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Abstract

When predators are removed or suppressed for generations, prey populations tend to

increase and when predators are re-introduced, prey densities should fall back to pre-con-

trol levels. In cases of apparent competition where there are alternate abundant and rare

prey species, rare species may decline further than expected or disappear altogether.

Recently, concern about the impact of recovering predator populations on wildlife in Laikipia

County, Kenya, has led to questions of whether lions (Panthera leo, IUCN Red List Vulnera-

ble) exert top-down pressure on Grevy’s zebra (Equus grevyi, IUCN Red List Endangered).

We examined effects of lion predation on Plain’s zebra (E. quagga, IUCN Red List Near

Threatened) and Grevy’s zebra populations in a 2,105 km2 area defined by lion movements.

We used line transect surveys to estimate density of Grevy’s (0.71/km2) and Plain’s (15.9/

km2) zebras, and satellite telemetry to measure movements for lions and both zebras. We

tracked lions to potential feeding sites to estimate predation rates on zebras. We compared

field-based estimates of predation rates on both zebras to random gas models of encoun-

ters that result in predation to ask if lions prey preferentially on Grevy’s zebra at a sufficient

rate to drive population declines. Lions preyed on Grevy’s zebra significantly less than

expected in 15 of 16 (94%) scenarios considered and lions preyed on Plain’s zebras as

expected or significantly less than expected in 15 of 16 scenarios. Population trend of Gre-

vy’s zebra indicates that the Kenya population may be stabilizing. Recruitment rate to the

population has tripled since 2004, making it unlikely that lions are having an impact on Gre-

vy’s zebras. In Laikipia County, competitive displacement by livestock (Livestock: Grevy’s

zebra ratio = 864:1) and interference competition for grass with Plain’s zebra (Plain’s zebra:

Grevy’s zebra ratio = 22:1) are most likely the predominant threats to Grevy’s Zebra

recovery.
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Introduction

Large carnivores are known to influence the dynamics, distribution and behavior of ungulate

prey populations [1, 2, 3]. Trophic cascades, top-down forcing effects of predators upon prey

and thus on vegetation, are now widely recognized as major contributors to ecosystem struc-

ture and function [4]. Removal of predators can lead to high densities of prey and may allow

them to concentrate on preferred food resources, leading to overutilization and degradation of

vegetation on both local and landscape scales [1, 5, 6](but see [7]). Removal of large predators

may also affect the behavior of prey populations. Over time, lack of predators may result in

prey becoming unfamiliar with predator risk, making them more naïve and vulnerable to re-

introduced or recovering predator populations. In ecosystems where humans have eliminated

predators and then allowed or assisted predator recovery, we often see reduction in prey popu-

lations as predator and prey densities return to pre-removal levels. In some systems however,

where communities of prey populations include very common and very rare species, apparent

competition and opportunistic predation can lead to disproportionate reduction in the density

of the rarer species [8, 9].

Restoration or maintenance of top predators may conflict with other conservation priorities

when successful carnivore conservation in turn threatens a rare prey species. Policy makers

and managers then need to address conflicting outcomes in endangered species interactions.

In predator-prey relationships, conservation policy and management decisions should be

based upon sound data and a thorough understanding of the predator-prey dynamics. In real-

ity, such decisions often are complicated by sociopolitical considerations when predator, prey

or both are endangered, protected, charismatic or otherwise in the public eye. For example, off

the California coast, endemic Channel Islands foxes (Urocyon littoralis) declined after the

islands were colonized by golden eagles (Aquila chrysaetos) in response to local extinction of

native bald eagles (Haliaeetus leucocephalus) from DDT [10]. Foxes recovered rapidly follow-

ing translocation of golden eagles from the islands. Although they are protected in California,

mountain lions (Puma concolor) that prey on endangered Sierra bighorn sheep (Ovis canaden-
sis sierrae) have been selectively removed as part of the Sierra Nevada Bighorn Sheep Recovery

Program [11]. In other cases, predator removal is not an option: collapse of sea otter (Enhydra
lutris) and Steller sea lion (Eumetopias jubatus) populations in the Aleutian Islands have been

attributed to increased predation by killer whales (Orcinus orca), a result of prey-switching by

killer whales after losing their former prey base of great whales to post World War II industrial

whaling in the North Pacific [12, 13].

