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Summary

Background—Acute respiratory distress syndrome (ARDS) is a common, but under-recognised, 

critical illness syndrome associated with high mortality. An important factor in its under-

recognition is the variability in chest radiograph interpretation for ARDS. We sought to train a 

deep convolutional neural network (CNN) to detect ARDS findings on chest radiographs.

Methods—CNNs were pretrained on 595 506 radiographs from two centres to identify common 

chest findings (eg, opacity and effusion), and then trained on 8072 radiographs annotated for 

ARDS by multiple physicians using various transfer learning approaches. The best performing 

CNN was tested on chest radiographs in an internal and external cohort, including a subset 

reviewed by six physicians, including a chest radiologist and physicians trained in intensive care 

medicine. Chest radiograph data were acquired from four US hospitals.

Findings—In an internal test set of 1560 chest radiographs from 455 patients with acute 

hypoxaemic respiratory failure, a CNN could detect ARDS with an area under the receiver 

operator characteristics curve (AUROC) of 0·92 (95% CI 0·89–0·94). In the subgroup of 413 

images reviewed by at least six physicians, its AUROC was 0·93 (95% CI 0·88–0·96), sensitivity 

83·0% (95% CI 74·0–91·1), and specificity 88·3% (95% CI 83·1–92·8). Among images with zero 

of six ARDS annotations (n=155), the median CNN probability was 11%, with six (4%) assigned 

a probability above 50%. Among images with six of six ARDS annotations (n=27), the median 

CNN probability was 91%, with two (7%) assigned a probability below 50%. In an external cohort 

of 958 chest radiographs from 431 patients with sepsis, the AUROC was 0·88 (95% CI 0·85–0·91). 

When radiographs annotated as equivocal were excluded, the AUROC was 0·93 (0·92–0·95).

Interpretation—A CNN can be trained to achieve expert physician-level performance in ARDS 

detection on chest radiographs. Further research is needed to evaluate the use of these algorithms 

to support real-time identification of ARDS patients to ensure fidelity with evidence-based care or 

to support ongoing ARDS research.

Funding—National Institutes of Health, Department of Defense, and Department of Veterans 

Affairs.

Introduction

Acute respiratory distress syndrome (ARDS) is a common critical illness syndrome 

characterised by the acute onset of severe hypoxaemia and lung oedema of non-cardiac 

cause in patients with conditions such as sepsis, pneumonia, or trauma. Despite research 

investment, current treatment for ARDS remains largely supportive and mortality remains at 

35%.1 Patients who develop ARDS often go unrecognised and do not receive evidence-

based care.2,3 Bilateral airspace disease on chest radiograph is not only a key criterion in the 

definition of ARDS, but also a major driver of the definition’s lower reliability.4 Intensivists 

in clinical practice have poor agreement when identifying ARDS findings on chest 

radiographs (κ 0·13),5 and ARDS clinical research study coordinators do little better (κ 
0·27).6 New approaches for identifying ARDS findings on chest radiographs are needed to 

support ARDS care.
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Deep convolutional neural networks (CNNs) are powerful algorithms that can be trained to 

recognise findings on visual images. These algorithms have shown physician-level 

performance across a wide range of medical problems.7–9 However, deep learning models 

must learn millions of parameters; thus training requires large datasets of annotated images.
10 Generating large datasets for many medical problems can be challenging because clinical 

data might not be annotated for the finding of interest during routine care. For example, 

radiologists might not explicitly state whether chest radiographs are consistent with ARDS 

in their dictated reports. Therefore, conventionally training a CNN to detect ARDS would 

first require expert physicians to annotate large chest radiograph dataset outside of routine 

practice, representing a substantial barrier.

Transfer learning is a machine-learning approach where knowledge gained from one 

problem can be used to help solve related problems.11 This approach is particularly 

applicable to problems where there is only a small amount of data available to train a 

machine-learning model, but related problems have much larger amounts of available data. 

When training a CNN to detect ARDS, we hypothesised that if the network could first learn 

to extract general features from chest radiographs by pretraining the CNN to identify other 

common findings on chest radiographic studies, it might be able to borrow many of these 

features, reducing the number of annotated images necessary to train the network to detect 

findings of ARDS.

