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Full Monte Carlo (FMC) calculation of dose distribution has been recognized to 
have superior accuracy, compared with the pencil beam algorithm (PBA). However, 
since the FMC methods require long calculation time, it is difficult to apply them to 
routine treatment planning at present. In order to improve the situation, a simplified 
Monte Carlo (SMC) method has been introduced to the dose kernel calculation 
applicable to dose optimization procedure for the proton pencil beam scanning. 
We have evaluated accuracy of the SMC calculation by comparing a result of the 
dose kernel calculation using the SMC method with that using the FMC method in 
an inhomogeneous phantom. The dose distribution obtained by the SMC method 
was in good agreement with that obtained by the FMC method. To assess the 
usefulness of SMC calculation in clinical situations, we have compared results of 
the dose calculation using the SMC with those using the PBA method for three 
clinical cases of tumor treatment. The dose distributions calculated with the PBA 
dose kernels appear to be homogeneous in the planning target volumes (PTVs). 
In practice, the dose distributions calculated with the SMC dose kernels with the 
spot weights optimized with the PBA method show largely inhomogeneous dose 
distributions in the PTVs, while those with the spot weights optimized with the 
SMC method have moderately homogeneous distributions in the PTVs. Calculation 
using the SMC method is faster than that using the GEANT4 by three orders of 
magnitude. In addition, the graphic processing unit (GPU) boosts the calculation 
speed by 13 times for the treatment planning using the SMC method. Thence, the 
SMC method will be applicable to routine clinical treatment planning for reproduc-
tion of the complex dose distribution more accurately than the PBA method in a 
reasonably short time by use of the GPU-based calculation engine.
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I. INTRODUCTION

Proton therapy has an advantage of dose localization that enables better dose conformation to a 
tumor and spares critical organs and normal tissues surrounding the tumor.(1) Although a passive 
beam delivery technique has been used in proton therapy due to its stability of the irradiation 
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field and applicability to moving organs, the number of facilities adopting the pencil beam scan-
ning (PBS) technique is increasing rapidly due to the inherent better dose conformity, the lack 
of need of manufacturing patient-specific devices, and the lower ambient neutron dose.(2-4) A 
number of facilities begin to apply the PBS technique to cancer treatment in moving organs like 
lung and liver by using a repainting technique and a gating technique.(5,6) Currently, a treatment 
planning system (TPS) for the PBS uses an analytical dose calculation method using a pencil 
beam algorithm (PBA) for proton therapy.(7,8) Although this algorithm allows short computa-
tion time and  is suitable for dose calculation in homogeneous or moderately inhomogeneous 
media, the accuracy limitation appears in certain clinical sites with large density heterogene-
ity. The limitations arise from the algorithm of the PBA that the density heterogeneity is only 
considered on the single, straight central path of the pencil beam. In contrast, Full Monte Carlo 
(FMC) dose calculation takes into the basic physical processes in medium and tracks paths of 
individual primary protons and secondary particles. As a result, it has been considered as the 
most accurate calculation method in radiotherapy.(9) However, since it takes much time for the 
FMC method to complete the dose calculation in clinical cases, it is difficult at present to apply 
the FMC calculation to routine clinical treatment planning. To reduce the calculation time, a 
number of faster Monte Carlo methods dedicated to proton therapy have been developed.(10-12) 
One of such faster FMC codes for TPS in proton therapy, named VMCpro, was reported to be 
35 times faster than the general purpose FMC code GEANT4 for simulations in a phantom 
with large inhomogeneities.(10) The calculation time is approximately 30 to 75 times longer 
than that by the PBA with an original spot decomposed into 121 subspots.(8,10,11) Therefore, 
further reduction of calculation time is desired.

