of our approach is that the test can
be carried out by experts and non-experts and the results obtained can be inferred by
anyone. All the processing is done by the sensors and the accompanying framework. Third,
the results can be monitored and analyzed remotely. It means that the wearable device can
be used in far areas, while the results can be monitored from professionals in hospitals and
clinics at different locations. This is an extremely important aspect of disease detection
because as the virus is spread around the globe, governments have limited resources to
send medical staff to remote areas. With our proposed solution, the symptoms can be
checked on a large population. Fourth, the results are in real-time. It means that a large
number of patients can be screened for the illness in a short time. For example, a village
of a few hundred people can be tested in a single day with only a few devices. This can
be made possible only if the screening can be done in near-real-time. The requirements
for such applications imply that the data is kept moving, instead of storing at the source,
to process and respond instantaneously, to integrate the stored and streamed data, and to
guarantee data safety and availability [24,25]. To meet the near-real-time requirements
of the problem, we have identified the sensors that can process and transmit data to
the cloud within an upper bound on time, processing, and accuracy. When selecting
the sensors, it was ensured that the temperature, heartbeat, cough, and SpO2 sensors
were able to process and display the data as soon as a reading was made. The sensors
are connected to the Wi-Fi module that is responsible to transmit the received data to
the destination without manual intervention, hence, transmission is done in near-real-time.
Finally, by using the IoT infrastructure, efficient stream processing and data integration is
ensured in the cloud. Our rule-based system for decision-making can evaluate the results in
linear-time as compared to the exponential growth in most machine-learning problems [26].
Such algorithms guarantee faster response for any scale of data.

Furthermore, our framework can be helpful in identifying population segments in need
of urgent treatment. By analyzing the data of many people in one area, authorities can estimate
the severity of the disease and can act urgently on the outcome. Finally, as the procedure
involves portable devices, it is easy to transport them from place to place, easily.

The distinguishing features of our framework are that unlike existing approaches
that rely on blood or saliva sampling, we use wearable medical sensors that can read and
send physiological data of a person to the processing unit of our framework, which can
then evaluate the person’s condition based on a number of rules that have been acquired
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from existing research findings. In essence, the rules are code guidelines extracted from
experts with the objective of replacing an expert or reducing the intervention of an expert
in medical decision-making. These rules allow to classify a person as healthy or having
a possibility of infection by the coronavirus. The advantage of using rules for patient’s
classification is that the rules can be updated and evolved with dynamic knowledge from
the integration of new clinical guidelines as new findings emerge from time to time. This is
important for a disease like COVID-19 because new strains of the virus appear from time
to time making it a challenge to have a definite or one-size-fits-all vaccine for its treatment.

The remainder of this manuscript is organized as follows. In Section 2, we provide
the necessary background for screening and detection of COVID-19 in general and identify
sme related work. Then, in Section 3, we present our framework, the device, the rules and
the procedure for screening of COVID-19 patients. Section 4 is dedicated to the description
of hardware and software components used by our medical device. We end the paper
with a closing discussion in Section 5 followed by the conclusions and ongoing work for
improvement of this research.

2. Background and Related Work

Before explaining the approaches for screening and detection of COVID-19, we differ-
entiate between this virus and the influenza virus.

2.1. The Difference between the Symptoms of the New Coronavirus (SARS-CoV-2) and Influenza

In general, the two viruses have similar symptoms such as fever, cough, headache,
muscle pain, and fatigue. For instance, when a person suffers from either of the two
diseases, he/she has a fever. However, occurrence of fever is rare in the regular flu
and strong in a new coronavirus patient and it may be associated with vomiting and
diarrhea [27]. Similarly, fatigue and muscle pain happen, but they are somewhat mild
in people suffering from influenza, and severe in a COVID-19 patient. The development
of the subsequent symptoms is slow over time in a regular influenza patient, while it is
quick in a patient infected with the new coronavirus. It is noticed that the person with
the new coronavirus does not suffer from a stuffy nose or a runny nose, while this symptom
is observed in the influenza patient and fades within a week [27]. Although headache
may be a common symptom of the two illnesses, it is simple and rare in case of regular
influenza and strong and continuous in the case of COVID-19. The same patterns apply to
chills as they are rare for a person with regular influenza, but they are clearly observed in
coronavirus patients. However, while sneezing and sore throat are severe in a patient with
regular influenza, they are rare in a person suffering from COVID-19.

