
Acetylation in Tumor Immune Evasion
Regulation
Jun Lu1,2†, Xiang He2,3†, Lijuan Zhang4†, Ran Zhang1* and Wenzheng Li4*

1Hunan Normal University School of Medicine, Changsha, China, 2Key Laboratory of Molecular Radiation Oncology Hunan
Province, Changsha, China, 3Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China, 4Department
of Radiology, Xiangya Hospital, Central South University, Changsha, China

Acetylation is considered as one of the most common types of epigenetic modifications,
and aberrant histone acetylation modifications are associated with the pathological
process of cancer through the regulation of oncogenes and tumor suppressors.
Recent studies have shown that immune system function and tumor immunity can
also be affected by acetylation modifications. A comprehensive understanding of the
role of acetylation function in cancer is essential, which may help to develop new therapies
to improve the prognosis of cancer patients. In this review, we mainly discussed the
functions of acetylase and deacetylase in tumor, immune system and tumor immunity, and
listed the information of drugs targeting these enzymes in tumor immunotherapy.
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INTRODUCTION

The main driving force for tumor initiation and progression are not only the alterations in cancer
cells but also the influences of immune system and tumor immunemicroenvironments (Bindea et al.,
2013; Jones et al., 2019). As an important hallmark of cancer, tumor cells evade immune surveillance
by suppressing the immune system and having low immunogenicity (Peng et al., 2019; Gao et al.,
2020). For example, aberrant expression of immune checkpoints (ICs) components, such as the
programmed cell death protein 1 (PD-1), cytotoxic T lymphocyte-associated protein 4 (CTLA-4),
T-cell immunoglobulin and mucin domain-containing lymphocyte activation gene 3 (LAG-3), and
LAG-3 with Ig and ITIM structural domains T-cell immune receptors (TIGIT), creates an immune
destructive environment that promotes tumor cells escape immune destructions (Saleh et al., 2020).
Cancer immunotherapies such as cancer vaccines, adoptive T-cell therapy (ACT), and immune
checkpoint blockade (ICB), which kills cancer cells through employing the body’s own immune
system, have achieved encouraging progress within the last decade (Wang S. et al., 2019). Despite
these breakthroughs, only 10–30% of patients respond to and benefit from them, and the underlying
reasons of these low benefits are due to the development of primary and acquired drug resistance, low
response frequency of some cancers, and the heterogeneity of tumors (Sharma et al., 2017).
Therefore, the urgent question is how to enhance patient responsivity and benefit from
immunotherapy by targeting tumor cells or modulating tumor immune microenvironment.

Recently, there is growing evidence showing that epigenetic modification is essential to regulation
of tumor immunity and immunotherapy, which provides a possible target for improving the
outcome of immunotherapy. Epigenetic gene regulation, which alters gene expression and function
without involving alterations in DNA sequences, is an important regulatory process in cellular
biology. Several types of epigenetic modification were identified such as DNA methylation, histone
modification, miRNA regulation, genomic imprinting, and chromosome remodeling, among which
acetylation is considered one of the most common types of epigenetic modification (Lawrence et al.,
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2016). Histone acetylation is mediated by histone
acetyltransferase (HAT), while deacetylation is mediated by
histone deacetylase (HDAC). Acetylation of histones alters the
secondary structure of the histone tail, leading to relaxation of the
chromatin structure by increasing the distance between DNA and
histones, opening up tracts of DNA and allowing for increased
binding of transcription factor complexes to gene promoter
sequences, thereby upregulating transcription (Kouzarides,
2007; Lawrence et al., 2016). In contrast, histone deacetylation
usually promotes chromatin condensation and down-regulates
the transcriptional level of related genes, and is usually
accompanied by an increase in histone methylation of the
same residue.

Besides, there is growing evidence that abnormal histone
acetylation modification is related to the pathological process
of cancer through regulating the expression of oncogenes and
tumor suppressors (Audia and Campbell, 2016). For instance,
previous studies have shown that changes in histone acetylation
level, especially the loss of acetylated Lys16 of histone H4, is
related to the development of many cancers and is a common
feature in human tumor cells (Fraga et al., 2005). Due to the
critical role of acetylation in tumorigenesis, several drugs
targeting HDAC have been developed to treat cancer.
Furthermore, recent studies have shown acetylation
modification is essential for immune system function and
tumor immunity.

Therefore, in view of the effects of acetylation modification on
tumor cells and immune system, as well as the clinical use of the
HATs and HDACs inhibitors, it is worth exploring whether
HATs and HDACs could influence immunotherapy efficacy by
altering the tumor immune microenvironment through

acetylation regulation on tumor cells or immune cells, and
whether targeting these enzymes may improve the efficacy of
immunotherapy. In this review, we focus on how HATs and
HDACs modulate tumor immunity and discuss the potential
application of drugs targeting these enzymes to improve the
outcome of immunotherapy.

HATS IN TUMOR IMMUNITY REGULATION

There are three major HAT subfamilies in human: the GCN5-
related N-acetyltransferase (GNAT) subfamily including PCAF
and GCN5; the MYST subfamily including TIP60, MOZ, MORF,
MOF and HBO1; the p300 subfamily including p300, CBP.
Besides these enzymes, HATs also include TAT1, ESCO1,
ESCO2 and HAT1 (Narita et al., 2019). In addition to
acetylated histones, HATs can also directly acetylate a range of
transcription factors such as C/EBPα, FOXO1, and p53, resulting
in the regulation of transcription factor activity and thereby
regulation of cancer progression (Sheikh and Akhtar, 2019).
At present, only a portion of HATs have been shown to be
involved in tumor immunity regulation (Table 1).

P300/CBP-Associated Factor
P300/CBP-associated factor (PCAF), also named lysine
acetyltransferase 2B (KAT2B) (Liu T. et al., 2019), is a HAT
that mainly acetylates H3 histones, as well as a number of non-
histone proteins that coordinate carcinogenic and tumor
suppressive processes (Wang LT. et al., 2020). Previous studies
have shown that the expression of PCAF is reduced as a tumor
suppressor in esophageal, breast, ovarian, colorectal and

TABLE1 | Function of HATs related to tumor immunity in different cell types.

Protein Cell type Target Function References

PCAF Tregs Foxp3 acetylate Foxp3 to impair Tregs function Liu et al. (2019c)
Macrophages TNF-α, IL-6 and

CXCL10
inhibit the inflammatory response of M1 macrophages Wang et al. (2021)

CD4 and CD8 T Cells Foxp3 reduce tumor volume and improves anti-tumor immunity Liu et al. (2019c)
GCN5 Tregs ISG regulate the development of T regulatory cells and the transcription of ISG

expression
Au-Yeung and Horvath,
(2018)

Tregs Foxp3 in vivo deletion inhibit Treg and Teff cells function Liu et al. (2019c)
iNKT Cells -- promote iNKT cells development Wang et al. (2017)
Head and Neck Squamous Cell
Carcinoma

H3K27 activate transcription of PD-L1 and galectin-9 to evade tumor immunity Ma et al. (2020)

p300/
CBP

Tregs Foxp3 protect the function of Foxp3+ Tregs and suppress anti-tumor immunity Liu et al. (2013)
Liu et al. (2014)

T and B Cells IL2 and IL10 promote Treg differentiation by inducing T and B cells to secrete the pro-
inflammatory cytokines IL2 and IL10

Castillo et al. (2019)

Immunosuppressive Cells -- promote tumor progression by protecting the function of
immunosuppressive cells in tumor microenvironments

Liu et al. (2013)
de Almeida Nagata
et al. (2019)

Liver Cancer MEF2D induce PD-L1 expression in liver cancer by acetylation of MEF2D to impair
CD8+ T cell-mediated anti-tumor immunity

Xiang et al. (2020)
Guo et al. (2021)

CTL MHC-I regulate tumor cell immunogenicity Zhou et al. (2021)
Tip60 Tregs Foxp3 promote FOXP3 mediated inhibition and T cell mediated suppression Li et al. (2007)

Tregs Usp7 control Treg function and limit tumor progression Wang et al. (2016)
HAT1 Pancreatic Cancer -- transcriptional upregulation of PD-L1 in tumor cells Fan et al. (2019)

Abbreviations: Treg, regulatory T cells; TNF, tumor necrosis factor; IL, interleukin; CXCL, C-X-C motif chemokine ligand; ISG, IFN-stimulated gene; NK, natural killer cell; CTL, cytotoxic
T cell; MHC, major histocompatibility class; Usp, ubiquitin-specific protease.
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TABLE 2 | Function of HADCs related to tumor immunity in different cell types.