A simplified Monte Carlo (SMC) method(12-15) has been developed to obtain dose calculation 
results more accurately than the PBA in target heterogeneities in a shorter calculation time. It 
tracks individual proton paths scattered in material and uses a measured depth-dose distribution 
in water for dose calculation. The employed scattering model uses a multiple Coulomb scat-
tering approximated as a Gaussian. The SMC method takes into account the effect of medium 
with the laterally different densities on dose distribution. Hotta et al.(15) verified accuracy of 
the SMC method by comparing calculation results with dose distributions measured in an 
anthropomorphic phantom for the passive beam delivery system at the National Cancer Center 
Hospital East (NCCHE) in Japan. They found that the SMC method reproduced the measured 
dose distribution well, satisfying an accuracy tolerance of 3 mm and 3% in the gamma index 
analysis. The algorithm has been integrated in the clinical TPS of NCCHE for the passive 
beam delivery system. The NCCHE is now developing a PBS. Since the PBS delivery system 
requires an accurate and fast dose calculation engine, we have developed such a dose kernel 
calculation algorithm using the SMC method applicable to the dose optimization procedure 
for the PBS in the NCCHE.

We evaluated accuracy of the SMC calculation by comparing a dose distribution in an 
inhomogeneous phantom obtained by using the SMC method with dose distribution obtained 
by using the FMC method. In order to assess the usefulness of SMC calculation in clinical 
environment, we compared dose calculation results using the SMC method with those using 
the PBA method for three cases when the PBS would be used as a beam delivery method. 
Since it takes a reasonably short time for the SMC to complete dose calculation, it will have a 
possibility of being used for routine treatment planning. 

 
II. MATERIALS AND METHODS

A multipurpose nozzle has been installed in the NCCHE. A PBS mode, as well as a beam-
wobbling mode, can be selected in this nozzle. Primary proton beam energy can be selected 
from one of 206 MeV, 192 MeV, and 176 MeV in the PBS mode at present. In the near future, 
more number of therapeutic beam energies will be available. In the present calculation study of 
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clinical cases, we used 150 MeV as the primary proton energy using the passive beam delivery 
system, since 176 MeV proton beam has too long a range for clinical cases of head and neck. 
In the PBS mode, this nozzle uses a binary range shifter (RS) made from PMMA for the range 
shifting. The thickness of the range shifter can be controlled from 0 to 127 mm, with a resolu-
tion of 1 mm. The water-equivalent thickness ratio of the PMMA is 1.16. Figure 1 shows the 
schematic layout of the beam scanning system at NCCHE. At present, the PBS mode is in 
commissioning phase. The beam-wobbling mode is used for patient treatment concurrently.

A.  SMC calculation method
The SMC method calculates a dose distribution by tracking individual proton paths. It starts 
calculation at the entrance of patient body with initial beam parameters provided by the effec-
tive source model.(7) The model parameters are calculated and prepared in advance for different 
combinations of the binary RS plates. Table 1 shows examples of the initial beam parameters 
for different binary RS thicknesses. The σeff,x and σeff,y in Table 1 are rms spatial beam spreads 
at the effective source point in X and Y directions, respectively. The σeff,θx and σeff,θy in Table 1 
are rms angular spreads at the effective source point in X and Y directions, respectively. The 
spatial and angular distributions are assumed to be Gaussian. The Leff,x and Leff,y in Table 1 are 
distances between the effective beam source position and the isocenter in X and Y directions, 
respectively. In the SMC method, one million protons are generated for dose kernel calculation 
of each pencil beam. Each proton in a beam kernel is characterized by the position (x, y, z), 
direction in projection angles (θx,θy), residual range in water. It is assumed that the trajectory 
of each proton is determined only by the multiple Coulomb scattering with a scattering angles 
expressed as a normal random number with a standard deviation following the Highland’s for-
mula.(16) For material in the body, we convert a CT value to water-equivalent thickness of the 
voxel using a calibration table. Since we are using the water-equivalent model, we calculate the 
rms scattering angle in the voxel as if the material is equivalent to water with the  water-equivalent 

Fig. 1. Schematic layout of the beam scanning delivery devices at NCCHE.

Table 1. Examples of initial beam parameters.