Coughing is common in the two types of patients. Nevertheless, it is accompanied
by sputum in the case of regular influenza, while in a patient with COVID-19, it is sharp
without sputum. The person infected with the new coronavirus suffers mainly from severe
pain. The latter is mild and rare in a patient suffering from regular influenza [27]. Chest
pain and a feeling of heaviness are common symptoms of the two diseases. In fact, they are
mild to moderate in a flu patient, while they are severe and strong in a COVID-19 patient.
Flu symptoms and severity can vary depending on the patient’s age and health. The main
symptoms are sudden fever varying between 39 ◦C and 40 ◦C (102 ◦F and 104 ◦F), sudden
cough, sore throat, muscle or joint pain, extreme fatigue, and headache [28]. Symptoms,
such as nausea, vomiting, diarrhea and stomach pain, may also appear. These symptoms
are more common in children. Older adults can feel weak and sometimes be confused
without other symptoms.

Thus, while many symptoms are common between influenza and coronavirus, we can
use a small subset of the symptoms whose presence can suggest a high probability of
developing coronavirus disease in a person. Based on the literature study, our hypothesis is
that detection of those few symptoms can be used as in the rapid screening of coronavirus.
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2.2. Techniques Currently Used for the Detection of COVID-19

One type of COVID-19 detection technique involves the chemical-analysis-based
techniques as indicated by Singh et al. [29]. They can be divided into two main classes
namely polymerase chain-reaction (PCR)-based techniques:(Real-time PCR [30,31], TaqMan
probe-based Real-Time PCR [32], and Droplet Digital-PCR [33,34]), and non-PCR-based
techniques (e.g., nucleic acid sequence based amplification, and real-time quantitative
loop-mediated isothermal amplification of DNA [35]). These methods are invasive, require
specialized laboratory facilities, and, thus, cannot be carried out everywhere.

2.3. Using Rules for COVID-19 Detection

Several approaches have used rule-based analysis for detection of COVID-19. Banjar et al. [36]
developed an expert system that uses computerized clinical guidelines as rules for COVID-19
diagnosis and management. Salman and Abu-Naser [37] developed a rule-based system using
the CLIPS and Delphi languages. The common approach considered in these methods is to codify
the expert’s knowledge in the form of rules and evaluate them with respect to the actual conditions
present at the time of diagnosis. There have been some cases of using rule-based systems for social
distancing and clinical diagnosis as well but they have built in a different context than our study.

2.4. Other Proposed Alternatives (Under Investigation) for the Detection of COVID-19

Recently, the authors of [38] aimed to cover COVID-19 related research initiatives and
new advances in the use of IoT in smart healthcare techniques. In [39], the authors pro-
vided a summary of BioMeTs (Biometric Monitoring Technologies) available for collecting
vital signs (blood pressure, heart rate, temperature, respiratory rate, and oxygen satura-
tion) and discussed the strengths and weaknesses of continuous monitoring processes in
the coronavirus era.

Next, we attempt to cover some of new proposed techniques in the literature that use
sensors for detecting COVID-19.

• Use of electrochemical sensors [40]: Traditionally, respiratory infections have been
identified by a range of methodologies [41] such as staining, direct fluorescence
antibody, etc. Such techniques require costly chemicals and materials, time-consuming
preparation of samples, and skilled staff. To tackle these disadvantages, methods like
surface plasmon resonance [42], interferometry [43], and field effect transistor [44]
were adopted for virus detection. All these methods depend on specialized devices.

• Use of Smartphone Sensors A new mechanism was proposed for detecting COVID-19
using smartphone sensors in [45]. The proposal offers a cheaper solution, as most
radiologists already have smart phones available for various everyday purposes.
Not only this, but normal individuals can use the system for virus detection purposes
on their phones.

• Use of Smart Thermometers: In [46], the authors compared smart thermometers and
mobile device data to regional influenza and “influenza-like illness” (ILI) monitoring.
Similarly in [47], a group of researchers proposed a methodology to identify anoma-
lously high levels of ILI in real-time, at the scale of US counties. Using data from a
geospatial network of thermometers involving more than one million users across
the US, they identified anomalies by producing precise, county-specific predictions of
seasonal ILI from a point before a possible outbreak. Anomalies are strongly corre-
lated with COVID-19 case counts and could provide an early-warning mechanism for
locating the epicenters of future possible outbreaks.

