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Abstract: Chronic kidney disease (CKD) is associated with aggravating factors which can affect
both body composition and nutritional status. The purpose of the present systematic review was
to investigate the potential effects of any physical activity on body composition or nutritional
status among patients with stage 5 CKD undergoing hemodialysis (HD). A literature search on
PubMed, Scopus, Web of Science, Google Scholar, and Cochrane was conducted and 14 randomized
clinical trials were included. Skeletal muscle index and mid-arm muscular circumference increased
after resistance exercise, and the results on body mass index, % body fat, and lean body mass
varied. Serum albumin and C-reactive protein, in most cases, showed a slight increase and decrease,
respectively. An improvement was also observed in body strength and overall performance status.
The results suggest that physical activity can be beneficial for both the body composition and
nutritional status of patients undergoing HD and can help in the prevention of sarcopenia. However,
further research is needed mainly in the field of nutritional status.

Keywords: chronic kidney disease; hemodialysis; physical activity; nutritional status;
body composition; sarcopenia

1. Introduction

Chronic kidney disease (CKD) is a major health problem with an estimated global prevalence
of 11–13% [1]. Chronic kidney disease progression is divided into five stages and patients in the last
stage are characterized by a progressive kidney failure and the need of renal replacement therapy
(RRT), i.e., hemodialysis (HD), peritoneal dialysis (PD) or transplantation [2]. In CKD, physiological
alterations of metabolism and physiology of the body are present such as deterioration of renal
function, uremia as well as electrolyte and mineral derangements [3]. Patients with end-stage renal
disease (ESRD) have increased risk of cardiovascular diseases (CVDs) and subsequently higher
mortality risk compared to healthy adults [4]. Moreover, in stage 5 CKD there is a higher prevalence of
malnutrition, chronic inflammation and oxidative stress, anemia, vitamin D deficiency, insulin resistance,
functional capacity deterioration, lean body mass (LBM) wasting, and cachexia [5–8]. Nutritional status
seems to worsen in long dialysis periods, and this is associated with the high rate of muscle mass and
fat wasting [9] as well as a decrease in health-related quality of life (HrQoL) [10,11]. Decreased nutrient
intake, due to the fact of anorexia or even dietetic restrictions, is also a common problem of stage 5
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CKD [12]. The aforementioned alterations seem to have a negative impact on nutritional status and
negatively affect body composition in patients undergoing HD [8,13,14].

Muscle functionality in patients with stage 5 CKD has been found to be compromised in previous
studies [15–17]. This can be associated with lower performance status, physical activity intolerance,
and muscle weakness [17], factors that can contribute to a higher percentages of patients with CKD
leading a sedentary lifestyle [17,18]. Sarcopenia, the loss of skeletal muscle mass and its functionality,
is highly prevalent in patients with CKD and is strongly associated with higher morbidity and
mortality [19]. Patients with sarcopenia progressively lose muscle mass and strength, whereas the
degree of sarcopenia is associated with the stage of CKD, especially in men [20]. In older adults,
where sarcopenia is even more frequent due to the impact of aging, lower physical activity, and more
prevalent ESRD, sarcopenia is even more profound and most of the time is refractory [21]. According to
recently published studies, sarcopenic obesity, i.e., the co-existence of sarcopenia and obesity, not only
diminishes any potential benefit from obesity (described as “obesity paradox”) but leads to substantially
worse outcomes [22–25].

Enhancing physical activity has shown a beneficial impact on improving body composition in
healthy subjects [26]. However, in patients with CKD, the symptoms of anemia, vascular dysfunction
(arterial stiffness), muscle abnormalities, chronic metabolic acidosis, and inflammation can induce
protein degradation which is associated with exercise intolerance and sedentary behavior among
this population [27–29]. Moreover, there is a growing interest of the effect of physical activity and
the overall health in patients with CKD, as it is considered to be one of the best ways to preserve
muscle mass in this population [30]. According to the current guidelines for patients with CKD,
including patients undergoing HD, physical activity is not contraindicated; on the contrary, it is
considered to act beneficially [31]. However, HD patients have to counteract the “obligatory” sedentary
time during HD sessions, resulting in even lower physical activity levels, lower physical performance,
and a lower HrQoL [32].