 RS thickness 
 (mm) 2 32 64 96

	 σeff,x (mm) 4.62 5.61 5.25 6.33
	 σeff,y (mm) 4.75 5.48 5.19 6.23
	σeff,θx (mrad) 5.95 17.08 25.82 38.37
	σeff,θy (mrad) 5.76 17.01 25.78 38.34
 Leff,x (mm) 989.40 491.00 599.70 501.38
 Leff,y (mm) 922.50 479.40 595.01 499.10
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thickness.(13) The dose deposition in a voxel is obtained from a measured depth-dose distribu-
tion in water using the water-equivalent model.(7) Shorter calculation time compared with FMC 
methods comes from simplification in which the dose deposition in materials is obtained by 
using the measured depth-dose distribution in water, and ignoring nuclear reactions. Yet, use 
of the measured depth-dose distribution for dose calculation implicitly includes energy losses 
due to nuclear collisions, energy deposition by secondary particles, loss of primary protons by 
nuclear interaction, and range straggling effect on average, as well as energy losses due to elec-
tron stopping. Such a simplification serves to reduce the calculation time of the dose deposition 
in a voxel. Accuracy of the SMC method was confirmed by experiments.(14,15) The estimated 
mean statistical error of the total dose calculation in the planning target volume (PTV) with the 
optimized spot weights was 0.57% rms of the maximum dose in the PTV.

B.  Accuracy verification of the SMC method by comparison with the FMC method 
To verify the accuracy of the SMC method, we compared a dose distribution for 206 MeV in 
water and that in a numerical inhomogeneous phantom obtained by the SMC method with those 
by the FMC method. As a FMC calculation, we used the PTSIM(17) which is a simulation code 
for particle therapy built on the GEANT4 toolkit version 4.9.6, since it is considered accurate 
enough as a golden standard of dose calculation. As the numerical inhomogeneous phantom, we 
introduced an inhomogeneity in water of size 300 × 300 × 400 mm3 (Fig. 2). The inhomogene-
ity consists of two cuboid blocks of size 10 × 20 × 50 mm3 placed side by side. One of them 
consists from a bone-simulated material (ρ = 1.575 g cm-3) and the other consists from a lung 
tissue-simulated material (ρ = 0.217 g cm-3). The materials are defined in the PTSIM toolkit. 
The entrance faces of the two blocks are placed at a depth of 150 mm in water. The interface 
between the two blocks is placed on the beam central axis around which an initial pencil beam 
is generated. Such a selection of beam arrangement is considered to be the most challenging 
situation for pencil beam dose calculation algorithms. Dose distributions in the inhomogeneous 
phantom were calculated by the SMC and the FMC methods with 106 generated protons using 
the same input data of the proton beam. The resulting laterally integrated depth-dose curves 
and isodose curves have been compared. In this case, we used a laterally integrated depth-dose 
curve in water calculated by the FMC method as the depth-dose curve used in the SMC method. 
We take the voxel size of 1 mm in all directions.

Fig. 2. Numerical inhomogeneous phantom consisting of bone-simulated material and lung-simulated material immersed 
in water for the benchmark calculation.
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C.  Simulation condition of clinical cases
For simulation, we have selected three clinical cases that have been treated at NCCHE using 
the proton beam with the passive beam delivery system. Two head and neck cases are labeled 
case A and B, and a lung and bronchus case is labeled case C in this article. All the cases use 
two-beam port irradiation. To assess the usefulness of SMC calculations in the clinical environ-
ment, we compared the dose calculation results obtained by using the SMC method with those 
using the PBA method if the PBS would be used as a beam delivery method for the target. The 
software for dose calculation using the PBA method has been developed in-house for the study 
based on the algorithm shown in Hong.(7) All of these plans are SFUD (single-field uniform 
dose) plans. Table 2 shows the plan details.

Spot geometry for each field is arranged so that spots are regularly spaced on 12 mm × 12 mm 
grids in lateral directions considering the large beam size and by 5 mm water-equivalent depth. 
For the CT input data, we take the in-plane pixel sizes of either 1.17 or 1.88 mm depending on 
the case and slice separations of either 3 or 4 mm. The size of dose calculation grid is taken as 
the same as the CT voxel.