• Wearable Medical Sensors (WMS): A WMS based solution called EasyBand [48] has
recently been proposed to restrict the growth of new positive cases by tracking auto-
contact and supporting critical social distancing. In an other recent work [49,50],
the authors proposed a solution called CovidDeep which uses commercial WMSs
for the detection of the COVID-19 virus. Similarly, the authors of [51] developed an
application that gathers self-reported symptoms as well as smartwatch and activity
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tracker data in order to differentiate between COVID-19 negative and positive cases
in symptomatic persons.

• Use of Cough Recognition Techniques: Cough [52] is a characteristic of varied respira-
tory infections from a common cold to the latest coronavirus infection. Not only does
cough exist in humans, but it has been equally found to exist in many species [53].
In the work presented in [54], the authors presented a new technique which detects
coughs using a “K-band continuous-wave Doppler radar”. Similarly in [55], a group
of scientists have developed an AI model which detects the COVID-19 virus from a
forced cough.

• Use of Arduino and IoT: Magesh et al. [56] used sensors to monitor the temperature
and respiratory rate of the COVID-19 cases to develop the mathematical model called
the epidemic Susceptible, Infected and Recovered (SIR) to classify the COVID-19 cases
in one of the three SIR categories. However, as we describe earlier, temperature and
respiratory rates are not sufficient to detect COVID-19 cases. On the same pattern, Al-
Shalabi used the temperature sensor to detect COVID-19 [57], which is not an accurate
and reliable solution. Ref. [58] proposed an IoT-based solution aiming to increase
COVID-19 indoor safety by analysing contactless temperature sensing, mask detection,
social distancing check. The temperature sensing relied on Arduino using an infrared
sensor or a thermal camera, while mask detection and social distancing checks were
performed by leveraging computer vision techniques. The solution could only be
helpful in prevention of COVID-19 but could not support COVID-19 diagnosis.

3. IoT Framework for Remote Screening of COVID-19

In the absence of any medical tests, not all patients can be followed-up with the tra-
ditional diagnosis methods. In the case of coronavirus, this is an issue when the patients
should not be in close contact with the caregivers, family members, or doctors. So, it is
essential to adopt an innovative technology that facilitates this task. The Internet of Things,
especially the Internet of Connected Medical Things (IoMT), is the best technology used to
remotely control people affected by the COVID-19 epidemic [59].

Figure 1 shows the framework of our proposed system. The figure explains how IoT
can find solutions for problems that cannot be solved using classical techniques utilized in
the field of medicine. The realization of the framework is provided by the data providers,
resource providers and the support providers. The IoT infrastructure communicates with
the three types of providers using different secure communication channels. The data
providers are the sensing devices that obtain real-time data from persons and submit it
for processing and analysis. The resource providers are the computing and communicat-
ing devices that are connected to the infrastructure providing the ability to analyse and
visualize the data and facilitate decision-making. Finally, the support providers consist of
the network of caregivers and medical facilities that are responsible for patients’ treatment
and safety. It is the support network of the person that follows-up once he/she is diagnosed
with COVID-19. The support providers are not an active part of the framework but are
the users who utilize the framework.

3.1. The COVID-19 Screening Device

Our screening device allows physicians or patient-supervising professionals to take
physiological measurements and remotely analyze their patients, always know their health
conditions, and determine the necessary medical characteristics without any physical and
direct contact with them. The device is accompanied by a smartphone application to
remotely follow and determine the patient’s health condition if he/she is infected with
influenza or coronavirus in a combination of the data from the sensors, as shown in Figure 2.
Using patterns from visualization concepts, we use different widgets and different colors
to display the results of the sensors as well as the diagnosis, based on data from the sensors.
The application uses an algorithm to decide on the status of the patient as without any
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symptoms or having mild, moderate, or severe symptoms along with individual sensor
reading for explanation and evaluation.

Figure 1. The framework describing the essential features of our approach.

Figure 2. The sensors and the final device in our prototype implementation: (a) connecting tem-
perature sensor with Wi-Fi module (b) sensor band on the arm (c) the wearable configuration
of all sensors.