The Grevy’s zebra (Equus grevyi) is classified as Endangered on the IUCN Red List, due to a

population decline throughout its range from an estimated 13,700 in 1977 to an estimated

2,680 individuals in 2016 throughout the range [14] (Fig 1). Today, Grevy’s zebra occurs pri-

marily in Laikipia and Samburu Counties, Kenya, with small isolated populations in southern

Ethiopia. Lions (Panthera leo), the primary natural predators of Grevy’s zebra, also have been

in steep decline, extirpated from over 80% of their historical range and reduced to an estimated

population of 20,000–30,000 across Africa [15]. Lions are classified as Vulnerable by the IUCN

and the Kenya Wildlife Service and Threatened by the US Fish and Wildlife Service (http://

ecos.fws.gov/).

Laikipia County, Kenya provides refuge for an estimated 1,400 (>50%) of the world’s

remaining Grevy’s zebras. The county also has a stable lion population estimated at 5.3 adult

and subault lions per 100 km2 [16, 17]. Historically, livestock production was the major land

use in Laikipia County, and ranchers practiced predator control, primarily by shooting and

poison [16] such that the lion population was suppressed, estimated at 2.4/100 km2 in the late

1960’s [18] (Fig 1). However, as livestock profits declined in the 1980’s and 1990’s, ranches
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turned to wildlife tourism and, as conservation became a high priority on most properties

[19], predator tolerance increased and lion populations recovered. Today most ranchers shoot

problem lions only as a last resort [16, 20, 21].

Since the late 1990’s, many large ungulate populations, including Grevy’s zebra, have been

declining in Laikipia County [19, 22], whereas the Plains zebra populations has stayed rela-

tively stable. Georgiadis et al. [23] speculated that Laikipia’s recovering predator community,

combined with climate anomalies caused by ENSO-related cycles of droughts and heavy rains,

were driving declines among large ungulate populations. They argued that, as the Laikipia

landscape shifted from wildlife persecution to wildlife tolerance in the 1980’s and 1990’s,

Plain’s zebra (Equus quagga) abundance increased 5-fold, providing an abundant food supply

for recovering predator populations. Droughts caused widespread livestock and wildlife mor-

tality that provided abundant carrion, and periods of high rainfall resulted in taller grasses and

better cover for hunting predators. Although a century of fire suppression has caused large

scale landscape transition from grassland to bush [24], Georgiadis et al. [23] surmised that

declines in grassland ungulate species, such as Jackson’s hartebeest (Alcephalus buselaphus)
and eland (Tragelaphus oryx), were due primarily to increasing predation pressure. A recent

study by Ng’weno et al. [9] demonstrated that lion predation can drive the demography of

Jackson’s hartebeest in Ol Pejeta, a 294 km2 fenced conservancy in Laikipia with a very high

lion density (~24 lions/100 km2), and that increasing bush encroachment contributed to the

decline.

Rubenstein [25] explicitly focused on the role of lions in limiting endangered Grevy’s zebra

numbers. He based his assessment on observations from Lewa Wildlife Conservancy (LWC), a

250 km2 fenced rhinoceros reserve neighboring Laikipia County. In 2000, LWC introduced

lions to a naïve community of large ungulates; within three years, population counts showed a

17% and 19% reduction in Plain’s and Grevy’s zebras, respectively (LWC, unpublished data).

In an analysis of LWC lion scat, Rubenstein [25] found that, although Plain’s zebra were much

Fig 1. Population trends. Lion density estimates for Laikipia County (open bars) and estimates of Kenya’s Grevy’s zebra abundance (closed circles)

between 1977 and 2016.

https://doi.org/10.1371/journal.pone.0201983.g001
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more abundant than Grevy’s zebra, Grevy’s zebra hair was more common than Plain’s zebra

hair and concluded that lions were preferentially selecting Grevy’s zebra over Plain’s zebra.

Although Plain’s and Grevy’s zebra have continued to decline on LWC, it is unclear whether

lions or other ecological pressures (e.g. fencing or competition for grazing from Plains zebra)

drive these declines.

These observations have raised concerns about the impact of lion predation on the endan-

gered Grevy’s zebra and the potential for contradictory conservation goals: successful lion con-

servation may impede successful Grevy’s zebra conservation in Laikipia County and

elsewhere. The studies above, however, either were unable to establish a causal link [23] or

were based on small data sets [25], leaving the question open as to whether lions are driving

the population declines of Grevy’s zebra in Laikipia County, Kenya.