Protein Cell type Target Function References

HDAC1 Gastric Cancer STAT1 enhance the expression of JAK2, p-JAK1, p-JAK2, and p-STAT1 and
promote the nucleus translocation of STAT1

Deng et al. (2018)

Cervical Cancer and GBM Keap1 repress membrane expression of MHCⅡ Wijdeven et al. (2018)
NSCLC Sp1 repress the activity of sp1 to impair the membrane expression of cd1d Yang et al. (2012)
Macrophages miR-146a induces tumor associated macrophages to adopt the M1-like

phenotype
Gao et al. (2015)
Ji et al. (2019)

Tregs IL-2 and the IFN- c
promoter

participate in the formation of the CoRest which promote function of
Treg

Xiong et al. (2020)

HDAC2 Multiple Cell Lines PD-L1 deacetylate PD-L1 to promote the nuclear translocation of PD-L1 which
enhance the expression of PD-L1 and MHC Ⅰ

Gao et al. (2020)

Melanoma ISG promoter deacetylates IFN-stimulated genes (ISG) promoter at H4K16 to
enhances the infiltration of tumor lymphocytes

Zhang et al. (2015)

Macrophages c-Jun promoter repress the expression of c-Jun Fang et al. (2018)
Wu et al. (2019)

HDAC3 Melanoma Runx3 inhibits the cytotoxicity of CD8+T cells and recognition ability of NK cells Fiegler et al. (2013)
Tay et al. (2020)

Monocytes and Mø -- inhibit LPS induced cytokine secretion Ghiboub et al. (2020)
Breast Cancer and
Colorectal Cancer

-- down-regulate PD-L1 expression via HDAC3/p300-mediated NF-κB
signaling

Lucas et al. (2018)
Wang et al. (2020a)

B-cell Lymphoma PD-L1 promoter repress PD-L1 expression via being recruited to the PD-L1 promoter by
the transcriptional inhibitor BCL6

Deng et al. (2019)

Pancreatic Cancer -- enhance PD-L1 expression through STAT3 signaling pathway Hu et al. (2019)
HDAC4 Brain Astrocytes liver X receptor HDAC4 impairs LXR-Induced suppression of STAT1 binding to

promoters and downstream inflammatory gene expression
Lee et al. (2009)

Cervical Cancer IFN-α–stimulated
promoter

promote type I interferon signaling via recruiting STAT2 to IFN-
α–stimulated promoters

Kalbasi and Ribas, (2020)

HDAC5 CD4+T Cells Foxp3 positively related to the transformation of Treg and the production of
IFN c

Xiao et al. (2016)

Macrophages MKL1 impair TNF-α induced pro inflammatory gene transcription Li et al. (2017)
Macrophages SOCS3 recruit CCR2+ macrophages to promote macrophages to reaggregate

into tumor
Hou et al. (2020)

HDAC6 APCs IL-10 promoter recruit to immunosuppressive cytokine IL-10 promoter with STAT3 Cheng et al. (2014b)
Macrophages -- inhibit the expression of IFN c and IL-2 Knox et al. (2019b)
GBM and Melanoma STAT3 promote the recruitment and activation of STAT3 to enhance the

expression of PD-L1
M et al. (2016)
Liu et al. (2019a)

HCC Foxo1 reduce the expression of PD-L1 and inhibit Foxo1 nuclear translocation
to limit TH17 pathogenicity

Qiu et al. (2020)

Melanoma -- up-regulate the expression of tumor-associated antigens and MHC-I Woan et al. (2015)
HDAC7 Pre-B Cells MEF2C repress transdifferentiation of Pre-B cells into macrophages Barneda-Zahonero et al.

(2013)
CD4 T Cells Nur77 and Irf4 repress the IFN-γ production and CD4+ T cells proliferation Myers et al. (2017)
Macrophages PKM2 deacetylate PKM2 to increase the expression of IL-1β Das Gupta et al. (2020)

HDAC8 Melanoma PD-L1 promoter prevent transcription factors to bind to PD-L1 promoter Wang et al. (2018b)
HCC -- repress intra tumoral CD8+T cell infiltration Yang et al. (2021e)
Keratinocytes -- increases proinflammatory gene expression Sanford et al. (2016)

HDAC9 CCRC -- activates immune cell infiltration and increase expression of
immunological molecules such as PD-L1, CTLA4 and LAG3

Fu et al. (2020b)

NSCLC -- promote the CD8+DC infiltration of the TME and DC antigen
presentation

Ning et al. (2020)

Macrophages TBK1 enhance the kinase activity of TBK1 to activate antivirus innate immunity Li et al. (2016b)

HDAC10
NSCLC -- positively correlated with the expression of PD-L1 Liu et al. (2020c)

HCC CXCL10 promoter recruit EZH2 to CXCL10 promoter to inhibit CXCL10 expression thus
repressing NK cell migration

Bugide et al. (2021)

HDAC11
APC IL-10 promoter interacts with the IL-10 promoter to repress IL-10 expression Villagra et al. (2009)

MDSCs C/EBPβ promoter repress expression of C/EBPβ to inhibit immunosuppressive arginase
and iNOS

Chen et al. (2021)

T Cells Eomesodermin and Tbx21
promoter

repress transcription factors Eomesodermin and Tbx21 to reduce the
production of inflammatory cytokine and effector molecule

Woods et al. (2017)

Sirt1 Th1/17 Cells Foxo1 enhance the activity of Foxo1 to promotes the expression of Klf2 and
Ccr7 genes

Chatterjee et al. (2018)

Tregs Foxp3 promote the proteasomal degradation of Foxp3 via deacetylating
Foxp3 to repress Treg activation

van Loosdregt et al.
(2010)

(Continued on following page)
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pancreatic cancers, and that loss of PCAF expression is associated
with poor prognosis in gastric cancer and may serve as a potential
biomarker for invasive and aggressive tumors (Brasacchio et al.,
2018). For example, it acts as a suppressor of HCC progression by
promoting apoptosis through acetylation of glioma-associated
oncogene homolog-1 (Gli1), histone H4 and the phosphatase and
tensin homolog deleted on chromosome 10 (PTEN). On the
contrary, PCAF was reported to be highly expressed in HCCs and
to promote tumor progression via acetylation of
phosphoglycerate kinase 1 (PGK1), pyruvate kinase M2
(PKM2), and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), which subsequentially induces the Warburg effect
and activates Akt signaling (Zheng et al., 2013; Wang T. et al.,
2018).

With its modulatory effects on tumors, PCAF can also regulate
immune system function. In a study of Foxp3+ Treg cells, PCAF
was found to contribute to the inhibition of Treg cells apoptosis in
response to TCR stimulation and to increase inducible Tregs
(iTregs) production via IL-2 and TGF-β. In addition, PCAF
acetylates Foxp3 to impair Treg cells function (Liu Y. et al.,
2019). Another study has shown that overexpression of PCAF
significantly suppressed the expression of pro-inflammatory
genes TNF-α, IL-6 and CXCL10, suggesting that PCAF is a
potential negative regulator of the inflammatory response of
M1 macrophages (Wang et al., 2021).