Figure 2 shows the prototype implementation of the COVID-19 screening device.
The device contains medical sensors connected with a processor and a Wi-Fi module for
data processing and transfer to the cloud. The device has two interconnected parts: one
placed around the arm, while the other one attached to the frontal part closer to the neck
so that the cough intensity and frequency can be determined (see Figure 2b,c). Its purpose
is to identify the symptoms of the coronavirus by measuring the temperature, oxygen
level in the blood, the heartbeat rate, and determining the severity of the patient’s cough.
The on-board process is programmed using Arduino to combine the data and send it to a
cloud-storage platform using the Wi-Fi module.

3.2. The Rule-Based Analysis of COVID-19

An important part of our framework is the rule-based system for decision-making.
While there have been many approaches that utilize machine learning or neural networks
for prediction of diabetes, they work on the availability of a large set of data and then
identifying patterns in the data for classification or prediction tasks. These approaches
cannot be used if very limited data is available or there is no data at all. In such cases,
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rule-based approaches are a preferred way to perform classification tasks. The basic idea
in a rule-based system is to have a rule-base that contains a set of rules. These rules have
been learnt from the domain experts or adopted from clinical guidelines and research
findings. In the simplest case, rules work on the principles of matching various conditions
of the symptoms of a person with the existing knowledge in the rule-base. The rules in our
case relate to the absence or presence of a symptom or the range of sensor value above or
below a certain threshold value.

For rules definition, we consulted two experts specialized in infectious disease.
The consulted doctors identified that SpO2 measurement is a key and essential deter-
minant of COVID-19. If the SpO2 is > 95% with a normal temperature, the patient does not
present any sign of disease and the test will be negative and the patient should not go to
the COVID-19 center. However, if the SpO2 is between 93% and 94% with enough high
temperature (>38), then it is important to get one tested for COVID-19. In addition, we also
extracted some rules from the existing literature as discussed in Section 2.

This allowed us to define four classes of screening results. Each class meets a specific
set of rules. A patient is evaluated against the rules and is assigned a class based on
the conditions stated in each class. These classes as defined as below:

• Class 0: Non-symptomatic

– SpO2 ≥ 95%;
– Cough Rate: NIL;
– Heartbeat Rate ≤ 100 bpm;
– Temperature ≤ 37.2 ◦C;
– No headache and pains.
– No comorbidities.

• Class 1: Mild symptoms

– SpO2 ≥ 95%;
– Cough Rate ≤ 5/min;
– Heartbeat Rate ≤ 100 bpm;
– 36 ◦C ≤ Temperature ≤ 38 ◦C;
– No shortness of breath.
– No comorbidities

• Class 2: Moderate clinical symptoms

– 93% ≤ SpO2 ≤ 94%;
– 5/min ≤ Cough Rate < 30/min;
– Heartbeat Rate > 100 bpm;
– Temperature ≥ 38 ◦C.

• Class 3: Serious clinical symptoms

– SpO2 ≤ 92%;
– Cough Rate ≥ 30/min;
– Heartbeat Rate > 120 bpm;
– Temperature > 38 ◦C.
– Occurrence of comorbidities.

While the sensors are useful for detection of vital signs, we have also additional param-
eters of shortness of breath, headache, and occurrence of any comorbidity (diabetes, heart
disease, hypertension, etc.) in our rules. At the moment these parameters are assessed from
visual inspection and through question-answering. In the current version, and for screen-
ing purposes, it is sufficient to have the confirmation from the patient. In the diagnosis
stage, further devices can be used to determine these symptoms. For example, the expert
or physician can carry out measurement of glucose level, blood pressure, or performing an
ECG for a conclusive outcome. This will only be needed in the case of serious clinical symp-
toms (class 3). For screening purposes, verbal confirmation of a patient may require several
additional questions depending upon the regional guidelines [60] for COVID-19 screening.
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3.3. Real-Time Screening: Analysis and Visualization

We illustrate the working of our prototype medical device using the following scenario.
A person is suspected of COVID-19 and needs to be screened. The person is instructed

to obtain a device from a designated place and wear it according to the directions given by
a health worker or professional through some distance. Once a person feels comfortable in
wearing the device, it is activated through a mobile interface that starts reading through all
the sensors. As each sensor completes its reading, the data is immediately sent to the IoT
platform through the Wi-Fi module of Arduino. The data is sent in streams. To be able
to detect the cough, the patient is required to wear the device for at least two minutes
while the data is being streamed and stored at the cloud, and subsequently, visualized
at the dashboard. As soon as all the sensors finish collecting the data, a signal is sent
to the mobile device indicating to the health worker to stop the measurement process.
A final snapshot is also shown on the mobile screen as it receives data from the IoTplatform.
The patient is instructed to remove the device and put it back at a designated place. In case,
the patient is screened to be positive, the device may be discarded altogether.