To answer this question, we evaluated lion predation on Grevy’s and Plain’s zebras across a

large, mixed-use landscape in Laikipia County using satellite telemetry to track lions and zebra

movements, and to locate and identify lion kills. We used random gas models to address the

question of whether lions are preying on Grevy’s zebra more than expected due to chance

alone and to assess the likelihood that lions are negatively influencing Grevy’s zebra numbers.

Methods

Study area

We conducted our study in Laikipia County, Kenya (9,666 km2: Fig 2). Laikipia is character-

ized by a mosaic of land uses and land management practices ranging from large, commercial

cattle ranches and wildlife conservancies to smaller, densely populated pastoral group ranches

and subsistence agricultural plots. Laikipia County is an excellent example of wildlife conserva-

tion on private lands and hosts the most diverse and second largest wildlife community in

Kenya after Maasai Mara National Reserve [26].

Rainfall varies from 1000 mm at the foot of Mt. Kenya on the equator to 400 mm in the

north of the county. Consequently, humans and permanent agriculture are concentrated in

the south and wildlife conservancies, commercial ranches and group ranches (communally

owned pastoralist properties) are concentrated in the north. Our study focused on a 2,770 km2

area in northern Laikipia (Fig 2), a largely unfenced area of ranches where populations of

Plain’s zebra, Grevy’s zebra, many other wild ungulates, livestock, lions and other large carni-

vores co-occur. Three vegetation types characterize the study area: woodlands dominated by

Acacia drepanolobium, the most common vegetation type in Laikipia [27]; savannas domi-

nated by perennial grasses with widely spaced trees and shrubs; and bushlands with a discon-

tinuous layer of perennial grasses and a broken canopy dominated by Acacia mellifera, A.

etbaica, A. brevispica and Grewia tenax [24].

Ethics statement

This study was reviewed and approved by the Office of the President of the Republic of Kenya

and the Kenya Wildlife Service (permits KWS/BRM/5001, NCST/RRI/12/1/BS011, NCST/

RRI/12/1/BS011/364 and NCST/RRI/12/1/BS011/18), and relevant research committees at

University of California, Berkeley, University of California, Santa Cruz and Princeton Univer-

sity. The lion collaring protocol was reviewed and approved by the Animal Care and Use Com-

mittee, University of California, Berkeley, Protocol No. R191 (to LGF) and the Institutional

Animal Care and Use Committee, University of California, Santa Cruz Permit No.

WILMC1402 (to CW and TW). Lion anesthesia: lions darted with a combination of Medeto-

midine and Ketamine. The zebra collaring protocol was reviewed and approved by the Institu-

tional Animal Care and Use Committee, Princeton University, Protocol No. 1845 (to DR).
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Zebra anesthesia: Kenya wildlife Service Veterinarians darted using M99. All species in this

study are considered protected species under Kenyan Law. Population estimation of Grevy’s

and Plains zebras was conducted using non-invasive line transect surveys and were conducted

on private ranches.

Lion monitoring

Lions are almost entirely nocturnal in Laikipia County and lion kills are rarely found due to

dense bush. Formerly, tracking circling vultures was a reliable means of locating carcasses but

the collapse of Kenya’s vulture populations due to predator poisoning [28, 16] reduced the reli-

ability of this method. To find fresh kills, we relied on satellite telemetry. We captured female

lions by calling them to a bait at night, immobilized them using tranquilizer darts with mede-

tomidine and ketamine [29] (University of California, Berkeley, ACUC Protocol No. R191)

and fitted them with GPS collars (Vectronic Aerospace, Berlin, Germany). The collars

recorded locations every hour between 1800–0700 and sent data each morning via the Iridium

satellite phone system. We displayed nightly movements in Google Earth and identified sites

where the lions had been sedentary for at least two hours, defined as three or more hourly fixes

Fig 2. Study area. Location of study area within Laikipia County, Kenya. This figure was generated by the authors

using lion telemetry data for minimum convex polygon, landuse shapefiles from the Mpala Research Centre open

access GIS database, and ESRI ARCGIS. This figure is not copyrighted.

https://doi.org/10.1371/journal.pone.0201983.g002
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within a 50 m radius. We visited these potential feeding sites within 48 h and searched for prey

remains, identifying prey to species, sex, and age when possible. We developed prey profiles as

percent of all kills by species. Some zebra remains (e.g. internal organs) could not be identified

to species, and we allocated those to Grevy’s and Plain’s zebras according to the ratio of identi-

fied zebra kills. Lions and spotted hyenas (Crocuta crocuta) regularly appropriate kills from

each other [30, 31], as well as from leopards and cheetahs, and it is rarely possible to determine

definitively from remains and tracks which predator made the kill. We therefore assumed that

all kills found at potential feeding sites were attributed to collared lions but recognize this

potential source of error.