There is limited evidence reporting the role of PCAF in tumor
immunity regulation. A study reported that in lung

adenocarcinoma tumor growth was compromised in PCAF−/−

mice, with reduced infiltration of CD4+Foxp3+ Treg cells but
increased infiltration of host CD8 T cells, indicating that targeting
PCAF reduces tumor volume and improves anti-tumor immunity
(Liu Y. et al., 2019). More research on the role of PACF in tumor
immunity in other cancer types is needed in the future.

GCN5
General control non-depressible 5 (GCN5) mainly responsible
for acetylation of H3K27, is the first histone acetyltransferase to
be characterized in saccharomyces cerevisiae. GCN5 is highly
expressed in a variety of human cancers and promotes cancer
progression by participating in the acetylation of many non-
histone proteins (Haque et al., 2021). An example is in prostate
cancer, where upregulated GCN5 downregulates Egr-1
expression via the PI3K/PTEN/Akt signaling pathway,
negatively affecting IL-6-induced prostate cancer cell
metastasis and epithelial-mesenchymal transition (EMT) (Shao
et al., 2018).

In the immune system, GCN5 was reported to regulate the
development of Treg cells and the transcription of interferon
(IFN)-stimulated gene (ISG) expression (Au-Yeung and Horvath,
2018). In Foxp3+ Treg cells, GCN5 deletion has no effect on Treg
in vitro but inhibits Treg function in vivo, and impairs T-effector
(Teff) cells function (Liu Y. et al., 2019). For invariant natural
killer T (iNKT) cells, the deficiency of GCN5 blocks its
development (Wang et al., 2017).

TABLE 2 | (Continued) Function of HADCs related to tumor immunity in different cell types.

Protein Cell type Target Function References

Mesenchymal Stem Cells p65 deacetylate p65 to reduce the expression of iNOS which impair the
immunosuppressive ability of MSCs

Zhou et al. (2019)

Mesenchymal Stem Cells -- induce IFN c and CXCL10 expression to recruit NK cells Yu et al. (2016b)
Ye et al. (2020)

NSCLC Snail deacetylate and stabilize transcriptional factor Snail to inhibits
transcription of Axin2 which leads to enhanced binding of β-catenin/
TCF to PD-L1 promoter

Yu et al. (2016a)

HCC -- promoted M1 macrophage polarization via NF-κB signaling Chen et al. (2015)
Sirt2 T Cells GSK3 β promote aerobic oxidation in CD8+T and differentiation of CD8+T cells

into TEM
Jiang et al. (2020)

NK Cells -- promotes Erk1/2 and p38 MAPK signaling in activated NK cells Chen et al. (2019a)
Multiple Malignant Myeloid
Cells

CDK9 enhance IFN signaling via deacetylating CDK9 which promote STAT1
phosphorylation at Ser-727

Kosciuczuk et al. (2019)

Sirt3 Prostate Cancer -- reduce the infiltration of CD4+ T cells, macrophages and neutrophils via
decreasing the level of CCL8 and CXCL2

Fu et al. (2020a)

Mø NLRC4 deacetylates NLRC4 to promote its activation which promotes
inflammasome activation

Guan et al. (2021)

Sirt4 Tregs -- inhibit FoxP3, anti-inflammatory cytokines IL-10, TGFβ and AMPK
signaling to impair the anti-inflammatory function of Treg

Lin et al. (2019)

Sirt5 CCRC -- promote immune cell infiltration Lu et al. (2021)
Sirt6 Breast Cancer IκB deacetylate IκB to suppresses the expression of PD-L1 Song et al. (2020)

Pancreatic Cancer -- increased the production of TNF and IL8 which leads to pro-
inflammatory and pro-angiogenic phenotype

Vanamee and Faustman,
(2017)

Sirt7 Breast Cancer -- positively correlated with the expression of IRF5 and PD1, M1
macrophages and depletes T cells

Li et al. (2016a)

HCC MEF2D deacetylate MEF2D to inhibit its binding to PD-L1 promoter Castillo et al. (2019)

Abbreviations: STAT, signal transducer and activator of transcription; JAK, janus kinase; NSCLC, Non-small-cell carcinoma; Treg, Regulatory T cell; IL, interleukin; IFN, interferon; PD-L1,
programmed death-ligand 1; ISG, IFN-stimulated gene; LPS, lipopolysaccharides; NF-κB, nucleus factor κ-light-chain enhancer of activated B cells; PKM, pyruvate kinase M2; CTLA,
cytotoxic T lymphocyte-associated protein; LAG, lymphocyte activation gene; Foxo, forkhead box O; APCs, antigen-presenting cells.
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At present, studies on the role of GCN5 in tumor immunity
are still relatively few. Overexpression of GCN5 and PCAF in
solid tumors in vivo enhances immune surveillance and
associated NKG2D-dependent tumor cell death (Hu et al.,
2021). Knockdown of GCN5 and PCAF in osteosarcoma and
lung cancer resulted impaired induction of the natural killer

group 2D (NKG2D) ligand Rae-1 by IL-12 and the
chemotherapeutic agent doxorubicin as inhibition of NKG2D
ligand expression was associated with tumor cell death and
accelerated tumor progression (Hu et al., 2017). On the
contrary, in head and neck squamous cell carcinoma, GCN5
acetylates H3K27, which activates transcription of PD-L1 and

TABLE 3 | Information of drugs targeted to acetylase and deacetylase.

Drugs Target enzymes IC50 Clinical trials stage References

E7386 -- -- Phase1
PRI-724 -- -- Phase1-2
A485 p300-BHC 9.8 nM -- Lasko et al. (2017)

CBP-BHC 2.6 nM -- Lasko et al. (2017)
Panobinostat (LBH589) HDAC1 2.5 nM Phase1-4 Li et al. (2020a)

HDAC2 13.2 nM
HDAC3 2.1 nM
HDAC4 203 nM
HDAC5 531 nM
HDAC7 531 nM
HDAC8 277 nM
HDAC9 5.7 nM

Chidamide (CS055/HBI-8000) HDACs 0.296 ± 0.0417 μM,112 ± 20 nM Phase1-4 Lu et al. (2017)
Chen et al. (2019b)

Trichostatin-A (TSA) HDACs 0.0125 ± 0.0012 μM Phase1-4 Chen et al. (2019b)
ACY738 HDACs 1.7 nM -- Jochems et al. (2014)
Nexturastat A -- -- --
Mocetinostat (MGCD0103) HDAC1 142 nM Phase1-2 Atadja, (2009)

HDAC2 147 nM
HDAC3 205 nM
HDAC4 >30000 nM
HDAC5 1889 nM
HDAC6 >30000 nM
HDAC7 >30000 nM
HDAC8 28167 nM
HDAC9 1177 nM
HDAC10 54.9 nM
HDAC11 104 nM

Mocetinostat (MGCD0103) HDACs 2.76 ± 1.98 μM Phase1-2 Gorshkov et al. (2019)
Domatinostat (4SC-202) -- -- Phase1-2
Valproic acid (VPA) HDAC1 0.7–1 mM Phase1-4 Gurvich et al. (2004)

HDAC2 0.7–1 mM
HDAC3 0.7–1 mM
HDAC4 1–1.5 mM
HDAC5 1–1.5 mM
HDAC7 1–1.5 mM

Tacedinaline (CI994) -- -- Phase2-3
CXD101 HDAC1 63 nM Phase1-2 Eyre et al. (2019)

HDAC2 570 nM
HDAC3 550 nM

AR42 -- -- Phase1
Belinostat(PDX101) HDAC1 17.6 nM Phase1-2 Atadja, (2009)

HDAC2 33.3 nM
HDAC3 21.1 nM
HDAC4 1,236 nM
HDAC5 76.3 nM
HDAC6 14.5 nM
HDAC7 598 nM
HDAC8 157 nM
HDAC9 44.2 nM
HDAC10 31.3 nM
HDAC11 44.2 nM

Abbreviations: P300-BHC, E1A binding protein p300-bromodomain-HAT-C/H3; CBP-BHC, cyclic-AMP, response element binding protein-bromodomain-HAT-C/H3.
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galectin-9 to evade tumor immunity (Ma et al., 2020). More
research is needed to explain this opposite trend and to provide
more precise strategies for cancer therapy.

p300/CBP
p300 (E1A binding protein p300) and CBP[CREB] (cyclic-AMP
response element binding protein) binding proteins are
considered functional homologs, sharing 63% homology at the
amino acid level and exhibiting high structural similarity and
functional redundancy (Ogryzko et al., 1996; Iyer et al., 2004; He
et al., 2021). p300/CBP as a vital transcriptional co-activator and
HAT contributes to a variety of cellular activities and plays a role
in immune-mediated diseases and cancers through chromatin
remodeling and gene activation (Karamouzis et al., 2007; Dancy
and Cole, 2015). Overexpression or mutations of p300/CBP are
found in malignant tumor, such as prostate and breast cancers
(Bouchal et al., 2011; Hickey et al., 2021).