 
III. RESULTS & DISCUSSION 

A.  Accuracy verification of the SMC method by comparison with the FMC method
Before proceeding to comparison of dose distributions in inhomogeneous phantom between the 
SMC and FMC methods, we compared dose distribution in water obtained by the SMC method 
with that by the FMC method to investigate the effect of different physics model employed in 
each method on the dose distribution. Figure 3 shows isodose distributions in water obtained 
by integrating the 3D dose distributions in the Y direction (see Fig. 2 for the coordinate system) 
perpendicular to the isodose plane (x-z plane) and the difference distribution. The rms relative 
dose difference is 1.1% of the maximum dose in the region of 70 mm in width and 270 mm 
in depth. We found that the systematic dose difference can be attributed in part to ignorance 
of the lateral tail due to the nuclear reaction in the SMC method and in part to the different 
models(16,18) of the multiple Coulomb scattering employed by the SMC and FMC methods. The 
spatial deviation due to multiple Coulomb scattering in water calculated with the FMC method 
was found to be about 15% less than that with the SMC method. We notice the underdose region 
(the blue colored region) behind the Bragg peak in the SMC method, as shown in  Fig. 3(c), 
since the SMC overestimates the lateral spread in this region. We also notice the lateral tail 
dose due to the nuclear elastic scattering shown as a green region near the Bragg peak in Fig. 3.

In order to evaluate accuracy of the SMC method for practical cases, dose distributions 
obtained by the SMC and FMC methods have been calculated for the inhomogeneous numerical 
phantom consisting of a bone material and a lung material in water. Laterally integrated depth-
dose in water-equivalent distributions in the phantom are shown in Fig. 4(a). The calculated 
doses in water equivalence are normalized by the dose in water at the Bragg peak position in 
Fig. 3 and we take the dose at the shallowest Bragg peak (z = 234.5 mm) in the FMC method 
as 100%. We found good agreement of overall dose in water-equivalent distributions between 
the SMC and FMC methods, although we noticed overestimation of calculated dose in a num-

Table 2. Treatment plan information.

  Case A Case B Case C

 Tumor site Nasopharynx Maxillary Sinus Lung
 No. of fields  2 (0°, 10°) 2 (0°, 20°) 2 (0°, 330°)
 No. of spots 757 1533 626
 No. of PTV voxelsa 28,600 88,549 8727

a The voxel size of case A and B is 1.17 × 1.17 × 3 mm3; the voxel size of case C is 1.88 × 1.88 × 4 mm3.
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ber of places with the SMC method. The shallowest Bragg peak is dominated by proton tracks 
penetrating through the bone, while protons penetrating through the lung slab produce the 
deepest Bragg peak (z = 296.5 mm), and the protons escaping both slabs produce the middle 
peak (z = 257.5 mm). We also notice small dose difference of about 0.6% in the region behind 
the bone slab and before the first peak. It may come from more reduction of primary protons 
in the bone slab due to the more nuclear reaction rate in the bone slab than in water in the 
FMC method, while the SMC method cannot reproduce the effect due to the adoption of the 
water-equivalent model. And the rms relative dose in water-equivalent difference in Fig. 4(b) 
is 0.8% of the maximum integrated dose for all points up to the depth of 310 mm. Relatively 
large dose differences have been found in the each distal falloff region of the Bragg peak due 
to the interpolation error of dose calculation in the SMC method. Excluding such distal falloff 
regions of the Bragg peak, the rms relative dose in water-equivalent difference reduces to 
0.5%. Figure 5 shows isodose in water-equivalent distributions in the phantom obtained by 

Fig. 3. Isodose distributions in water obtained by the SMC method (a) and by the FMC method (b); (c) relative dose 
differences in water obtained by subtraction of the calculation result by the FMC method from that by the SMC method 
divided by the maximum dose in the FMC method.