Zebra monitoring

Zebras were darted from a vehicle using tranquilizer darts containing M99 (Princeton Univer-

sity IACUC Protocol No. 1835) under the supervision of a Kenya Wildlife Service veterinarian.

Zebras were collared using custom-made GPS-GSM collars (Savannah Tracking Ltd. Nairobi,

Kenya) and movement and ranging data were recorded at 15-minute intervals. Grevy’s zebra

movements were monitored in 2007–2008 and Plain’s zebras were monitored in 2010–2011.

Zebra population estimates

We used line transect surveys to estimate density and abundance of Plain’s and Grevy’s zebras.

One hundred and seven 2-km transects and seventy-one 3-km transects were laid out system-

atically along existing roads in the southern and northern parts of the study area, respectively.

Approximately 70 transects were located in bushland and the remaining surveys were in

savannas and open woodland. It is usually inadvisable to use roads for line transect surveys

[32, 33] if target species either use roads preferentially or avoid them entirely because roads

may constitute unrepresentative habitat. This is not the case for our line transect surveys

because: (1) animal trails traverse the habitat in a dense web so that roads do not represent spe-

cial access for wildlife that is restricted elsewhere; (2) the land is privately owned and vehicle

use of these roads is minimal, reducing the likelihood that animals will avoid the roads; (3) ani-

mals in this area are habituated to slow moving vehicles; and (4) upon examination of the dis-

tribution of detection distances, we did not find any evidence of heaping (attraction) or gaps

(avoidance) in the vicinity of roads.

Southern transects were surveyed once in June 2014 and again in January 2015. Northern

transects were surveyed twice during January 2015. All surveys were conducted in the morning

between 0630 and 1000 and late afternoon between 1630 and 1830. Two observers, positioned

on the roof of a vehicle at approximately 3 m height, recorded all individuals and groups of

zebras encountered as part of a larger, multi-species survey. We measured observer-to-animal

distances using laser rangefinders (Elite 1500, Bushnell Corp., Kansas City, MO, USA), and

transect bearing and angle between animal and observer with digital compasses (High Gear

Implus Footcare LLC, Orgeval, France). Perpendicular distance to the transect was calculated

using the angle between transect and animal and radial distance from observer to animal.

We used DISTANCE 6.0 software [32] to analyse the combined surveys from the south and

north parts of the study area. We analysed the data as exact perpendicular distances and trun-

cated the Plain’s zebra dataset by deleting the largest 5% of perpendicular distances. We used

the entire Grevy’s zebra dataset because of small sample sizes. We evaluated half normal, haz-

ard, and uniform models with cosine and hermite polynomial adjustments and chose the final

model based on a minimum Akaike information criterion [34] (Burnham and Anderson

2002).
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Modelling lion encounters with prey

A prey species is considered preferred when it is taken more than expected based on a random

distribution of encounters conditioned on the abundance of predator and prey species [35,

36]. We used a random gas model [37] to determine the expected rate of encounters between

collared lions and Plain’s and Grevy’s zebras. For a population of prey with density p1 moving

at a velocity of v1 and predators with density p2 and velocity v2, the expected number of

encounters that result in a predation attempt by a single predator unit, Epred, is a function of

prey and predator densities, velocities, the distance D between predator and prey that defines

an attempted predation encounter, and time t as follows:

Epred ¼
p1

p2

� ½1 � e� 2
ffiffiffiffiffiffiffiffi
v2
1
þv2

2

p
p2Dt� ð1Þ

where density is expressed as individuals/km2, velocities are expressed as km/12 h, distance for

an encounter is expressed as fraction of a km, and time is in days. The expected kill rate, Ekill

given an encounter is simply Epred times the proportion of attempted predation encounters

that result in kills (S):