In this study, we trained a CNN with 121 layers and 7 million parameters to identify bilateral 

airspace disease on chest radiographs consistent with ARDS.12 We used transfer learning by 

first pretraining the network on 595 506 radiographs from two centres labelled for common 

descriptive chest findings (eg, opacity, effusion), but not ARDS. We then trained the network 

on 8073 radiographs annotated for ARDS. We tested the resulting network on an internal 

and external test set to evaluate its generalisation performance.

Methods

Overview

We trained a CNN with a 121-layer dense neural network architecture (DenseNet)10 to 

detect ARDS on chest radiographs using various transfer learning approaches. An overview 

of the study design, datasets, and transfer learning approaches are illustrated in the appendix 

(p 2). The study was approved by the University of Michigan (Ann Arbor, MI, USA) 

institutional review board with a waiver of informed consent from study participants.

Datasets

The pretraining dataset combined two publicly available chest radiograph datasets, 

CheXpert13 and MIMIC-CXR.14 These images were previously annotated for the presence 

of any of 14 common clinical findings that can be seen on chest radiographic studies, but not 

ARDS, using a natural language processing algorithm applied to their associated reports 

written by radiologists (additional description in the appendix p 3).

The training dataset included all consecutive patients admitted to hospital at the University 

of Michigan between Jan 1, 2016, and June 30, 2017, who developed acute hypoxaemic 

Sjoding et al. Page 3

Lancet Digit Health. Author manuscript; available in PMC 2021 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respiratory failure, defined as a PaO2/FiO2 less than 300 while on one of the following 

respiratory support modalities: invasive mechanical ventilation, non-invasive ventilation, or 

heated high-flow nasal cannula. Patients received care in the medical, surgical, cardiac, or 

neurological intensive care unit. Patients transferred to the University of Michigan from 

outside hospitals were excluded because ARDS might have developed before transfer in 

these patients. The training dataset was further randomly split by patient, such that 80% was 

used for CNN training and 20% for validation.

All chest radiographs done during the first 7 days of hospitalisation were used for training. 

Each chest radiograph was independently reviewed for the presence of ARDS by at least two 

physicians trained in critical care medicine with an interest in ARDS research. While also 

reviewing other clinical data from each patient’s hospitalisation, physicians rated whether 

each image had bilateral opacities present that were consistent with ARDS on a 1–8 ordinal 

scale. The scale ranged from 1 (no ARDS, high confidence) to 8 (ARDS, high confidence; 

appendix p 5). We used an eight-point scale to maximise annotation reliability.15 The eight-

point scale did not have a middle value, which forced annotators to choose whether a 

radiograph was consistent with ARDS, while still quantifying their uncertainty. The 

intraclass correlation among physicians reviewing the same image was 0·56.

The internal testing dataset included all consecutive patients admitted to hospital at 

University of Michigan between July 1 and Dec 1, 2017, who developed acute hypoxaemic 

respiratory failure, defined as mentioned earlier. There was no patient overlap in the internal 

training and test sets. Inclusion and exclusion criteria were the same as the training dataset 

except only chest radiographs obtained when patients had acute hypoxaemic respiratory 

failure were included to maximise the clinical relevance of the evaluation. Some physicians 

annotated chest radiographs in both the internal training and test sets. A two class latent 

class model (ARDS or not ARDS) was used to combine annotations among physicians and 

determine radiograph labels. A three class model was also explored (ARDS, uncertain, not 

ARDS). Nine physicians participated in reviewing a subset of 413 chest radiographs in the 

internal test set, in which each image was reviewed by at least six physicians, including a 

chest radiologist (appendix p 4).

The external testing dataset included patients admitted to the Hospital of the University of 

Pennsylvania (Philadelphia, PA, USA) between Jan 1, 2015, and Dec 31, 2017, who were 

enrolled in a prospective sepsis cohort study (appendix p 6).16,17 The dataset included chest 

radiographs done during the first 5 days of intensive care unit admission, which were 

previously annotated for ARDS as part of the prospective study (although differently than 

the University of Michigan datasets). Individual pulmonologist physicians from the 

University of Pennsylvania who were trained in ARDS clinical research annotated the 

images as ARDS, equivocal, and not ARDS.18 Physicians annotated images as equivocal if 

the image was deemed difficult to classify due to other abnormalities present on the image or 

poor technique.18 For all datasets, physician reviewers were masked to the CNN result.