In previous systematic reviews, the beneficial effects of exercise on the physical health of patients
undergoing HD [33–38] as well as on the QoL were illuminated [39–45]. In two studies by Lu et al. [46]
and Molsted et al. [47], the positive effects of exercise on muscle mass and muscle strength in patients
undergoing HD were also stressed out. Nevertheless, according to our knowledge, there are no
published studies in which the total body composition and nutritional status of patients undergoing
HD in relation to exercise have been examined.

2. Materials and Methods

The current study is a systematic review of randomized clinical trials (RCTs). The PubMed,
Scopus, Web of Science, Google Scholar, and Cochrane database searches were performed (up to
21 July 2020) according to the following main search string: ((physical activity) OR (exercise)) AND
(hemodialysis OR (renal failure) OR (kidney failure)). Our systematic review was conducted according
to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement [48]
(detailed information can be found in Table S1) and the Protocol was electronically submitted in the
Prospero Library (CRD42020181769).

Initially, the output of our results (15.982 studies) was input into a reference database (EndNote
X7 for Windows, Thomson Reuters) and duplicates were removed. Then, all titles and abstracts were
examined for relevance by two researchers (DB and AS), and a third reviewer KAP was consulted when
any doubts emerged. Overall, this resulted in the exclusion of 15.964 studies for not complying with the
inclusion/exclusion criteria. The population of interest were patients undergoing HD with a duration
of treatment of more than 3 months, >18 years old, and engaged in any type of physical activity.
The control for the eligible RCTs were patients undergoing HD for more than 3 months, >18 years old
but without performing significant physical activity at the baseline of intervention. Incomplete studies,
studies with different control groups, studies not in the English language, or published before 2000
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were excluded. As a result, 18 RCT studies [49–66] were characterized as acceptable; details regarding
the eligibility process can be found in the flow diagram presented in Figure 1.

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow
diagram of the study selection process.

The main outcomes were the differences in nutritional status between the intervention and
control groups using the examined serum albumin (sALB) and C-Reactive protein (CRP) and the
effect of exercise on body composition using as the main evaluation variables: body mass index (BMI),
mid-arm muscular circumference (MAMC) measurements, % of body fat (%BF), lean body mass (LBM),
and skeletal muscle index (SMI) assessment. Muscle and fat mass (FM) evaluation methods included
anthropometry (i.e., skinfold thickness and circumference measurements), computed topographies,
dual-energy x-ray absorptiometry (DEXA), multiple-frequency bioelectrical impendence analysis (BIA)
by various methods (i.e., body composition monitor, BCM; Fresenius Medical Care, Bad Homburg,
Germany Maltron Inc., BioScan 920-2S Multifrequency Analyzer). The evaluation of total muscle
strength, functionality, and the effects on performance status were reported as secondary outcomes.
Assessment tools for hand grip strength (HGS) were a variety of dynamometers (Chatillon CSD 200
Dynamometer; Ametek Inc, Paoli, PA; CV, 9.4%, Lafayette Instrument, Lafayette, IN, T.K.K. 5401
GRIP D, Takei Science Instruments, Niigata, Japan, Cybex Inc., Ronkonkoma, NY, Takei TKK 5001
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Tokyo, Japan, Jamar Hydraulic Hand Dynamometer) and the Wells Bench test. Exercise performance
evaluations were conducted mainly by walking tests. The most common test was the 6 min walk test
(6MWT) [67] or other similar tests.

The quality evaluation of the eligible studies was conducted using the Cochrane Collaboration
tool to assess risk of bias [68].

3. Results

The main characteristics of the included studies are presented in Table 1. In total, 945 patients
undergoing HD were included in our study. The duration of physical activity intervention varied from
8 weeks to 2 years in eligible studies, and the frequency ranged from 2 to 4 times per week.

The assessment of risk of bias was conducted for all the 18 studies. In 11 studies, high or low
unclear risk of bias was detected due to the absence of blinding of participants and/or outcome
assessment [49–53,55,57,60,62,64,65]. Five studies were considered as low or unclear risk of bias
because of selective reporting [49,55,57,62,65], and in only three studies high, or unclear risk of bias
was detected due to the incomplete outcome of the data [55,63,66]. A summary of the assessment of
risk of bias can be found in Figures 2 and 3. A p-value <0.05 was considered of statistical significance.
Statistical assessment of included studies included paired t-test, Wilcoxon or Mann–Whitney U test as
appropriate and/or analysis of covariance (ANCOVA). These p-values show the level of significance of
seen changes after the exercise parameters.