Previous studies have found that p300 and CBP are essential
for the development and function of Foxp3+ Treg cells. Inhibition
of p300 and CBP impairs Foxp3+ Treg cells function and furthers
antitumor immunity (Liu et al., 2013; Liu et al., 2014). p300/CBP
promotes Treg differentiation by inducing T and B cells to secrete
the pro-inflammatory cytokines IL2 and IL10 (Castillo et al.,
2019). It was observed that Treg was reduced in follicular
lymphoma in tissues carrying CBP/p300 loss-of-function
mutations (Castillo et al., 2019). In breast and lung cancers,
p300/CBP inhibition can restrict tumor progression by impairing
the function of immunosuppressive cells such as regulatory
T cells and MDSCs in tumor microenvironments (Liu et al.,
2013; de Almeida Nagata et al., 2019).

Several studies reported p300 can induce the expression of PD-
L1 in liver cancer to impair CD8+ T cell-mediated anti-tumor
immunity (Xiang et al., 2020; Guo et al., 2021), probably via
acetylation of myocyte enhancer factor 2D (MEF2D).
Furthermore, targeting p300/CBP by small molecular
inhibitors such as E7386 and A485 could remarkably enhance
the efficacy of PD-L1 blockade therapy in prostate and breast
cancers in preclinical mouse models (Liu J. et al., 2020; Yamada
et al., 2021). Additionally, p300 has been reported to regulate
tumor cell immunogenicity, p300 ablations prevent
chemotherapy-induced processing and presentation of major
histocompatibility class I (MHC-I) antigens and abrogating the
rejection of low MHC-I-expressing tumors by reinvigorated CD8
cytotoxic T cells (CTLs) (Zhou et al., 2021).

Tip60
Tat-interactive protein 60-kDa (Tip60, also known as KAT5) is
one of the MYST subfamily of HATs and was originally identified
as a tat-interacting protein widely involved in DNA damage
repair, cellular activity and carcinogenesis (Zhang et al., 2017;
McGuire et al., 2019). The regulatory function of Tip60 on cancer
is dependent on cancer types. As a tumor suppressor in most
cancers such as breast cancer (Bassi et al., 2016), gastric cancer
(Sakuraba et al., 2011) and advanced stage colorectal cancer
(Mattera et al., 2009), downregulation of Tip60 leads to
defective DNA repair inducing the accumulation of genetic
mutations that can cause tumor progression (Bassi et al.,

2016). On the contrary, Tip60 promotes prostate cancer
progression via acetylation of androgen receptor (AR) to
augment AR signaling (Halkidou et al., 2003; Shiota et al.,
2010; Coffey et al., 2012).

Tip60 was found to be essential for the survival of thymic
and peripheral Treg cells (Xiao et al., 2014). Overexpression of
Tip60 promoted FOXP3-mediated transcriptional repression,
suggesting that enhancing its function would alter T cell-
mediated transcriptional inhibition (Li et al., 2007). For tumor
immunity, studies have shown that Tip60 plays a critical role
in fostering acetylation, dimerization and function in Treg
cells, leading to tumor suppression. Accordingly, targeting
ubiquitin-specific protease (Usp) 7, which controls Treg
function primarily by stabilizing expression and promoting
multimerization of Tip60 and Foxp3, limits tumor
progression (Wang et al., 2016).

HAT1
Histone acetyltransferase 1 (HAT1), also known as KAT1, was
the first identified HAT (Poziello et al., 2021), and is a type of B
histone acetyltransferase responsible for acetylating newly
synthesized histones (Yang G. et al., 2021). As an oncogene,
HAT1 is overexpressed and related to poor prognosis in a variety
of solid tumors, such as HCCs (Jin et al., 2017), nasopharyngeal
carcinoma (Miao et al., 2018), and pancreatic cancer (Fan et al.,
2019), and can be a therapeutic target (Carafa et al., 2018). This
may be due to the fact that HAT1 is involved in chromatin
assembly and DNA damage repair, and its alterations can induce
tumor development, invasion and metastasis (Poziello et al.,
2021). HAT1 is also a transcription factor that upregulates the
expression of various genes such as Bcl2L12 and Fas, and
promotes cancer cell proliferation (Fan et al., 2019).

Despite being the first HAT to be discovered, HAT1 is still one
of the least studied enzymes of its class (Poziello et al., 2021). In
pancreatic cancer, HAT1 was shown to function as an important
regulator in cancer immunity through transcriptional
upregulation of PD-L1 in tumor cells, indicating that HAT1
could be used as a novel diagnostic and prognostic marker in
immune checkpoint blockade therapy (Fan et al., 2019).

HISTONE DEACETYLASES IN TUMOR
IMMUNITY REGULATION

Based on the homologies between HDAC and yeast deacetylases,
HDACs can be divided into four sub-classes: Class I HDACs
(HDAC1, 2, 3 and 8), which are similar to yeast Rpd3, are widely
expressed in vivo and mainly located in the nucleus. Class II
HDACs (HDAC4, 5, 6, 7, 9 and 10) have been studied that
expressed in the cytoplasm and nucleus and distributed
specifically in tissues. Class III HDACs (Sirt1-7) are similar to
yeast Sir2, and its enzyme activity requires NAD+. Class IV
HDAC (HDAC11) is homologous to yeast Rpd3 and Hda1. (Li
and Seto, 2016). Studies have reported that more than 75% of
human cancer tissues possess highly expressed class I HDACs
(Nakagawa et al., 2007), besides, high expression of HDACs and
low acetylation of histones are common in cancer cells (Cacan
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FIGURE 1 | HADCs regulate tumor immunity and tumor immune microenvironment. Deacetylase regulates tumor immune response through multiple pathways.
HDAC1,3,4,6,8,9 and Sirt1,2,6,7 regulate the expression of PD-L1 by regulating the IFN signaling pathway. HDAC1,2,6 regulates the expression of MHC, which affect
the recognition of tumor cells by T cells. Sirt1, 2, 3 affect tumor immunity by changing the activity of T cells, HDAC1, 2, 10 could affect the function of Treg cells, and
HDAC5 promotes the differentiation of naive T cells into Treg cells. Sirt2,3 could affect the activity of NK cells. HDAC7 both enhances the anti-tumor function of
macrophages and the antigen presentation function of DC cells. HDAC1, 5, 6, 11 and Sirt1, 4, 5 modulate the tumor microenvironment by affecting the secretion of
cytokines. Red lines and text colors represent the promoting effects of tumor immunity, while blue represents the tumor immunosuppression effects. Dotted lines indicate
the regulation and function of cytokines. Abbreviations: T cell, T lymphocyte; NK, natural killer cell; DC, dendritic cells; MDSC, myeloid-derived suppressor cell; IFN-γ,
interferon-γ; IFNγR, interferon-γ receptor; IL, interleukin; JAK, Janus kinase; STAT, signal transducer and activator of transcription; TNF-α, tumor necrosis factor-α; Treg,
regulatory T cell; IRF, interferon regulatory factor; PD-L1, programmed death-ligand 1; MHC, major histocompatibility complex; Sirt, sirtuins; HDAC, histone
deacetylases.
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et al., 2014; Cacan, 2016; Alqinyah et al., 2017). The regulatory
role of HDACs on tumor immunity was summarized in Figure 1.