For IoT solutions, we have used the Ubidots [61] IoT platform that is designed with
the objective of rapid development of IoT-based solutions. The platform supports stream-
ing of data from sensors and mobile devices, which is then analyzed in real-time. A variety
of visualization techniques are available to visualize the data in real-time. Figure 3 shows
the interface of our system displaying the data obtained from a patient’s device. This in-
terface is important to consolidate the data obtained from a number of patients. Through
advanced analytics, we will be able to carry out statistical analysis, identifying the need for
enforcing special precautions in an area infected with coronavirus, etc. However, these fea-
tures will be integrated in the near future. In addition, we have also developed a dedicated
smartphone interface, that is locally connected to the medical device and displays the data
in real-time as shown in Figure 4.

Figure 3. Real-time patient test for heartbeat, SpO2, temperature and cough.
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Figure 4. COVID-19 test with Android application for two persons. Data is obtained for sensors and
shown separately in its panel. The overall assessment for the patient is also shown.

4. The Hardware and Software Architectural Components

To support openness of architectural components, extensibility, and interoperability,
we have chosen the Arduino platform [62]. Arduino is an open-source electronics platform
that has been created with the purpose of employing easy-to-use, off-the-shelf electronic
components in various software/hardware projects. Together with the Adruino’s Inte-
grated Development Environment (IDE), and the thousands of commercially-available
hardware/software components, it helps in the quick prototyping of projects like ours.
To include the IoT capabilities in our work, we have used the Ubidots IoT platform, as dis-
cussed in Section 4.2.

4.1. The Hardware Components

Our approach relies on the use of a combination of sensors that can monitor the physi-
ological signs. Thanks to advancement in medical technology, a number of solutions are
available for the given purpose. Our objective was to choose those sensors which are
cheaper and can be connected with other hardware and software components, i.e., pro-
vide maximum interoperability. We also evaluated the durability, compactness, reliability,
certifications, connectivity, availability of developers’ kit, and power-saving performance
of sensors. Thus, after a careful analysis and comparison of many available solutions,
we chose the sensors as follows.

Table 1 summarizes the hardware components used in the medical device. The mi-
crochip chosen for our project is Espressif ESP8266 [63]. The microchip has the ability
to connect multiple things in a Wi-Fi network. This is an essential requirement in our
case as we are connecting multiple sensors in our solution. The MAX30100 sensor [64]
is used as a pulse oximeter and heart rate monitor. It is made up of: two LEDs, a photo
Detector, enhanced optics, and low-noise analog signal processing to detect oximetry and
heartbeat signals. The sensor MAX30100 operates from 1.8 V and 3.3 V power supplies
and can be turned on and off using common software, allowing the power supply to be
connected at any time. For heartbeat detection, one LED emits a red light. For pulse rate,
only the infrared light is needed by the other LED. This is because the oxygenated blood
absorbs more infrared light and passes more red light while deoxygenated blood absorbs
red light and passes more infrared light [65]. Both the red light and infrared light are used
to measure oxygen levels in the blood. It can be integrated and used efficiently in mobile
devices, fitness aids and medical monitoring devices. This sensor also solves the problem
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of persons with heart disease and those who are in COVID-19 critical situation, as it can be
worn on the arm using the electrical pads. This arrangement is very critical for our purpose.

Table 1. The hardware components and their characteristics.

Purpose Sensor Technology Composition Performance/Calibration

Measuring human
body temperature MAX30205

Converts the temperature
measurements to digital form

using a high-resolution,
sigma-delta, analog-to-digital

converter (ADC)

USB-to-I2C controller
along with display units

Meets clinical thermometry
specification of the ASTM

E1112 (0.1 ◦C)

Cough detection
and variation SW-420

Doppler radar,
continuous-wave (CW) radar,

vibration detection

Breakout board that
includes comparator

LM393

Adjustable on-board
potentiometer for sensitivity

threshold selection

Pulse/heart-rate MAX30100

Uses red and infrared
frequency of light to determine
the percentage of hemoglobin

in the blood

Two LEDs, a photo
detector, enhanced optics,

and low-noise analog
signal processing

Programmable from 200 µs
to 1.6 ms to optimize

measurement accuracy

Wi-Fi connectivity ESP8266 Integrated TR switch, PLL,
regulators, 32-bit CPU

Full TCP/IP stack and
microcontroller capability

Wake up and transmit
packets in <2 ms

The MAX30205 temperature sensor [66] is able to accurately measure the temperature
and provides an alert, overheating, and shutdown output. This unit converts tempera-
ture measurements to digital form using a high-precision analog-to-digital sigma-delta
converter. The accuracy meets the specifications of the ASTM E1112 thermometer when sol-
dered to the final PCB board. The communication takes place via two-wire serial interfaces
in “i2c compatible” mode.