Ekill ¼ Epred � S ð2Þ

To estimate Epred and Ekill, we used a bootstrap approach. Density of lions was estimated as

the number of collared lions (n = 21) in a 2,105 km2 area defined by the union of all 95% mini-

mum convex polygon home ranges for lions, or 0.01 lions/km2. We assumed that each collared

lion was an independent hunting unit. Grevy’s and Plain’s zebra densities were estimated from

line transect surveys as the cluster density since lions were expected to encounter a group of

zebras and kill a single member of the group when an encounter resulted in successful preda-

tion. In the simulations, lion density was treated as a constant. Zebra densities were randomly

chosen from normal distributions with observed density and standard deviations, truncated at

0.

To estimate velocities, we used hourly movements from satellite telemetry fixes (S1 Table,

S1 Appendix, S2 Appendix) collected between 1800 and 0700 for 21 female lions (n = 101,419

hourly locations), 7 Plain’s zebra (n = 14,159 hourly locations) and 5 Grevy’s zebra (n = 16,297

hourly locations). We constructed velocities by randomly sampling 12 hourly movements and

then summing. Because we use hourly straight line movement, our velocities are likely mini-

mum estimates of potential movements over uneven terrain. To determine the maximum con-

tact distance to initiate a predation attempt and the likelihood that an attack would result in a

kill, we relied on data reported in the literature [30, 38, 39, 40, 41]. We selected 4 encounter

distances (30 m, 40 m, 50 m, and 60 m) as the upper limits for encounter distances that would

result in an attack. We estimated a constant time t as the mean time that a collared lion was

tracked. Successful predation given an encounter has been measured within a range between

10–28% of attempts [30, 38, 39, 40, 42]. To estimate Ekill, we used values of 10%, 15%, 20% and

25%. Each simulation was run 10,000 times and a mean, SD and 95% CI was calculated for

each combination of parameters. We then compared the simulation kill rates over the course

of the study to the estimated kill rates based on field data for the number of potential feeding

sites, the proportion of actual feeding sites among potential feeding sites and the proportion of

Plain’s and Grevy’s zebras among recovered kills.
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Results

Lion and zebra movements

Between 27 November 2013 and 1 January 2015, we collared 21 female lions in 10 prides (S1

Table) and tracked their movements for an average of 226.5 days/female (SD = 132.3, range

43–515 days). Females moved on average 504 m/h (range of means: 380.7–668.5 m/h) and

6,575 m/12-h (range of means: 3,891–8,736 m). Between 19 November 2010 and 27 July 2011,

we collared 6 Plain’s zebras and tracked their movements for an average of 184.3 days (range:

102–242 days). Plain’s zebras moved on average 314 m/h (range 187.3–379.0 m/h) and 4,125

m/12-hr (range 2,398–5,086 m). Between 13 June 2007 and 4 January 2008, we collared 5 Gre-

vy’s zebra and followed their movements for an average of 111 days (range 38–206 days). Gre-

vy’s zebras moved on average 335.2 m/h (range 238.6–426.1 m/h) and 3,781 m/12-hr (range

2,840–4,349 m).

Prey densities

We conducted 387 line transect surveys totaling 904 km of survey effort, and observed 697

Plain’s zebra groups and 68 Grevy’s zebra groups (Table 1). Mean group size was 8.07 individ-

uals (SD = 0.332) for Plain’s zebra and 2.38 individuals (SD = 0.348) for Grevy’s zebra. The

best fitting DISTANCE model for Plain’s zebra was a hazard model with cosine adjustment

terms and for Grevy’s Zebra the best fit was a hazard model with hermite adjustment term. We

estimated the density of Plain’s zebra groups at 1.98/km2 (95% CI = 1.61–2.42) and individual

density at 15.94/km2 (95% CI = 12.82–19.82). We estimated the density of Grevy’s zebra

groups at 0.30/km2 (95% CI = 0.17–0.53) and individual density of 0.71/km2 (95% CI = 0.38–

1.34). Coefficient of variation was higher for Grevy’s zebra compared to Plain’s zebra due to

small sample sizes.