Histone Deacetylase Family
The HDAC family is a histone deacetylase subfamily that
contains HDAC1-11, whose activity is independent of NAD+.
It has been observed in multiple cancers that HDACs promotes
the proliferation of cancer cells by reducing the expression of the
cyclin-dependent kinase inhibitor p21 or TGF-β, in addition,
Class I HDACs can also promote cancer cell metastasis by
inhibiting the expression of E-cadherin (Glozak and Seto, 2007).

HDAC family plays an important regulatory role in immune
cells via its histone deacetylation activity. For instance, the effects
of HDACs have been reflected in all aspects of T cells, including
T cell development, peripheral immature T cell pool formation,
T cell activation and differentiation into effector T cells,
activation of regulatory T (Treg) cells, secretion of cytokines,
and T cell immune function (Kumari et al., 2013; Cacan, 2017;
Ellmeier and Seiser, 2018). Besides, ample evidences have
indicated that HDACs regulate the macrophage development,
differentiation, polarization, and activation through a variety of
signal pathways (Mohammadi et al., 2018).

In addition, HDAC also participates in immunomodulatory
networks in cancer cells such as STAT and NF-κB, which not only
regulate the expression of molecules in the signal pathway but
also controls the nucleus translocation and degradation of STAT
and NF-κB signal molecules (Villagra et al., 2010). Target HDACs
can increase the expression of antigen presentation molecules
such as MHC I, MHC II, CD40 or promote their translocation
(Maeda et al., 2000; Khan et al., 2008). HDAC inhibitors can also
increase the expression of PD-L1 in tumor cells, and the
combination of HDAC inhibitors and PD-1 blockers can delay
tumor progression and improve survival rate (Woods et al.,
2015).

HDAC1
HDAC1, belonging to Class I, regulates N-terminal lysine residue
deacetylation of histones to regulate gene transcription, cell cycle,
growth, and apoptosis (Willis-Martinez et al., 2010). HDAC1
were significantly up-regulated in gastric cancer and could
promote tumorigenesis and inhibit apoptosis (Yu et al., 2019).
In addition, several recent studies have shown that HDAC1
inhibition is beneficial to the therapy of cancer, thus
highlighting the cancer promoting function of HDAC1.

HDAC1/2 are required for normal T-cell development (Dovey
et al., 2013), and HDAC1 regulates T cell-mediated
autoimmunity by regulating CD4+T cells trafficking
(Hamminger et al., 2021). Inhibition of HDAC1 promoted
acetylation of histone H3/H4 in IFN-β1 promoter, and
enhanced phosphorylation of interferon regulatory factor (IRF)
3 and its binding to the IFN-β promoter, which could lead to an
anti-tumor immune response of macrophages microenvironment
(Mounce et al., 2014; Meng et al., 2016). In addition, the role of
HDAC1 in immune cells polarization has been highlighted.
Several studies have shown that HDAC1 directly up-regulating
the expression of miR-146a in macrophages, which induces
tumor associated macrophages (TAMs) to adopt the M1-like

phenotype. Besides, HDAC1 inhibition could promote the shift of
microglia from M1 to M2 (Gao et al., 2015; Ji et al., 2019).

Mounting evidence shows that HDAC1 could regulate the
expression of immune checkpoint molecules. HDAC1 inhibition
could suppress the expression of PD-L1 induced by the IFN-γ
signal pathway via down-regulating nucleus translocation of
JAK2-mediated STAT1 in gastric cancer cells (Deng et al.,
2018). In addition, the inhibition of HDAC1 could upregulate
membrane expression of MHCⅡin cervical cancer and
glioblastoma multiforme cells, and enhance the expression of
CD1d in NSCLC cells (Yang et al., 2012; Wijdeven et al., 2018).
HDAC1 also affects tumor immunity by regulating the secretion
of cytokines. The CoREST complex, composed of HDAC1/2,
LSD1, and scaffolding proteins Rcor1 and Rcor2, regulates a
variety of immune and inflammatory responses. Targeting
HDAC1/2 inhibits the binding of CoREST with IL-2 and the
IFN-γ promoter, thereby promoting their expression, inhibiting
the function of Treg, and enhancing anti-tumor immunity (Xiong
et al., 2020).

HDAC2
Similar to HDAC1 in structure, HDAC2 has been shown vital in
cardiac hypertrophy, Alzheimer’s disease, Parkinson’s and cancer
(Kramer, 2009). HDAC2 inactivation can inhibit tumor cell
growth and activate apoptosis by activating p53 and Bax (Jung
et al., 2012). HDAC2 enhances proinflammatory cytokine
production in LPS-stimulated macrophages by impairing the
expression of c-Jun which are essential for the negative
regulation of the inflammatory response (Wu et al., 2019) and
inhibits the expression of plasminogen activator inhibitor 1 (PAI-
1), TNF, and macrophage inflammatory protein-2 (MIP-2) in
macrophage cells (Fang et al., 2018). Besides, studies have shown
that HDAC2 enhances the infiltration of tumor lymphocytes and
inhibits IL6 through its histone deacetylation function (Zhang
et al., 2015; Xu et al., 2019).

P300-mediated PD-L1 acetylation at K263 inhibits the nucleus
translocation of PD-L1, whereas HDAC2 deacetylate PD-L1
K263 and promote nucleus translocation of PD-L1. In the
nucleus, PD-L1 interact with RelA and IRF proteins to form a
positive feedback pathway to promote immune escape. Besides,
treatment with HDAC2 inhibitors can also induce interferon type
III related genes IL28A and IL28B, to activate STAT1 and
increase the expression of MHC class I antigen presenting
genes, thus achieving an improved immunotherapeutic effect
(Gao et al., 2020).

HDAC3
HDAC3 plays an important role in apoptosis, cell progress, and
DNA damage repair (Sarkar et al., 2020). In colorectal cancer and
triple-negative breast cancer, the level of HDAC3 was
upregulated. HDAC3 promotes the proliferation of colorectal
cancer cells, HCC cells and glioma cells and inhibits the apoptosis
of prostate cancer cells (Tong et al., 2020).

HDAC3 inhibition was reported to inhibit lipopolysaccharides
(LPS) induced cytokine secretion in monocytes and M1
macrophages (Ghiboub et al., 2020). HDAC3 was reported to
reduce the ratios of CD4+ and CD8+ T cells infiltration in
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colorectal carcinoma through upregulating B7x expression,
which is related to a poor prognosis (Li et al., 2020b). HDAC3
inhibits the cytotoxicity of CD8+T cells and recognition ability of
NK cells in melanoma cells by inhibiting genes encoding
necessary cytotoxic proteins and key transcription factors
(Fiegler et al., 2013; Tay et al., 2020).

Interestingly, depend on the cancer type, there are opposite
reports on the regulation of PD-L1 by HDAC3. Studies have
found that expression of PD-L1 is negatively correlated with
HDAC3, suggesting that HDAC3 is a key inhibitor of PD-L1
transcription. Drugs targeting HDAC3 like resveratrol and
pioglitazone upregulate PD-L1 expression in NSCLC, breast
and colorectal cancer (Lucas et al., 2018; Wang H. et al.,
2020). In B-cell lymphoma, HDAC3 is recruited to the PD-L1
promoter by the transcriptional inhibitor BCL6. In addition,
HDAC3 inhibitors can also indirectly reduce the level of DNA
methyltransferase 1 protein and activate PD-L1 transcription.
HDAC3 inhibition combined with anti-PD-1/PD-L1 therapy can
significantly improve the efficacy of B-cell lymphoma treatment
(Deng et al., 2019). However, one study showed that the HDAC3/
STAT3 pathway transcriptionally regulates PD-L1 expression in
pancreatic ductal adenocarcinoma, and HDAC3 inhibitors
reduce the protein and mRNA levels of PD-L1 in pancreatic
cancer cells (Hu et al., 2019).