For detection of cough, there are a few approaches that utilize sensors for its detec-
tion [52,54,55]. Our supported sensor, the SW-420 is Doppler radar for cough detection.
This Continuous-wave (CW) radar uses a voltage-controlled oscillator to continuously
transmit a signal. The receiver is always on to detect the echo signal. The CW radar is a
simple radar and is easier to integrate into mobile devices. It recognizes the amplitude
of the vibration to which it is exposed. Thus, in essence, the vibrations generated from
cough are translated into detecting cough using a threshold as shown in Figure 5. The exact
threshold at which to identify and separate between different severity of coughs requires
data from subjects with varying levels of illness and medical conditions in addition to
gender and age differences among different persons.

Figure 5. The normalized signal graph obtained from the cough detection sensor.

4.2. The Software Components

Table 2 summarizes the main software components of our system. Google Firebase
application development software that facilitates the advanced and extensible software
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creation process by allowing developers to develop iOS, Android and Web apps. In other
words, it enables cross-platform, rapid development of mobile and web applications.
It is essentially employed to prevent professionals and individuals from participating
in the complex process of creating and maintaining a server architecture. In addition,
the platform can be run by multiple users at the same time without experiencing any errors.
Its intuitive features make it desirable for use in our project.

Table 2. The software components used in our prototype implementation.

Software Application Objective Usage Characteristics

Google Firebase Application creation For creating client-server architecture Cross-platform rapid development

Ubidots IoT data analytics
and visualization

To analyse and visualize data from
mobile and other computing devices

with support for device, app,
and resource organization in IoT

and cloud infrastructure

Encryption, secure authorization,
privacy-aware protocols

Arduino IDE Sensors connectivity For programming and customizing
the sensors used in the project

Open-source, easy-to-use
hardware and software

Android Studio Android app
development

For developing Android-based
application interface (Figure 4) and

connectivity with the server

Unified environment,
structured code modules

The Ubidots platform [67] enables the development of IoT applications for manufac-
turers and individuals in the fields of health, agriculture, smart cities, etc. It is equipped
with many features that allow, for example, data to be collected from sensors and visualized
via the dashboard. We can access the archives of production data in real-time over a period
of 2 years. In addition, it allows configuring conditional events and alerts and activating
them via SMS, email, etc. Such alerts and notifications are essential and useful for real-time
detection of events, e.g., simultaneous detection of several COVID-19 cases in a proximity
will generate an alarm to indicate the severity of infection in that area. However, in this
prototype implementation, we have not integrated this option yet.

Combined with APIs that can be accessed via HTTP/MQTT/TCP/UDP protocols,
Ubidots provides a simple, secure connection to send and retrieve data to and from
the cloud service in real-time. Developers can also combine their own HTML/JavaScript
code to customize the data display interface. Because of its security features, extension
capabilities, and a wide-range of dashboards for monitoring of real-time sensorial data,
we chose it as a technology for our IoT platform.

An important aspect of Ubidots is its focus on the security of communication. All the com-
munication taking place between different components is secured: HTTP with SSL encryption
and MQTT with TLS encryption. In addition, Ubidots use token-based secure authoriza-
tion [68,69]. As the sensors do not provide any data storage and the sensors’ readings are
directly sent to the cloud, user’s data is not exposed. Also, in the current implementation,
we do not require any personal data except the data sensed by the sensors, but in real-world,
the sensor data is augmented by personal information and this should be treated with the same
privacy-aware protocols as traditionally carried out by the healthcare institutions. The data
protection and integrity at storage location is managed through cloud service providers.