Figure 2. Risk of bias graph of included studies.
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Figure 3. Risk of bias summary for included studies.
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Table 1. Characteristics of included Studies.

Identity Exercise
Type

Strength
Assessment

Tool

Performance
Status

Assessment

Body
Composition
Assessment

Tool

Participants
Exercise
Group

Female/Male
Exercise
Group

Mean Age
Exercise
Group
(Years)

Participants
Control
Group

Female/Male
Control
Group

Mean Age
Control
Group
(Years)

Abreu et al. [49]

Resistance
exercise

3 times/week
for 12 weeks

N/A N/A
Circumferences
and skinfold

thickness
25 54.5%/45.5% 45.7 ± 15.2 19 61.5%/38.5% 42.5 ± 13.5

Cheema et al. [50]

Resistance
exercise

3 times/week
for 12 weeks

HGS 1 6MWT

Computed
tomography

and
standard

protocols by
dietician

24 7/17 60.0 ± 5.3 25 8/17 65.0 ± 12.9

Chen et al. [51]

Resistance
exercise

2 times/week
for 24 weeks

NA NA DEXA 22 10/12 71.1 ± 12.6 22 11/11 66.9 ± 13.4

Cheng et al. [52]

Resistance
exercise

3 times/week
for 2 years

N/A 6MWT N/A 67 28/39 54.6 ± 12.6 65 25/40 55.8 ± 11.98

Cooke et al. [53]

Aerobic
exercise

3 times/week
for 16 weeks

HGS 2
6 m course

as quickly as
possible

N/A 10 3/7 58.2 ± 17.2 10 3/7 52.5 ± 15.4

Frih et al. [54]

Resistance
training

4 times/week
for 16 weeks

HGS 3 6MWT N/A 21 0/21 64.2 ± 3.4 20 0/20 65.2 ± 3.1

Groussard et al. [55]

Aerobic
exercise

3 days/weak
for 3 months

NA 6MWT DEXA 8 3/5 66.5 ± 4.6 10 3/7 68.4 ± 3.7
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Table 1. Cont.

Identity Exercise
Type

Strength
Assessment

Tool

Performance
Status

Assessment

Body
Composition
Assessment

Tool

Participants
Exercise
Group

Female/Male
Exercise
Group

Mean Age
Exercise
Group
(Years)

Participants
Control
Group

Female/Male
Control
Group

Mean Age
Control
Group
(Years)

Johan-sen et al. [56]

Resistance
exercise

3 times/week
for 12 weeks

HGS 4

Walking 6 m
at their

usual pace
and as fast
as possible

DEXA 20 8/12 54.4 ± 13.6 20 6/14 56.8 ± 13.8

Kopple, et al. [57] *

Aerobic
exercise

3 times/week
for 18 weeks

N/A N/A DEXA 10 4/6 45.9 ± 4.1 14 5/9 41.3 ± 3.3

Kopple et al. [57] *

Resistance
training

3 times/week
for 18 weeks

N/A N/A DEXA 15 6/9 46.0 ± 2.7 14 5/9 41.3 ± 3.3

Kopple et al. [57] *

Combined
exercise

3 times/week
for 18 weeks

N/A N/A DEXA 12 5/7 42.7 ± 3.8 14 5/9 41.3 ± 3.3

Liao et al. [58]

Aerobic
exercise

3 times/week
for 12 weeks

N/A 6MWT DEXA 20 12/8 62 ± 8 20 11/9 62 ± 9

Lopes et al. [59] #

Resistance
exercise

(moderate
load)

3 times/week
for 12 weeks

HGS N/A DEXA 14 6/8 48.1 ± 10.8 20 1/13 56.9 ± 12.4

Lopes et al. [59] #

Resistance
exercise

(heavy load)
3 times/week
for 12 weeks

HGS N/A DEXA 16 7/9 56.2 ± 12.5 20 1/13 56.9 ± 12.4
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Table 1. Cont.