Fig. 4. Laterally integrated depth dose in water-equivalent distributions (a) in the numerical inhomogeneous phantom. 
Red and blue circles show calculation results obtained by the SMC and FMC methods, respectively. Relative dose in 
water-equivalent differences distribution (b) subtracting dose calculated with the FMC method from that with SMC method 
divided by the maximum laterally integrated dose in water-equivalent in the FMC method.
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 integrating the 3D dose in  water-equivalent distributions in the direction perpendicular to the 
isodose plane calculated by both methods and the difference distribution. The rms relative 
dose in water-equivalent difference is 1.3% of the maximum dose for all points in the region of 
70 mm in width and 310 mm in depth. Note that different appearances of Fig. 5(c) and Fig. 3(c) 
come from dose normalization by the different maximum doses in the figures. Since the maxi-
mum dose in Fig. 5(c) is less than that in Fig. 3(c), more details of differences in lateral dose 
distribution can be seen in Fig. 5(c). Apart from the dose in water-equivalent normalization by 
the different maximum doses, we notice that the difference in lateral dose in water-equivalent 
distributions between the SMC and FMC methods in Fig. 5(c) is similar to that in Fig. 3(c). 
In summary, the overall dose in water-equivalent distribution of the SMC method is in good 
agreement with that of the FMC.

B.  Dose kernel distribution
Figure 6(a) shows a dose kernel distribution obtained by the PBA calculation and Fig. 6(b) shows 
that obtained by the SMC calculation for the case A. For the dose calculations, we used the same 
initial beam parameters. Difference of the two dose kernel distributions can be noticed clearly. 
While the dose kernel calculated by the SMC method in the heterogeneous region reproduces 
the irregular dose distribution accurately, the PBA dose kernel fails to reproduce it. Since the 
PBA method determines the dose deposition and lateral spread based on materials along the 
beam central axis even for such a clinical situation involving large tissue heterogeneity, the dose 
kernel shows a symmetric dose distribution with respect to the central axis. Since lateral extent 
of beam kernels at NCCHE is very large (σ ~ 10 mm) due to the scattering in the binary RS, 
disregarding density heterogeneities across a pencil beam can lead to considerable errors in the 
dose estimation. Figure 7 indicates water-equivalent path lengths parallel to the beam central 
axis across the pencil beam. While the beam central axis (red line) has the longest geometric 
length from skin to spot position, it has the shortest water-equivalent length compared with 
the other two adjacent off-axes. Thus, real proton paths are intensely affected by the off-axis 

Fig. 5. Isodose in water-equivalent distributions (a) in the inhomogeneous phantom obtained by the SMC method and that 
obtained by the FMC method (b); (c) relative dose in water-equivalent difference in the inhomogeneous phantom obtained 
by subtraction of the calculation result by the FMC method from that by the SMC method divided by the maximum dose 
in the FMC method.
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materials. For instance, a proton entering into the off-axis materials region stops at a shallower 
position than the proton entering along the central axis. Reflecting the largely varying water-
equivalent thicknesses of off-axes around the central beam axis, the dose distribution calculated 
by the SMC method is irregular. The influence of air cavities and bone structure on the dose 
distribution can be clearly observed.

C.  Optimized dose distribution
Figures 8(a) and (b) show the dose distribution calculated with the PBA dose kernels with the 
spot weights obtained by optimization with the PBA method (named ‘PBA TP’), and that cal-
culated with the SMC dose kernels with the same spot weights (named ‘SMC recalculation’) in 
the case A, respectively. Figure 8(c) shows the dose distribution calculated with the SMC dose 
kernels with the spot weights obtained by optimization with the dose kernels calculated by using 
the SMC method (named ‘SMC TP’). The dose-volume histograms (DVHs) for the PTV and 
the brainstem corresponding to the dose distributions in Fig. 8 are shown in Fig. 9. Solid and 

Fig. 6. A single dose kernel distribution (a) calculated with the PBA method and (b) calculated with the SMC method. 
Blue and cyan lines are the PTV and the parotid gland, respectively; the yellow point is the spot position.