The Arduino Integrated Development Environment (IDE) contains a text-editor for
writing code, a message box, a text console, a toolbar with buttons for common functions,
and a series of menus. It is connected to Arduino (or the compatible Genuino) devices
to download and communicate with programs. The Arduino IDE feature allows: editing
a program and compiling this program in the Arduino’s machine language, uploading
the program to the Arduino memory, and connecting to the Arduino board via the terminal.

Android Studio is the largest and most popular programming environment in the field
of programming and developing mobile applications that run on the Android operating
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system. It is mainly characterized by easy application development and flexibility. It makes
it possible to display the developed applications on a group of different (Android) simu-
lated screens during the programming for a specific application without the need for a set
of devices as they support a simulated environment in order to save time and effort.

5. Discussion

Point-of-care devices have been one widely-used way for detection of COVID-19.
Such devices can take about 5–10 min to produce results [16]. However, the downside of
these approaches is that they require some samples (e.g., blood or saliva) from the pa-
tient. Some techniques rely on X-ray [20] or CT scan images [70], a process which require
specialized devices, a controlled environment, and much longer time than mere a few min-
utes. On the contrary, we suggest a non-invasive technique that does not rely on patients’
samples but only uses external physiological symptoms of the patients in real-time.

Some approaches also use external sensors as proposed in this work. However, as we
have seen in the existing work, those solutions do not fully cover more than a couple
of the aspects of detecting COVID-19. For example, while [45] uses “a large number of
sensors including cameras, microphone, temperature sensor, inertial sensors, proximity,
colour-sensor, humidity-sensor, and wireless chipsets/sensors”, the final decision made
by their proposed AI-based system is dependent on chest CT scan images and blood test
results. Thus, the contribution of non-invasive, wearable sensors cannot be established.

To the best of our knowledge, our solution is the first to explore the use of temperature,
cough, heartbeat, and SpO2 sensors simultaneously to consider the various symptoms
which may occur together in a COVID-19 infected patient. The sensors used are very
accurate in detecting temperature, heart rate or SpO2, and the vibration level, but the accu-
racy of the sensor used for detecting cough is dependent on the algorithm for detection
of cough because we do not measure cough directly. As our idea is to measure vibrations
obtained through cough, the thresholds have been fixed after testing by only a few subjects.
In case of some determined frequency of vibration we can say the subject suffers from
cough. However, this threshold is suspected to change depending upon further testing
that may involve people of both genders from various age groups with different medical
backgrounds. In the future work, we will improve our methodology by combining our
proposed solution with existing machine learning based techniques for cough detection
that will apply a threshold based on various parameters or in combination with other
sensors. For the screening purposes, in our current work, it can detect cough reliably from
non-cough situations.

Unlike existing solutions that merely propose an architecture, our solution is a working
prototype consisting of sensors, smartphone application and the associated IoT infrastruc-
ture. By applying IoT infrastructure, we can not only scale the architecture and operation
of our system, but it can also be helpful in advanced analysis by applying machine learning
and data mining to the data obtained through our system. An added advantage of using
open hardware, like Arduino, is the extensibility of our approach in the future as new
symptoms of the disease are discovered and new sensors can be integrated. For example,
video cameras can be used to detect the aspects of social distancing [58]. Similarly, thermal
cameras can be integrated to detect the suspected persons among a group of people or in a
crowd. All this can be integrated into the existing solution without changing the previously
integrated components. Currently, we are trying to establish the accuracy and reliability of
our work by adopting model-based testing techniques [71] in order to validate the proposed
approach mathematically.

6. Conclusions

The COVID-19 virus has been around for almost a year now and the medical com-
munity, scientists, and researchers are trying their best to identify a cure for the disease.
At the same time, people around the world are facing issues in determining the state of
an individual as healthy or affected by the virus. The state-of-the-art solutions require
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visiting a hospital or a healthcare facility to perform COVID-19 diagnosis. Considering
the numerous difficulties and the associated dangers in its diagnosis, it is preferable to be
able to perform the disease detection using wearable devices.

This article proposed a framework for remote screening of the virus using standards-
based practice identified in the literature. The framework utilizes sensors combined in
the form of a wearable device that can be worn by any individual to know in a few seconds
whether the person is healthy or is doubtful of carrying the disease.

The framework requires testing on a large population and at the same time the data
obtained through testing can be used for advanced analytics such as outbreak prediction
and prevention, population segmenting, as well as helping the government and decision-
makers to take appropriate measures. As a future work, and due to unavailability of
the required data, we will test our device using data in order to establish its performance.
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