HDAC4
HDAC4, in class II, plays an important role in cell cycle
progression and developmental events (Wang et al., 2014).
HDAC4 was inhibited by miR-155 in human diffuse large
B cell lymphoma (DLBCL) cells, resulting in up-regulation of
downstream genes and induction of uncontrolled cell
proliferation (Sandhu et al., 2012).

As an important signal pathway regulating tumor immunity,
IFN signal promotes the phosphorylation of STAT and binds to
the transcription factor interferon regulatory factor1 (IRF1)
which promotes expression of PD-L1 (Kalbasi and Ribas,
2020). Although there is no direct report on the relationship
between HDAC4 and tumor immunity, studies believe that
HDAC4 can affect IFN signal. HDAC4 was reported to form a
trimer with liver X receptor (LXR)α and pSTAT1, which block the
binding of pSTAT1 to the promoter and inhibit the expression of
d IRF1, TNF-α, and IL-6 in brain astrocytes (Lee et al., 2009). In
cervical cancer cell line, HDAC4 was reported to promote type I
interferon signaling via recruiting STAT2 to IFN-α–stimulated
promoters (Lu et al., 2019).

HDAC5
HDAC5 is highly expressed in many tumors such as NSCLC, and
melanoma but lowly expressed in gastric cancer (Yang J. et al.,
2021). Several studies have shown that HDAC5 enhance the
invasion and metastasis of neuroblastoma, pancreatic cancer and
lung cancer. In addition, HDAC5 also inhibits the proliferation of
tumor cells, which may be mediated by TGF-β (Yang J. et al.,
2021).

HDAC5 has been reported to repress the production of
proinflammatory cytokine in macrophages via TNF-α
signaling (Li et al., 2017) and play an inhibitory role in

regulating tumor microenvironments. HDAC5 deficient
CD4+T cells lack the ability to transform into Tregs, while
CD8+T cells impairs the ability to produce IFN- c without
HDAC5, which may offset the immune benefit resulting from
decreased Treg function (Xiao et al., 2016). HDAC5-driven
escape tumors exhibit a significant transition from neutrophils
to macrophages. HDAC5 inhibits suppressor of cytokine
signaling 3 (SOCS3), which leads to an increase of C-C motif
chemokine ligand 2 (CCL2), recruits CCR2+ macrophages,
promotes macrophages to reaggregate into tumor
microenvironments, and promotes tumor recurrence (Cheng
et al., 2014a; Hou et al., 2020).

HDAC6
HDAC6 protein is related to tumorigenesis, cell survival and
metastasis of cancer cells (Aldana-Masangkay and Sakamoto,
2011). In breast cancer, HDAC6 promotes cell movement by
acting on the nonhistone substrates, which enhance tumor cell
movement, metastasis, and invasion. In addition, the expression
of HDAC6 is closely related to endocytosis, and inhibits EGFR
transport and degradation through α-tubulin deacetylation, thus
activating cell proliferation through the downstream pathway of
EGFR in NSCLC (Li et al., 2018).

HDAC6 and STAT3 form a complex and are recruited
together to the immunosuppressive cytokine IL-10 promoter
in antigen-presenting cells (APCs) to promote immune
tolerance (Cheng et al., 2014b). In addition, NextA, a selective
HDAC6 inhibitor, was found to increase the proportion of M1/
M2 macrophages in tumor microenvironments, promoting IFN-
γ and IL-2 levels and transformation of tumor
microenvironments from “cold” to “hot”, thus enhancing the
efficacy of immune checkpoint blocking therapy (Knox et al.,
2019b).

HDAC6 has been also reported the two opposite regulation of
PD-L1 in different tumor types. Several studies have reported that
inhibition of HDAC6 decreases expression of PD-L1 in
glioblastoma and melanoma. Selective inhibition of HDAC6
reduces the immunosuppressive activity of PD-L1 and leads to
the recovery of host antitumor activity. A study suggested these
effects may be mediated by recruitment and activation of STAT3
(M et al., 2016; Liu JR. et al., 2019). However, another study
showed targeting HDAC6 can increase expression of PD-L1 and
promote immunotherapy efficacy. Meanwhile, HDAC6 binds to
cytoplasmic Foxo1 at K242 and deacetylates Foxo1 to weak the
stability of Foxo1 and inhibit nucleus translocation, which limits
IL-17–producing helper T (TH17) pathogenicity and antitumor
effect in hepatocellular carcinoma (Qiu et al., 2020). Targeting
HDAC6 in melanoma can up-regulate the expression of tumor-
associated antigens and MHC-I molecules leading to enhance
anti-tumor immunity (Woan et al., 2015).

HDAC7, 8, 9, 10, 11
Although the studies of HDAC7, 8, 9, 10 and 11 in tumorigenesis
and progress have been widely reported, there is still a lack of
research on their role in tumor immunity. Thereby, we
summarize and describe the function of these enzymes in this
part. HDAC7, 9, 10 belongs to the class Ⅱ HDACs, HDAC8
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belongs to the class I HDACs, and HDAC11 is the only class IV
HDAC, all of them affect the initial and progress of tumors in
different ways. HDAC7 is considered a regulator of apoptosis in
developing thymocytes (Dequiedt et al., 2003) and promoted cell
proliferation through regulation of c-myc (Zhu et al., 2011).
HDAC8 has been reported to promote the proliferation of
hepatocellular carcinoma and inhibit apoptosis. On the
contrary, targeting of HDAC8 inhibits the proliferation of lung
cancer cell lines (Chakrabarti et al., 2015). HDAC9 is upregulated
in various tumors such as glioblastoma, medulloblastoma (Yang
C. et al., 2021). HDAC10 function as a tumor suppressor in stem-
like lung adenocarcinoma and has been shown to interact with
HDAC2 (Fischer et al., 2002; Li et al., 2020c). Notably, HDAC11
as the smallest HDAC isotype possesses very low deacetylase
activity. Studies have shown that HDAC11 is highly expressed in
prostate cancer, ovarian cancer, breast cancer, and NSCLC.
Besides, targeting HDAC11 can enhance chemosensitivity (Liu
SS. et al., 2020; Nunez-Alvarez and Suelves, 2021).

HDAC7, 8, 9, 10, 11 regulates immune function via affecting
the polarization, antigen presentation, infiltration and activation
of immune cells via various mechanisms. Previous studies have
shown that HDAC7 and HDAC9 are involved in immune
response mediated by immune effector cells. HDAC7 blocks
the induction of genes that involved in macrophage immunity,
phagocytosis, inflammation and cytokine production (Barneda-
Zahonero et al., 2013). Besides, in uterine macrophages, HDAC9
deficiency promotes M2 macrophage polarization (Liu et al.,
2021). HDAC9 also enhance immune response via enhancing
dendritic cell antigen presentation and CD8+T cell TME
infiltration (Ning et al., 2020). In addition, HDAC10 and
HDAC11 promote the inhibition of immune response by
immune regulatory cells. HDAC10 deletion Treg exhibited a
stronger immune inhibitory effect and represses inflammation
after intracerebral hemorrhage (Dahiya et al., 2020). MDSCs
without HDAC11 exhibit stronger inhibitory activity against
CD8+T cells via inducing high level of immunosuppressive
enzymes expressed in CD8+T cells (Chen et al., 2021).