Fig. 7. Water-equivalent path lengths along different paths parallel to the beam central axis across the pencil beam. In 
the left figure, while the red line shows the beam central axis, blue and green lines show off-axes slightly further away 
from central axis. The yellow dashed line shows a line (end line) passing through end points of the three paths. The line is 
perpendicular to three paths. The end point of the beam central axis is the spot position. The right graph indicates relation 
of the water-equivalent path length to the geometrical length beam for the different three paths: the red circle corresponds 
to the beam central axis, the green circle corresponds to the off-axis on the left, and the blue circle corresponds to the 
off-axis on the right.
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dashed lines show DVHs for the PTV and DVHs for the brainstem, respectively. Red, green, 
and blue lines denote DVHs for the PBA TP, SMC recalculation, and SMC TP, respectively. 
Dose calculation result of the PBA TP shows an apparently homogeneous distribution in the 
PTV. In contrast, dose calculation result of the SMC recalculation shows that large excess doses 
are given in the large portion of the PTV, as shown as the green solid line of DVH for the PTV 
in Fig. 9. We also notice that, while no dose is apparently deposited in the brainstem for the 
PBA TP, the dose is really deposited in the brainstem for the SMC recalculation and the SMC 
TP, as shown in Fig. 8 and as shown as dashed lines in Fig. 9. It may have a risk of increasing 
complication of the organ at risk (OAR).

Figures 10 and 11 show the dose distributions and DVHs for the PTV of the PBA TP, SMC 
recalculation, and SMC TP in the case B, respectively. While the dose calculation result of 
the PBA TP apparently satisfies a criterion of more than 90% of the prescription dose in PTV 
(D95 = 93.8%), as shown as the red line in the Fig. 11, that of the SMC recalculation shows that 
a largely inhomogeneous dose distribution is given in the PTV, and the D95 of the PTV reduces 
to 68.9%, as shown in Fig. 10(b) and the green line in Fig. 11. In spite of such a difficult clinical 
case, the D95 increases to 88.5% of prescription dose in the PTV by using SMC TP, as shown 
in Fig. 11. Since the lateral extent of the pencil beam kernel at NCCHE is very large, there is a 
trade-off between dose coverage of the target volume and dose reduction in the critical organ. 
If we would require the strict clinical criterion that 95% of the PTV should be irradiated with 
100% of the prescription dose, a treatment plan with an additional beam port from the direction 
of 330° would be necessary at the expense of more dose to the normal tissue.

Fig. 8. Calculated dose distributions obtained by (a) PBA TP, (b) SMC recalculation, and (c) SMC TP in an isocenter 
plane in the case A combining two irradiation fields from two beam directions. The black line shows an outline of the 
PTV. The light blue line is the outline of the brainstem. The yellow lines are the outlines of right and left eyeballs. The 
orange arrows are the field direction.

Fig. 9. DVHs for the PTV and the brainstem in the case A for two fields plan. Red, green, and blue lines are DVHs for 
the PBA TP, SMC recalculation, and SMC TP, respectively. Solid and dashed lines show DVHs for the PTV and DVHs 
for brainstem regions, respectively.
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Figures 12 and 13 show the dose distributions and DVHs for the PTV of the PBA TP, SMC 
recalculation, and SMC TP in the case C (tumor in the lung and bronchus), respectively. The 
dose distribution obtained by the SMC recalculation has an underdose portion in the overlap-
ping region of the PTV and the lung, as shown in Fig. 12(b) and the green line in Fig. 13. In 
contrast, the dose distribution obtained by the SMC TP has a homogeneous dose distribution 
in the PTV, as shown in Fig. 12(c) and the blue line in Fig. 13.

By showing comparisons of dose distributions between the PBA method and the SMC 
method for three clinical cases, we find that the treatment plan obtained by the PBA method 
will have a risk of radiation hazard and/or local recurrence for the target and a risk of possible 
complications for OARs for complex clinical cases.

Fig. 10. Calculated dose distributions obtained by (a) PBA TP, (b) SMC recalculation, and (c) SMC TP in an isocenter 
plane in the case B combining two irradiation fields from two beam directions. The black line shows an outline of the 
PTV. The light blue line is the outline of the brainstem. The orange arrows are the field direction.