Identity Exercise
Type

Strength
Assessment

Tool

Performance
Status

Assessment

Body
Composition
Assessment

Tool

Participants
Exercise
Group

Female/Male
Exercise
Group

Mean Age
Exercise
Group
(Years)

Participants
Control
Group

Female/Male
Control
Group

Mean Age
Control
Group
(Years)

Marinho et al. [60]

Resistance
exercise

3 times/week
for 8 weeks

N/A N/A BCM 6 3/3 71.5
(58.5–87.2) * 7 4/3 76.0

(59.0-83.0) *

Olvera-Soto et al.
[61]

Resistance
exercise

2 times/week
for 12 weeks

HGS 5 N/A
Circumferences

and
skinfolds

30 16/14 28.5
(23–46.5) * 31 12/2019 29 (19–38) *

Rosa et al. [62]

Resistance
exercise

3
times/weeks
for 12 weeks

Wells Bench
test 6MWT DEXA 28 8/2020 54.5 ± 11.97 24 9/15 57.10 ± 16.20

Silva et al. [63]

Aerobic
exercise

3 times/week
for 12 weeks

N/A N/A N/A 14 7/7 50 ± 17.2 14 6/8 58 ± 15.0

Song et al. [64]

Resistance
exercise

3 times/week
for 12 weeks

HGS 6 N/A InBody s107 20 12/8 52.1 ± 12.4 20 8/12 54.6 ± 10.1

Suhardjonoc et al.
[65] @

Aerobic
exercise

2 times/week
for 12 weeks

HGS 6

walk 4 m
back and

forth for an
8 m distance

BIA 42 14/28 49.8 ± 11.7 39 21/18 50.5 ± 10.8

Suhardjonoc et al.
[65] @

Combined
exercise

2 times/week
for 12 weeks

HGS 6

walk 4 m
back and
forth for a

total
distance of

8 m

BIA 39 21/18 50.5 ± 10.8 39 21/18 50.5 ±10.8
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Table 1. Cont.

Identity Exercise
Type

Strength
Assessment

Tool

Performance
Status

Assessment

Body
Composition
Assessment

Tool

Participants
Exercise
Group

Female/Male
Exercise
Group

Mean Age
Exercise
Group
(Years)

Participants
Control
Group

Female/Male
Control
Group

Mean Age
Control
Group
(Years)

Wilund et al. [66]

Aerobic
exercise

3 days/week
for 4 months

N/A N/A N/A 7 4/3 60.8 ± 3.2 8 5/3 59.0 ± 4.9

N/A: not applicable; 6MWT: 6 min walk test; BC: body composition; DEXA: dual-energy X-ray absorptiometry, BIA: bioimpedance analysis (Maltron Inc., BioScan 920 2S Multifrequency
Analyzer); BCM: body composition monitor; HGS: handgrip strength; *,#,@ same control group; 1 isometric digital dynamometer (Chatillon CSD 200; Dynamometer; Ametek Inc, Paoli, PA;
CV, 9.4%); 2 hand dynamometer (Lafayette Instrument, Lafayette, IN); 3 dynamometer (T.K.K. 5401 GRIP D, Takei Science; Instruments, Niigata, Japan); 4 computerized dynamometer
(Cybex Inc., Ronkonkoma, NY); 5 Analogue Handgrip Dynamometer Takei TKK 5001 Tokyo, Japan; 6 Jamar Hydraulic Hand Dynamometer; 7 Biospace, Seoul, Korea. Values are presented
as: mean ± SD. * Median (interquartile range).
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3.1. Body Mass Index (BMI)

Results regarding BMI changes among patients undergoing HD after the exercise intervention are
presented in Table 2. These interventions (resistance training and/or pedaling) lasted for 12–18 weeks
and BMI was calculated at baseline and at the end of the intervention. Body mass index was found to be
increased in the intervention group in comparison to the non-active group (0.3 versus −0.1, 0.28 versus
0.2, 0.25 versus 0.03, 0.1 versus −0.3 accordingly) [50,53,55,62]. Similarly, Abreu et al. reported a
significantly greater reduction of BMI in the control group versus the intervention group (−0.3 versus
−0.1) [49]. In a study by Kopple et al. [57], a reduction in BMI was detected in all exercising groups
irrespective of the type of training, (i.e., −0.3 m/kg2 in the endurance training group, −1.0 m/kg2 in
the strength training group, and −0.2 m/kg2 in the combined group), whereas in the control group,
BMI increased by 0.1 m/kg2 at the end of the intervention [57]. The same outcomes were reported by
Marinho et al. [60], where resistance exercise led to a slight reduction (−0.1 m/kg2) of the BMI in the
intervention group, while in the non-active group the reduction was found to be higher by 0.2 kg/m2

at the end of the intervention. Finally, in a study by Liao et al. [58], pedaling on a cycle ergometer
during HD did not have any significant effects on BMI, while non-active patients reported a higher
BMI (0.24 kg/m2) at the end of the study. On the contrary, pedaling in the Wilund et al. [66] study led
to slight increase in BMI in the active patients in comparison to the non-active group in which a slight
decrease was observed [66].