Random gas models

We determined 3,993 instances during which a lion moved less than 50 m over 3 or more

hourly fixes (potential feeding site) during 4,756 days of telemetry data. We investigated

>3,000 potential lion feeding sites and located 768 kills (~25% of potential feeding sites:

Table 2). Plain’s zebra were the top prey item (44.3% of kills: Table 2), followed by domestic

cattle (Bos Taurus: 12.6% of kills). Only 2.0% of estimated kills were Grevy’s zebra. This

Table 1. DISTANCE parameter estimates. Distance parameter estimates with coefficient of variation (CV), degrees of freedom (DF) and 95% confidence interval (CI).

Species Parameter Estimate CV DF 95% CI

Plains Zebra Encounter rate 0.771 9.65 386 (0.64, 0.93)

Detection probability 0.560 3.72 695 (0.521, 0.602)

Expected strip width 195.110 3.72 695 (181.37, 209.88)

Cluster size 8.066 4.12 696 (7.44, 8.74)

Cluster density 1.976 10.34 502.9 (1.62, 2.42)

Individual density 15.941 11.13 662.89 (12.82, 19.82)

Grevy’s Zebra Encounter rate 0.075 15.36 386 (0.056, 0.102)

Detection probability 0.208 25.04 66 (0.127, 0.341)

Expected strip width 125.470 25.04 66 (76.69, 205.28)

Cluster size 2.382 14.59 67 (1.78, 3.18)

Cluster density 0.300 29.37 122.06 (0.17, 0.53)

Individual density 0.714 32.79 170.76 (0.38, 1.342)

https://doi.org/10.1371/journal.pone.0201983.t001
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represents an estimated 17.6 Plain’s zebra and 0.7 Grevy’s zebra killed per lion during an aver-

age 226.5 days that the 21 lions were followed, or 28.4 Plain’s zebra and 1.2 Grevy’s zebra killed

per lion per year. The study area contains a full complement of predators, and lions are known

to take prey from hyenas, leopards and cheetahs. Because our methods could not distinguish

prey killed by lions from prey scavenged by lions, predation rates could potentially be lower.

Our field-based estimates of predation rates on Plain’s zebra were similar to those generated

using the random gas model. Under the most conservative scenario (encounter distance 30 m,

predation success rate 10%), the modeled estimate of predation was significantly lower than

field-based estimate of predation (Fig 3A). For nine other conservative and moderate scenarios

of encounter distance and successful predation rates (40 m/10% to 40 m/20%; Fig 2A), mod-

eled estimates were not significantly different from the field-based estimate. Under the six

most liberal scenarios (50 m/20% to 60 m/25%; Fig 2A) modeled estimates were significantly

higher than the field-based estimates.

Expected predation rates by lions on Grevy’s zebra generated using the random gas model

were significantly higher than the field-based estimates for all but the most conservative sce-

nario (encounter distance 30 m, success rate 10%: Fig 2B).

Discussion

Our results indicate that the observed lion predation on Grevy’s zebra is less than expected due

to chance alone in 15 of 16 (94%) of cases. In comparison, predation on Plain’s zebras is as

Table 2. Distribution of prey species among 768 presumptive collared lion kills.

Species count % Cumulative % rank

Plains Zebra 340 44.3% 44.3% 1

Cow 97 12.6% 56.9% 2

Eland 65 8.5% 65.4% 3

Reticulated Giraffe 40 5.2% 70.6% 4

Unknown 36 4.7% 75.3% 5

Common Warthog 29 3.8% 79.0% 6

Impala 26 3.4% 82.4% 7

African Buffalo 24 3.1% 85.5% 8

Beisa Oryx 23 3.0% 88.5% 9

Jackson’s Hartebeest 16 2.1% 90.6% 10

Grevy’s Zebra 15 2.0% 92.6% 11

Grant/Thomson Gazelle 12 1.6% 94.1% 18

Sheep/Goat 9 1.2% 95.3% 12

Camel 7 0.9% 96.2% 13

Ostrich 6 0.8% 97.0% 19

Aardvark 4 0.5% 97.5% 15

Donkey 4 0.5% 98.0% 16

African Elephant 4 0.5% 98.6% 17

Water Buck 4 0.5% 99.1% 20

Gerenuk 2 0.3% 99.3% 22

Cape Hare 1 0.1% 99.5% 23

Hippopotomus 1 0.1% 99.6% 24

Horse 1 0.1% 99.7% 25

Greater Kudu 1 0.1% 99.9% 26

Vulturine Guinea Fowl 1 0.1% 100.0% 27

https://doi.org/10.1371/journal.pone.0201983.t002
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expected (9 scenarios: 56%) or less than what would be expected due to chance alone (6 scenar-

ios: 38%). Observed predation on Grevy’s zebra was consistently less than expected for all

model scenarios, equaling the lower limit of the confidence interval only for the most conser-

vative scenario (30 m encounter distance, 10% successful predation). As modelled encounter