Fig. 11. DVHs for the PTV in the case B for two fields plan. Red, green, and blue lines are DVHs for the PBA TP, SMC 
recalculation, and SMC TP, respectively.
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D.  Calculation time
We implemented the SMC method in the dose calculation by parallel computation on a 3.7 GHz 
Quad-Core Intel Xeon Processor E5 (Intel Corporation, Santa Clara, CA). We used the Intel C++ 
compiler (Intel Parallel Studio XE 2015 Composer Edition for C++ OS X). We parallelized the 
part of dose calculation by OpenMP. The calculation time required for obtaining dose kernels 
by the SMC method was approximately 2116 s on the central processing unit (CPU) for 106 

primary protons per a dose kernel in the case A (total number of calculated dose kernels is 757). 
Calculation time required for obtaining both the dose optimization and full dose calculation 
with the optimized spot weights is approximately 232 s on the CPU in this case. Thus, calcula-
tion time required for obtaining dose kernels accounts for about 90% of the total calculation 
time. The time required for calculating all dose kernels by the SMC method is approximately 
16.2 times longer than that by the PBA with an original spot decomposed into 121 subspots. 
Thus the SMC method is estimated to be faster than the VMCpro by a factor of 1.9 to 4.6. 
The dose calculation time depends on the size of PTV. If the dose calculation using the SMC 
method applies to the larger PTV volume of about 1000 ml (total number of calculated dose 
kernels is 4400), the calculation time is estimated to be approximately 12,273 s. On the other 
hand, Kohno et al.(19) have implemented the SMC method on graphics processing unit (GPU) 
architecture under the computer-unified device architecture platform (NVIDIA) developed 
by Nvidia Corp. (Santa Clara, CA) for a passive beam delivery system. Accordingly, we have 
calculated a dose distribution using the SMC method in the case A on the GPU when the PBS 
would be used as a beam delivery method. As a hardware platform, the GPU was located on a 
single graphics card (Tesla K40, Nvidia) with 12 GB of global memory. The GPU card holds 

Fig. 12. Calculated dose distributions obtained by (a) PBA TP, (b) SMC recalculation, and (c) SMC TP in an isocenter 
plane in the case C combining two irradiation fields from two beam directions. The black line shows an outline of the 
PTV. The brown lines are outlines of right and left lungs. The orange arrows are the field direction.

Fig. 13. DVHs for the PTV in the case C for two fields plan. Red, green, and blue lines are DVHs for the PBA TP, SMC 
recalculation, and SMC TP, respectively.
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2880 CUDA cores. The calculation time required for obtaining the dose kernels was 133 s on 
the GPU-based calculation engine when 106 primary protons were generated per a dose kernel. 
Thus, the GPU-based SMC calculation speed for dose kernels calculation is about 16 times 
faster than the CPU-based one. Calculation time required for both dose optimization and full 
dose calculation with the optimized spot weights was 44 s on the GPU in this case. Thus, 
calculation time required for obtaining the dose kernels accounts for about 75% of the total 
calculation time on the GPU. Therefore, we expect the total calculation time of approximately 
12.8 min on the GPU-based calculation engine for the target volume of 1000 ml. The time can 
be considered reasonably short for routine clinical uses.

 
IV. CONCLUSIONS 

We have developed a dose kernel calculation algorithm using the SMC method applicable to 
the spot scanning system recently installed in the NCCHE in Japan. Calculation using the SMC 
method is faster than that using the general-purpose FMC code by three orders of magnitude. 
In addition, the SMC method was found to be faster than the existing fast Monte Carlo method. 
Another advantage of the SMC method is easy implementation since it can use the same input 
data for the PBA calculation. We evaluated accuracy of the SMC method by comparison with 
the FMC method. We clarified the effect of model difference of the SMC and FMC methods 
on the dose calculation. Overall, the dose distribution obtained by the SMC method was in 
good agreement with that obtained by the FMC method in the inhomogeneous phantom. To 
assess the usefulness of SMC calculations in the clinical environment, we compared a treatment 
planning result using the SMC method with that using the PBA method for three cases when 
the PBS would be used as a beam delivery method. The results show that the SMC method 
can reproduce the complex dose distribution more accurately in a reasonably short time than 
the PBA method. Since the treatment plan using dose kernels obtained by the PBA method 
provides inaccurate dose distribution for clinical cases with heavily heterogeneous structure, it 
will increase clinical risks. Therefore, we should replace it by a treatment plan using the SMC 
dose kernels as soon as possible. 
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