CNN training

The training pipeline and various transfer learning approaches evaluated are illustrated in the 

appendix (p 2). Code used to train the CNN was adapted from a publicly available source 
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(aligholami/CheXpert-Keras).19 First, CNNs were trained to detect 14 common descriptive 

chest radiograph findings (eg, oedema, infiltrate, and pleural effusion) on the pretraining 

dataset. Next, the network parameters were fine-tuned to detect ARDS on the University of 

Michigan training dataset. Networks trained using various transfer learning approaches were 

compared, which limited the number of network parameters that could be fine-tuned in 

different parts of the model. CNNs without the pretraining step were also trained. In total, 

seven CNNs were trained. Additional technical details are described in the appendix (p 7). 

To improve calibration, Platt scaling was done on the CNN output using parameters derived 

from the validation portion of the training dataset (appendix p 9).20

Statistical analysis

All seven CNNs trained during the study were evaluated in the University of Michigan 

internal test set for their ability to discriminate chest radiographs that were consistent with 

ARDS. The CNN with the highest area under the receiver operator characteristics curve 

(AUROC) was selected for further evaluation. All subsequent analysis, including external 

testing, was done solely using this CNN. The area under the precision-recall curve 

(AUPRC), a measure of the trade-off between sensitivity and positive predictive value, was 

also used as a secondary metric of discrimination. CNN sensitivity and specificity were 

calculated after setting the CNN’s calibrated probability threshold to 0·5 for identifying 

chest radiographs consistent with ARDS. CI generation and statistical testing were done 

using block bootstrapping to handle repeated measures by resampling at the patient level 

(appendix p 9).21

To compare the best performing CNN to individual physicians, a subset of 413 chest 

radiographs in the internal test set were reviewed by additional physicians. Nine physicians 

annotated chest radiographs in this subset, with each reviewing at least 120 images. 

Individual physician performance was determined by comparing the physician’s annotation 

to a reference standard derived from the average of five other physicians from this group of 

nine who reviewed the same image. Individual physician true positive rates (sensitivity) and 

false positive rates (1-specificity) were plotted against the CNN’s receiver operator 

characteristics curve on the same patient population. Individual physician precision (positive 

predictive value) and recall (sensitivity) were plotted against the model’s precision-recall 

curve.

A boxplot of the CNN’s ARDS probability estimates for each image was created after 

grouping chest radiographs based on how many physicians annotated the image as ARDS. 

Gradient-weighted class activation mapping (Grad-CAM) was used to visualise areas of 

CNN focus within each image when the CNN classified images as ARDS.22 After grouping 

images on the basis of their number of ARDS annotations, Grad-CAM visualisations were 

used to inspect images assigned the highest ARDS probability to gain insight into CNN 

decisions.

As a secondary analysis in the University of Michigan test set, CNN performance was 

compared in patients defined based on demographic subgroups (age, sex, race, and body-

mass index [BMI]). CNN calibration was also assessed by generating a calibration plot and 

determining the intercept and slope (appendix p 12). Because physicians annotating the 
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University of Michigan dataset also identified the time when patients met all ARDS criteria, 

the time from ARDS onset to CNN detection was quantified to determine if potential delays 

might occur if the network was deployed in practice. Delay could occur if the CNN did not 

identify ARDS on the first chest radiograph that physicians identified as ARDS, but on a 

subsequent chest radiograph. Additionally, an exploratory analysis was done to evaluate the 

CNN performance using the three-class latent model to categorise chest radiographs 

(appendix p 11).

In the external test set, chest radiographs had been previously annotated ARDS, equivocal, 

or not ARDS. To evaluate the best performing CNN in this dataset, both chest radiographs 

annotated as equivocal or not ARDS were analysed as not ARDS. In a secondary analysis, 

performance metrics were calculated after chest radiographs labelled equivocal were 

excluded. A boxplot of ARDS probabilities was created grouping chest radiographs based 

on these annotation categories.

Role of the funding source

The funders had no role in the study design; collection, analysis, and interpretation of data; 

writing of the report; or the decision to submit the Article for publication.