In addition, the secretion of cytokines is also an important
apparent regulatory function of these enzymes. HADC7 represses
the production of IFN-γ and promotes CD4+ T cells proliferation,
as well as increasing the expression of the proinflammatory
cytokine IL-1β in macrophage (Myers et al., 2017; Das Gupta
et al., 2020). Similarly, in T cells, HDAC11 knockout increases the
expression of transcription factors Eomesodermin and Tbx21,
which reduce the production of inflammatory cytokines and
increase the expression of IFN-γ (Woods et al., 2017). Besides,
HDAC11 can bind to the promoter of IL-10 to inhibit IL-10
expression and induce inflammatory antigen-presenting cells to
activate primordial antigen-specific CD4+T cells (Villagra et al.,
2009).

In terms of tumor immunity, HDAC8, 9, and 10 have been
reported to be related to the expression of immune checkpoint.
HDAC8 can promote tumor immunity by inhibiting the
expression of PD-L1. In melanoma cells, HDAC8
competitively inhibits the transcription factor to bind the PD-
L1 promoter, thus inhibiting the expression of PD-L1 (Wang YF.
et al., 2018). However, opposite studies have shown that HDAC8

inhibition increases the expression of NKG2D ligand in glioma
cells which enhanced the recognition ability and cytotoxicity of
NK cells, and activates immune cells in hepatocellular carcinoma
resulting in an effective and lasting response to ICB (Yang W.
et al., 2021; Mormino et al., 2021). On the contrary, HDAC9 and
HDAC10 are opposite to HDAC8 in up-regulating PD-L1. One
study has suggested that HDAC9 can significantly promote
infiltration of immune cells and increase expression of
immunological molecules such as PD-L1, CTLA4 and LAG3
in clear cell renal cell carcinoma (Fu Y. et al., 2020). In
addition, the expression of HDAC10 in NSCLC was positively
correlated with the expression of PD-L1, and the level of PD-L1 is
significantly higher than paracancerous tissues, indicating a poor
prognosis (Liu X. et al., 2020). Besides, HDAC10 inhibits NK cell-
mediated antitumor immunity in hepatocellular carcinoma via
recruiting EZH2 to block the CXCL10 promoter (Bugide et al.,
2021).

Sirtuin Family
The mammalian Sirtuin protein family is a homologue of Sir2,
which can regulate various processes in mammalian cells and
play a crucial part in regulating aging, metabolism, gene
transcription, and stress responses (such as
neurodegeneration, diabetes, cardiovascular disease and
many types of cancer) (Michan and Sinclair, 2007). Sirtuins
plays an indispensable role in tumorigenesis and development
through cellular effects to genomic instability (regulation of
cell cycle, DNA repair, cell survival and apoptosis), such as
modulating cancer-related metabolism and changing the
tumor microenvironment. There are few studies available.
(Palmirotta et al., 2016).

Sirt1
Sirt1 (Sirtuin 1) mainly locates in the nucleus, and can removes
acetyl groups from proteins. Sirt1 can inhibit transcription by
directly deacetylating histones H1 lys26, H3 lys9、lys14, and H4
lys16 and by recruiting other ribozymes to chromatin to promote
histone and DNA methylation changes that regulate chromatin
function (Vaquero et al., 2004).

At present, the research of Sirt1 in tumor immunity is
gradually in-depth. In T cells, Sirt1 enhances the activity of
Foxo1 by deacetylating Foxo1, and promotes the expression of
Klf2 and Ccr7 genes, thereby improving the anti-tumor immune
response of T cells (Chatterjee et al., 2018). Additionally, the
deacetylation of FoxP3 induced by Sirt1 is critical to the
immunosuppressive function of Treg, resulting in Foxp3
degradation and reduced Treg cell number and activity (van
Loosdregt et al., 2010). Sirt1 could enhance the tumor killing
ability of macrophages, and deacetylate K310 of the p65 subunit
in NF-κB, thereby increasing the infiltration of CD8+T cells in
tumors or increasing the expression of CXCL10, so as to recruit
NK cells and macrophages into tumor microenvironments (Yu
et al., 2016a; Yu et al., 2016b; Zhou et al., 2019; Ye et al., 2020).
Sirt1 can enhance the activity of NF-κB by promoting the
phosphorylation of p65 and IκB, thereby promoting the
polarization of M1 in hepatocellular carcinoma (Zhou et al.,
2019).
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In tumor microenvironments, Sirt1 participates in the
immune response by activating the pro-inflammatory pathway
(Chen et al., 2015). Pharmacological activation of Sirt1 increases
the stability of the transcription factor snail, enhances the binding
of β-catenin/TCF to the PD-L1 promoter, and promotes the
expression of PD-L1 in NSCLC (Yang M. et al., 2021). Further
research is needed on the specific regulation details of Sirt1 in
tumor microenvironment.

Sirt2
Sirt2 is the only Sirtuin protein found mainly in the cytoplasm,
and it is also expressed in mitochondria and nucleus (Wang Y.
et al., 2019). Sirt2 plays an important role in cell differentiation,
senescence, infection, inflammation, oxidative stress, and
autophagy by regulating the function of important oncogenes,
such asMyc and KRAS (Chen et al., 2020). Although there is clear
evidence of that Sirt2 is abnormally expressed in various tumors,
its causal relationship with tumorigenesis is still unclear, and its
effect on the development of different kinds of tumors and its
molecular mechanism are still contested (Song et al., 2016; Wang
Y. et al., 2019).

Studies have found that the level of Sirt2 is positively
correlated with CD8+ effector memory T (TEM) cells in
peripheral T lymphocytes from breast cancer patients. Sirt2
can inhibits GSK3 β acetylation in CD8+T cells by promoting
aerobic oxidation, which promotes the differentiation of
CD8+T cells into TEM (Jiang et al., 2020). In chemically
induced hepatocellular carcinoma mice, it has been found that
sirt2 was induced in the immune microenvironment of hepatoma
cells to enhance the tumor-killing activity of NK cells by
promoting mitogen-activated protein kinase (MAPK) in
activated NK cells (Chen M. et al., 2019). In addition, Sirt2
can regulate IFN-driven gene transcription by regulating the
phosphorylation of Ser-727 on IFN I-dependent STAT1
through deacetylation of CDK9 Lys48 (Kosciuczuk et al., 2019).

Sirt3
Sirt3 plays an important role in mitochondrial function, aging,
and carcinogenesis by targeting a series of key regulatory factors
and their related pathways in tumors to regulate cell death (Chen
et al., 2014). A study has shown that Sirt3 deacetylates NLRC4 to
promote its activation, thereby promoting the activation of
inflammasomes and mediating the production of the pro-
inflammatory cytokine IL-1β in macrophages (Guan et al., 2021).

Blocking Sirt3 and Sirt6 can inhibit the activation of RIPK3
and MLKL in prostate cancer cells, thus enhancing necrotizing
apoptosis and promoting infiltration of CD4+T cells,
macrophages and neutrophils, so as to inhibit the progression
of cancer (Fu W. et al., 2020).

Sirt4
Sirt4 is located in mitochondria and plays an important role in
cellular metabolism and tumor biology (Tomaselli et al., 2020). It
is mostly regarded as a tumor suppressor gene, and its expression
is low in breast, gastric, and colon cancers (Huang and Zhu,
2018). Sirt4 can inhibit FoxP3, anti-inflammatory cytokines IL-

10, TGFβ and AMPK signal in Treg cells, which impairs their
anti-inflammatory function (Lin et al., 2019).

Sirt5
Sirt5 promotes cancer cell proliferation by targeting a variety of
metabolic enzymes including GLS, SHMT2, and PKM2 (Abril
et al., 2021). It can maintain histone acetylation and methylation
levels in melanoma, thereby promoting the corresponding
expression of MITF and c-myc (Milling and Edgar, 2019). It is
reported that Sirt5 affects the tumor immune microenvironment
through its succinylation function, which is negatively correlated
with Treg infiltration in clear cell renal cell carcinoma (Lu et al.,
2021).