Fig 3. Random gas model results. Expected predation rates during the course of the study based on field estimates

(dashed line) and random encounter models (points plus 95%CI lines) using different scenarios of distance at which

an encounter is initiated and successful predation rates for (a.) Plain’s zebra kills/female lion and (b.) Grevy’s zebra

kills/female lion.

https://doi.org/10.1371/journal.pone.0201983.g003
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distance and success rate increased, the disparity between observed and expected predation

rates also increased, with the random gas models predicting significantly more predation than

observed in the field for both subspecies. Because predicted selective predation by lions on

Grevy’s should show a greater rate of encounters and therefore a larger number of observed

kills compared to random encounters, our data indicate that lions are not preying selectively

on Grevy’s zebras in Laikipia County.

Our results support the hypothesis of Georgiadis et al. [23] that lions do not regulate Plain’s

zebra densities in Laikipia County. Only under the most conservative model scenario (30 m

encounter distance, 10% predation success) did the estimated predation rate exceed the mod-

eled predation rate. In all other scenarios, the estimated predation rate was similar or signifi-

cantly lower than the modeled predation rates.

Use of the random gas model

The random gas model has been applied widely as a null hypothesis to model encounter rates

within and among species [37, 43, 44]. Under the random gas model, encounter rates are a

function of encounter distances, rates of movements of predators and prey, and density of

predators and prey. Model assumptions include: (1) individuals are randomly distributed; (2)

each individual’s movements are independent, straight line and equally likely in all directions

and; (3) velocities are normally distributed. Despite the obvious fact that animals do not

behave like gas particles, the model has proven useful as a model of animal movements in a

wide variety of situations, including density estimation [44, 45], intergroup encounters [46, 47,

48], and predator-prey encounters [43, 49, 50]. Hutchison and Waser [37] demonstrated that

violation of the random distribution assumption does not bias expected encounter rates. In

this study, violations of the assumptions 2 (movement trajectories) and 3 (velocity) tend to

result in underestimation of expected encounter rates making our simulations of encounter

rates conservative. Our inability to unambiguously distinguish lion predation from kleptopara-

sitism may have inflated our estimate of actual lion predation rates, also making the compari-

son of estimated and simulated predation rates conservative.

Rubenstein [25] modeled population trajectories for Grevy’s zebras using a two-sex age

structured stochastic population model [51] with effects of density dependence and rainfall to

estimate the population trajectory over 30 years. He demonstrated that a population of 150

Grevy’s with survival rates characteristic of the Laikipia Grevy’s zebra population might

decline by 15% over 30 years. Rubenstein’s models indicated that when the percentage of juve-

niles and foals in the population reached 30%, the population would stabilize. Rubenstein et al.

[14] report a steady improvement in proportion of juveniles and foals from 9% in 2004 to 28%

in 2016, suggesting that the population is stabilizing.

Threats to Grevy’s zebras [14] include: 1) habitat degradation due to overgrazing by live-

stock; 2) competition with livestock over access to water and food; 3) disease from contact

with unvaccinated livestock; 4) local hunting; 5) predation; and 6) development corridors.

Based on our observations and models, we rank habitat degradation and competition with

livestock and Plain’s zebras as the most important threats to Grevy’s zebra recovery. Between

1997 and 2012, the ratio of livestock to Grevy’s zebra in Laikipia doubled from 483 to 864 indi-

vidual livestock per Grevy’s zebra [22]. Because livestock can monopolize the limited access

points to water and unvaccinated livestock carry transmittable disease, the increase in occur-

rence of domesticated ungulates appears to represent a significant threat. Plains zebra greatly

outnumber Grevy’s zebra (22 Plains zebra for each Grevy’s zebra) and Grevy’s zebras feed less

in the presence of Plain’s zebras [25]. The combination of displacement and threats due to live-

stock, and the competitive dominance of Plain’s zebras may ultimately limit the recovery of
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Grevy’s zebras. In contrast, predation by lions, does not appear to represent a major limiting

factor to population growth, especially when compared to other potential threats.
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