Results

Demographics of each dataset are reported in the table. The University of Michigan training 

set included 8072 chest radiographs from 1778 patients, with 2665 (33%) consistent with 

ARDS based on physician review. The University of Michigan internal test set included 

1560 chest radiographs from 455 patients, with 438 (28%) consistent with ARDS. The 

external test set included 958 chest radiographs from 431 patients, with 445 (46%) 

consistent with ARDS based on physician review. The most common ARDS risk factors 

were pneumonia followed by sepsis from a non-pulmonary source.

The training, validation, and internal testing AUROCs for all seven CNNs are reported in the 

appendix (p 10). The best performing CNN (AUROC 0·92, 95% CI 0·89–0·94) had the last 

convolutional block and subsequent layers fine-tuned to detect ARDS while all others kept 

fixed after pretraining (appendix p 2; version ii). This CNN had a slightly higher AUROC 

than a network with all parameters fine-tuned (AUROC 0·91, 95% CI 0·89–0·94; appendix p 

2; version iii), a difference that was not statistically significant (p=0·56). However, this later 

network had a large drop between training and validation performance (AUROC 0·97–0·89; 

p<0·001), suggesting overfitting (appendix p 10). CNNs that did not undergo chest 

radiograph pretraining had lower performance (appendix p 10). Therefore, all subsequent 

analysis was done using the CNN illustrated in the appendix (p 2; version ii).

The CNN was evaluated in a subset of 413 chest radiographs from the University of 

Michigan internal test set with additional physician reviews to enable comparisons to 

individual physicians (figure 1). When evaluated against this stronger reference standard, the 

AUROC was 0·93 (95% CI 0·88–0·96). CNN sensitivity was 83·0% (95% CI 74·0–91·1) and 

specificity was 88·3% (95% CI 83·1–92·8) using a threshold of 50% probability to identify 

ARDS. The AUPRC was 0·79 (95% CI 0·63–0·88). Using the chest radiologist alone as the 
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reference standard, the AUROC was 0·92 (95% CI 0·87–0·96). Compared with each 

physician, the CNN showed similar performance, with physicians tracking along the CNN’s 

receiver operator characteristic curve, at either higher specificity and lower sensitivity, or 

vice versa.

The ARDS probability estimated by the CNN also tracked with the number of physicians 

who annotated the radiograph as consistent with ARDS (figure 1). Among chest radiographs 

with zero of six ARDS annotations (n=155), the median calibrated CNN probability was 

11% with six (4%) of 155 assigned a probability above 50%. Among chest radiographs with 

six of six ARDS annotations (n=27), the median CNN probability was 91% and with two 

(7%) of 27 assigned a probability below 50%. Among chest radiographs with disagreement 

among physicians (eg, three of six physicians annotating the radiograph as ARDS), the CNN 

assigned intermediate probabilities.

Among chest radiographs correctly classified (six of six physician annotations for ARDS, 

high CNN probability), the CNN focused on regions of the lung that exhibited opacities 

based on Grad-CAM visualisations (figure 2). Among chest radiographs annotated by all six 

physicians as ARDS, but assigned lower CNN probabilities, the CNN focused on findings 

outside the lung. Among chest radiographs without ARDS annotations, but assigned a higher 

CNN probability, the CNN focused on right-sided unilateral disease. Finally, among 

radiographs with disagreement among clinicians, but assigned a higher CNN probability, the 

CNN focused on the right lung, which appeared to have more prominent disease.

CNN performance was evaluated on demographic subgroups as a secondary analysis using 

the entire University of Michigan internal test set (figure 3; appendix p 10). AUROC was not 

significantly different in men (0·91) and women (0·93; p=0·21). AUROC was also not 

significantly different in White patients (0·92) and Black patients (0·90; p=0·63). It was also 

not significantly different across age categories. The AUROC was higher in patients with a 

BMI of 30–35 kg/m2 (0·96), compared with a BMI of less than 25 kg/m2 (0·89; p=0·004) 

and BMI of more than 35 kg/m2 (0·96 vs 0·90; p=0·026). CNN calibration is reported in the 

appendix (p 11). In an analysis to determine if there would be detection delay in patients the 

CNN correctly identified as having ARDS, the median time when the model detected ARDS 

was 0 h after physician reviewers determined the patient met ARDS criteria, with an IQR of 

4 h before 0 h after onset. The median time between the first and last chest radiograph for 

any individual patient was 19 h. An exploratory analysis evaluating CNN performance after 

categorising chest radiographs into three groups, which found that the CNN had very high 

performance when chest radiographs assigned to the uncertain class were excluded, is 

presented in the appendix (p 11).