Sirt6
Sirt6 is a NAD + -dependent histone H3K9 deacetylase that
prevents genomic instability, maintains telomere integrity, and
regulates metabolic homeostasis and DNA repair (Desantis et al.,
2018). It inhibits IGF-Akt and NF-κβ signal transduction by the
deacetylation of H3K9 (Sundaresan et al., 2012). High Sirt6
expression levels are observed in the immune system. It may
be a possibly a negative regulator of immune cell function and
metabolism, which related to neutrophil inactivation and
increased the polarization to M2 macrophages (Pillai and
Gupta, 2021).

Induction of Sirt6 expression in 4T1 cells inhibits the
activation of NF-κB and suppresses the transcription of
PD-L1 (Song et al., 2020), which suppresses the
proliferation and transcription of PD-L1 in Treg cells
(Vanamee and Faustman, 2017). In addition,
overexpression of Sirt6 in pancreatic cancer cells increases
the production of TNF and IL8 which has nothing to do with
the activation of NF-κB, thus leading to pro-inflammatory and
pro-angiogenic phenotype (Bauer et al., 2012).

Sirt7
Sirt7 plays an important role in ribosomal biogenesis, cellular
stress response, genomic stability, metabolic regulation, aging,
and cancer (Ford et al., 2006; Blank and Grummt, 2017; Tang
et al., 2021). Compared with other nucleus-localized Sirts, Sirt7
exhibits weaker deacetylase activity. The enzyme activity of Sirt7
targets acetylated H3K18 and succinylated H3K122 (Li L. et al.,
2016).

Sirt7 is high expressed in breast cancer, which is an indicator
of poor prognosis, and the expression of Sirt7 is positively
correlated with the expression of IRF5 and PD1, which
increases M1 macrophages, and depletes T cells in the
immune environment of breast cancer (Huo et al., 2020). Sirt7
knockout hepatocellular carcinoma cells expressed higher levels
of PD-L1 by inhibiting the deacetylation of MEDF2D and
reduced T cell infiltration and activation. Moreover, Sirt7
inhibition combined with PD1 blocking therapy can
significantly improve the efficacy of hepatocellular carcinoma
(Xiang et al., 2020).
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TARGETING ACETYLATION IN TUMOR
IMMUNOTHERAPY

Immune checkpoint blockades such as anti-PD-1/PD-L1 and
anti-CTLA4 have shown promising effects in cancer treatment.
However, only few patients benefit from immunotherapy. The
combinations of immunotherapy and acetylation-modified drugs
(HAT inhibitors and HDAC inhibitors) have attracted more
attention in tumor treatment due to the role of acetylases in
the regulation of tumor and tumor immunity.

Currently available HAT inhibitors are primarily target CBP
and p300, including E7386 (Yamada et al., 2021), PRI-724
(Osawa et al., 2015; Osawa et al., 2019), and A485 (Lasko
et al., 2017; Liu J. et al., 2020), which have shown promising
effects in improving anti-PD1 immunotherapy. Among them,
E7386 (Yamada et al., 2021) and PRI-724 (Osawa et al., 2015;
Osawa et al., 2019) inhibit the interaction between CBP and/or
β-catenin, which can increase the infiltration of CD8+ T cells.
A485 (Lasko et al., 2017; Liu J. et al., 2020) directly targets p300/
CBP and inhibits the secretion of exosomal PD-L1.

Correspondingly, partial HDAC inhibitors can also modulate
immunotherapies. Some drugs enhance tumor immunity by up
regulating PD-L1 in tumor cells, such as Panobinostat(LBH589)
(Atadja, 2009;Woods et al., 2015), Chidamide (CS055/HBI-8000)
(Ning et al., 2012; Yan et al., 2020; Que et al., 2021), Trichostatin-
A (TSA) (Li et al., 2021) and ACY738 (Regna et al., 2016; Maharaj
et al., 2020). Other drugs can achieve antitumor immunity by
increasing the infiltration of cytotoxic cells, including Nexturastat
A (Knox et al., 2019a), Mocetinostat (Boumber et al., 2011; Briere
et al., 2018), Domatinostat (4SC-202) (Bretz et al., 2019),
Chidamide (CS055/HBI-8000) (Ning et al., 2012; Yan et al.,
2020; Que et al., 2021), Valproic acid (VPA) (Xie et al., 2018;
Adeshakin et al., 2020), Tacedinaline (CI994) (Berger et al., 1990;
el-Beltagi et al., 1993; LoRusso et al., 1996; Burke et al., 2020),
CXD10 (Eyre et al., 2019; Blaszczak et al., 2021), Nexturastat A
(Knox et al., 2019a), AR42 (Booth et al., 2017) and Trichostatin-A
(TSA) (Li et al., 2021), which can improve the infiltration of
macrophages, NK cells, and neutrophils. In addition,
Mocetinostat (Boumber et al., 2011; Briere et al., 2018),
Chidamide (CS055/HBI-8000) (Ning et al., 2012; Yan et al.,
2020; Que et al., 2021), Valproic acid (VPA) (Xie et al., 2018;

Adeshakin et al., 2020), Trichostatin-A (Li et al., 2021) and
Belinostat (PDX101) (Atadja, 2009; Llopiz et al., 2019) can
also play an immune regulatory role by reducing the
infiltration of immunosuppressive cells such as myeloid-
derived suppressor cell (MDSC) and T-regulatory cells (Tregs).
Finally, ACY738 (Regna et al., 2016; Maharaj et al., 2020)
enhances MHC-restricted antigen presentation by upregulating
tumor cell MHC-I expression.

CONCLUSION

Over the last few decades, we have recognized acetylation plays an
important role in the regulation of protein function, chromatin
structure and gene expression. Research into this field has covered
metabolism, immunity, cell cycle, DNA damage repair, apoptosis
and autophagy. New discoveries reveal the evidence that
acetylation may also influence the tumor immunity through
several pathways including regulating the expression and
function of immune checkpoint molecules and antigens in
tumor cells, as well as processes such as infiltration, secretion
of cytokines and antigen presentation by immune cells. Emerging
interest in acetylation research has been centered on the use of
HAT or HDAC inhibitors that have shown great potential for
improving immunotherapeutic outcomes. Further studies should
focus on safety and the best way to combine these drugs with
various immunotherapies to conquer cancer in the future.
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GLOSSARY

HAT histone acetyltransferase

HDAC histone deacetylase

ICs immune checkpoints

PD-1 programmed cell death protein 1

PD-L1 programmed death-ligand 1

CTLA-4 cytotoxic T lymphocyte-associated protein 4

LAG lymphocyte activation gene

ACT adoptive T-cell therapy

ICB immune checkpoint blockade

MHC major histocompatibility class

CTLs cytotoxic T cells

IL interleukin

Tregs regulatory T cells

IRF interferon regulatory factor

IFN interferon

TNF tumor necrosis factor

NK natural killer cell

Sirt Sirtuin

NF- κ B nucleus factor κ-light-chain enhancer of activated B cells

CXCL C-X-C motif chemokine ligand

EMT epithelial-mesenchymal transition

MDSCs myeloid-derived suppressor cells

NSCLC Non-small-cell carcinoma

Lys lysine

Ser serine

JAK Janus kinase

STAT signal transducer and activator of transcription

TAM tumor associated macrophage

CoREST repressor element 1 silencing transcription factor corepressor

DLBCL diffuse large B cell lymphoma

Foxo forkhead box O

NCOR2 nucleus receptor co-repressor 2

EZH enhancer of zeste homolog 2

APC antigen-presenting cell

TEM effector memory T

RIPK receptor interacting protein kinase

MLKL mixed lineage kinase domain like pseudokinase

TGF transforming growth factor

AMPK AMP-activated protein kinase

GBM glioblastoma
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