The CNN was then evaluated on the University of Pennsylvania external test set. The 

network’s AUROC was 0·88 (95% CI 0·85–0·91) and AUPRC was 0·86 (95% CI 0·82–0·90; 

figure 4). When chest radiographs annotated as equivocal were excluded as a secondary 

analysis, the AUROC was 0·93 (95% CI 0·92–0·95) and AUPRC was 0·95 (95% CI 0·92–

0·96). The CNN assigned intermediate probabilities to chest radiographs annotated as 

equivocal compared with chest radiographs annotated as ARDS and not ARDS. CNN 

calibration was not substantially worse than in the internal test set (appendix p 12).
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Discussion

ARDS is a common critical illness syndrome, which can be difficult to consistently identify 

due to variation in interpretation of chest imaging. We trained a CNN to detect ARDS on 

chest radiographs that showed performance equivalent to physicians involved in ARDS 

research and generalised to chest radiographs from an external centre.

The increasing availability of digitally archived medical imaging datasets have catalysed 

many efforts to develop machine-learning models to support patient care. However, the 

insufficiency of annotations relevant to important clinical problems remains a major 

impediment.23 Given the data-hungry nature of these CNN-based machine-learning models, 

investigators are left choosing to do costly and time-consuming annotation by human experts 

or use an imperfect labelling approach. We used a hybrid approach, leveraging a dataset of 

chest radiographs carefully annotated for ARDS and two large datasets for common chest 

radiographic findings. Using transfer learning, these large datasets enabled the CNN to learn 

a general representation of chest radiographs to jump-start ARDS training.11 Without this 

transfer learning approach, the CNN was unable to achieve similar ARDS accuracy.

We found the CNN trained to detect ARDS had only a small decline when applied to chest 

radiographs at an external centre. This finding is in contrast to other work training CNNs to 

detect pneumonia, where a network trained using data from two institutions failed to 

generalise to a third.24 Investigators postulated that the network learned confounded features

—eg, features of an image distinguishing the hospital system where it was acquired to 

determine if the image was consistent with pneumonia. The constraints set on our network 

during transfer learning, potentially limiting its ability to overfit, might be one potential 

explanation for our network’s preserved performance. Other important differences include 

the use of a two-centre pretraining dataset and expert physician annotations, rather than 

radiology reports, to evaluate performance.

We generated class activation maps (Grad-CAM) to see where the CNN was focusing when 

classifying radiographs as ARDS. When classifying images correctly, the CNN appeared to 

focus on abnormalities within the lungs. When the CNN misclassified images, it sometimes 

appeared to identify unilateral lung disease or findings outside the lungs. CNNs have been 

suggested to make decisions on the basis of the presence of small local features within 

images, with less emphasis placed on their spatial ordering.25 Therefore, CNNs might have 

difficulty learning that local textural features with the appearance of lung injury must be 

within the lungs to represent ARDS. Networks that better account for these relationships—

eg, through jointly segmenting the lungs followed by classifying abnormalities—might lead 

to improved performance.

ARDS is often under-recognised or identification is delayed in clinical practice, and patients 

do not always receive guideline-recommended interventions,1 including lung protective 

mechanical ventilation and prone positioning.2,3 Automated alert systems have been 

proposed to improve ARDS identification,26 because when physicians recognise that 

patients have ARDS, they are more likely to provide evidence-based interventions.2 Previous 

efforts to develop automated ARDS detection systems typically analyse the electronic health 
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records and the text of radiology reports.27 In contrast, the CNN developed here analyses 

digital chest radiographs directly. However, deploying the network might require additional 

health technology investment, including automated identification of patients with a 

PaO2/FiO2 of less than 300 from electronic health records, computational analysis of 

radiographs stored in picture archiving and communications systems, and a mechanism for 

providing the results to physicians.

Our study has limitations. First, ARDS is a syndrome defined by a shared set of clinical 

features, and the diagnosis of ARDS is currently based on the combination of clinical and 

radiological criteria for which there is no established or easily available gold standard 

diagnostic test.28 Therefore, training a CNN to detect findings of ARDS relied on 

annotations from expert physicians, who also have imperfect reliability.4 To address this 

issue, we used a standardised scale, and reference standard, that combined multiple 

independent physician reviews to improve reliability. Second, the external test set was 

annotated using an alternative method useful in ARDS translational research, but perhaps 

less optimal for algorithm evaluation and did not include exact time-stamps of ARDS onset, 

preventing an assessment of possible detection delay. Nonetheless, the strong performance in 

the external dataset, even with a different reference standard and different physician 

annotators, suggests that the network is robust. Third, selection bias among patients in the 

datasets used for training could limit its generalisability. While the distribution of patients 

analysed is typical of other ARDS research,2 it did not have balance between men and 

women, and certain patients had lower representation (eg, trauma). Thus, validation of the 

network in additional patient populations and clinical settings should be done. Finally, 

although we evaluated the network after setting a threshold of 50% probability to identify 

ARDS, the threshold ultimately used to determine whether a patient has ARDS is probably 

context specific. In some scenarios (eg, provision of lung protective ventilation), a lower 

threshold to maximise sensitivity is preferable, whereas in other scenarios (eg, recruitment 

of patients to ARDS clinical trials), a higher threshold to maximise specificity might be 

preferred.

In summary, these results show the power of deep learning models, which can be trained to 

accurately identify chest radiographs consistent with ARDS. Further research is needed to 

evaluate how the use of these algorithms could support real-time identification of ARDS 

patients to ensure fidelity with evidence-based care or to support ongoing ARDS research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

Acute respiratory distress syndrome (ARDS) is a common critical illness syndrome 

associated with significant mortality, but is under-recognised in clinical practice. A key 

criterion of the Berlin ARDS definition is the presence of bilateral airspace disease on 

chest imaging, but physician interpretation of chest imaging studies for this finding is 

highly variable. Machine-learning algorithms called deep convolutional neural networks 

have been trained to automatically identify many relevant findings on images with expert 

physician-level accuracy (eg, diabetic retinopathy and skin cancer). We were unaware of 

their use to analyse chest radiographs for ARDS. We searched PubMed for studies 

indexed in MEDLINE using the key words and MeSH terms, (“ARDS” OR “Acute 

Respiratory Distress Syndrome” OR “Respiratory Distress Syndrome, Adult” [MeSH 

Terms]) AND (“Deep Learning” [MeSH Terms] OR “Convolutional Neural Network”). 

We did not identify any studies that applied these algorithms to chest radiographs for 

ARDS in this search. Because ARDS can also be seen in patients with COVID-19, we 

also searched for studies specifically related to COVID-19 using the keywords and 

MESH terms, (“COVID-19” AND “Deep Learning” [MeSH Terms]). We identified many 

studies using deep learning methods to diagnosis COVID-19 using chest radiographs and 

a few designed to determine COVID-19 severity, but none were specifically designed to 

detect findings of ARDS.

Added value of this study

We successfully trained a deep convolutional neural network to analyse chest radiographs 

and identify findings consistent with ARDS. We found that the resulting algorithm could 

identify ARDS findings with high accuracy in patients from two centres. Visual 

evaluation of the algorithm outputs confirmed that it learned to focus on regions of the 

lung that exhibited opacities when classifying images as consistent with ARDS. 

Performance of the algorithm was consistent with or higher than individual physician 

performance.

Implications of all the available evidence

These results demonstrate the power of machine-learning algorithms in the analysis of 

chest radiographs for ARDS. Further research is needed to evaluate the use of such 

algorithms to support management of ARDS patients in clinical practice or to more 

consistently recruit ARDS patients into clinical studies.
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Figure 1: CNN performance for identifying ARDS on chest radiographs compared to individual 
physician performance in the internal holdout test set
The deep CNN was compared with individual physicians in the subgroup of 413 chest 

radiographs that were each reviewed by at least six physicians, including a chest radiologist 

and physicians trained in intensive care medicine. Individual physician performance was 

determined using a reference standard that was derived based on ARDS annotations from the 

five other physicians reviewing the same radiograph. (A) CNN receiver operating 

characteristics curve plotted against individual physician TPR and FPR, and AUROC. (B) 

CNN precision-recall curve plotted against individual physician precision (PPV) and recall 

(sensitivity), and AUPRC. (C) CNN probability outputs for chest radiographs grouped by the 

number of physicians annotating each as ARDS. Boxplots show median, 25th and 75th 

percentile, and 1·5 × IQR. Dots represent points outside this range. CNN=convolutional 

neural network. ARDS=acute respiratory distress syndrome. AUROC=area under the 
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receiver operator characteristic curve. AUPRC=area under the precision-recall curve. 

TPR=true positive rate. FPR=false positive rate. PPV=positive predictive value.
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Figure 2: Visualising CNN activations in chest radiographs for error analysis in ARDS detection
Chest radiographs were grouped based on CNN probabilities of ARDS and physician ARDS 

annotations and then Grad-CAM was used to localise areas used by the CNN to identify 

ARDS within the radiographs. The heat map illustrates the importance of local areas within 

the image for classification. The importance value is scaled between 0 and 1 where a higher 

number indicates that the area is of higher importance for classifying the image as consistent 

with ARDS. (A) Chest radiographs annotated as ARDS by six of six physicians and 

assigned a high CNN probability. (B) Chest radiographs scored as consistent by six of six 

physicians but assigned a lower probability by the CNN. (C) Chest radiographs annotated as 

ARDS by zero of six physicians but assigned a high probability by the CNN. (D) Chest 

radiographs with disagreement among physicians (three of six physicians annotating ARDS) 

and assigned a high probability by the CNN. CNN=convolutional neural network. 
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ARDS=acute respiratory distress syndrome. Grad-CAM=gradient-weighted class activation 

mapping. P(ARDS)=probability that the chest radiograph is consistent with ARDS.
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Figure 3: CNN performance for identifying ARDS on chest radiographs by patient subgroups
Race categories were self-reported. Error bars represent 95% CI estimates of the AUROC. 

Race category other includes patients who are Asian, American Indian, Native Alaskan, 

Native Hawaiian, other Pacific Islander, or unknown race. CNN=convolutional neural 

network. ARDS=acute respiratory distress syndrome. AUROC=area under the receiver 

operator characteristics curve. BMI=body-mass index.
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Figure 4: CNN performance for identifying ARDS on chest radiographs in an external test set
Receiver operator curve which is the plot of the TPR and FPR (A), and precision-recall 

curve which is the plot of the PPV and the model sensitivity (B), and probability outputs 

from the CNN across chest radiograph annotation categories, showing median, 25th and 

75th percentile, and 1·5 × IQR (C). Dots represent points outside this range. 

CNN=convolutional neural network. ARDS=acute respiratory distress syndrome. 

AUROC=area under the receiver operator characteristic curve. AUPRC=area under the 

precision-recall curve. TPR=true positive rate. FPR=false positive rate. PPV=positive 

predictive value.
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Table:

Characteristics of patients in training and testing datasets

Training dataset (University of 
Michigan)

Internal testing dataset 
(University of Michigan)

External testing dataset 
(University of Pennsylvania)

Patients 1778 455 431

Chest radiographs 8072 1560 958

Radiographs with ARDS* 2665 (33%) 438 (28%) 445 (46%)

Age, years 62 (51–71) 63 (53–72) 61 (52–69)

Sex

 Male 1036 (58%) 266 (58%) 251 (58%)

 Female 742 (42%) 189 (42%) 180 (42%)

Race

 White 1515 (85%) 377 (83%) 273 (63%)

 Black 164 (9%) 49 (11%) 129 (30%)

 Other or unknown† 99 (6%) 29 (6%) 29 (7%)

ARDS risk factor

 Pneumonia 591 (33%) 126 (28%) 101 (23%)

 Aspiration 215 (12%) 39 (9%) NA

 Non-pulmonary sepsis 394 (22%) 114 (25%) 330 (77%)

 Trauma 110 (6%) 28 (6%) NA

APACHE score 67 (52–85) 68 (55–86) 98 (72–129)

30-day mortality 420 (24%) 119 (26%) 188 (44%)

Data are n, n (%), or median (IQR). ARDS=acute respiratory distress syndrome. NA=not applicable. APACHE=Acute Physiology and Chronic 
Health Evaluation.

*
Based on physician reviews.

†
Includes Asian, American Indian, Native Alaskan, Native Hawaiian, or other Pacific Islander.
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