3.2. Mid-Arm, Waist, and Midthigh Circumferences

Increased MAMC was found in the physical active groups with patients following a program of
resistance exercise for 30–50 min, 2–3 times/week in comparison to the non-active groups [49,50,61,64].
Moreover, in the studies by Abreu et al. [49] and Song et al. [64], waist circumference (WC) was found
to be lower in the active subjects, whereas in non-active patients, WC increased [49,64]. In a study by
Cheema et al. [50] an increase in midthigh circumference was reported among active patients, while the
control group was found to have a slight decrease (+0.7 versus −0.3 cm, respectively) [50]. The results
regarding circumferences are presented in Table 3.

3.3. Body Fat

The effect of exercise on the percentage of body fat (%BF) seemed to vary among the studies
included in this systematic review, an effect that can be partially attributed to the type of exercise
performed [51,55–57,59–62,64]. The results regarding %BF can be found in Table 4. In the studies by
Johansen et al. [56] and Olvera-Soto et al. [61] there was a significantly higher increase in %BF in the
exercise group versus the control group [56,61]. According to Rosa et al. [62] after 12 weeks of follow-up,
%BF was reduced, but in non-active subjects the reduction was greater (mean difference −1.23% in the
non-active versus −0.71% in the active group) [62]. Marinho et al. [60] reported a higher reduction
in %BF in the intervention group compared to the controls (mean difference −0.9% versus −0.6%,
respectively) [60]. The three types of exercise (endurance cycling, strength, and combined exercise)
in the study by Kopple et al. [57] resulted in different outcomes for %BF [57]. Endurance cycling
decreased %BF by ~0.5%, resistant exercise led to a slight increase in body fat by ~0.2%, and combined
exercise decreased %BF by ~1.2% [57]. Similarly, in the Chen et al. [51] and Song et al. [64] studies,
resistance exercise led to decrease in %BF in the active group in comparison to the control group
in which an increase in %BF was observed [51,64]. Furthermore, in the study by Loppes et al. [59],
the exercise intervention did not significantly affect %BF in the group following a high-intensity
program, while in the group of moderate intensity, the reduction was slightly higher than the control
group [59]. In the Groussard et al. [55] study, the low intensity of the resistance exercise did not have a
statistical significant effect on %BF [55].
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Table 2. Results on BMI after intervention.

Identity Exercise Group
Before

Exercise Group
After

Exercise Group
Change

Control Group
Before

Control Group
After

Control Group
Change p-Value

Abreu et al. [49] 23.9 ± 4.7 23.8 ± 4.5 Not reported 24.4 ± 4.8 24.1 ± 4.9 Not reported >0.05
Cheema et al. [50] 27.0 ± 6.0 Not reported 0.3 ± 0.5 28.0 ± 5.7 Not reported 0.1 ± 0.5 0.02
Cooke et al. [53] 25.6 ± 4.3 Not reported 0.28 (−0.23–0.95) 27.2 ± 6.1 Not reported 0.20 (−0.03–0.45) 0.485

Groussard et al. [55] 29.4 ± 2.1 29.5 ± 1.9 Not reported 26.5 ± 1.8 26.2 ± 1.9 Not reported >0.05
Kopple et al. [57] a 26.9 ± 1.9 26.6 ± 1.8 Not reported 24.9 ± 1.1 25.1 ± 1.2 Not reported >0.05
Kopple et al. [57] b 28.7 ± 2.5 27.7 ± 2.5 Not reported 24.9 ± 1.1 25.1 ± 1.2 Not reported >0.05
Kopple et al. [57] c 26.2 ± 1.5 26.0 ± 1.5 Not reported 24.9 ± 1.1 25.1 ± 1.2 Not reported >0.05

Liao et al. [58] 22.9 ± 3.3 22.96 ± 3.36 Not reported 23.67 ± 4.16 23.91 ± 5.27 Not reported 0.054
Marinho et al. [60] 28.5 (21.1–35.8) 28.4 (21.8–36.2) Not reported 28.4 (20.8–35.2) 28.6 (23.6–35.2) Not reported >0.05

Rosa et al. [62] 26.4 ± 4.48 26.6 ± 4.44 Not reported 25.54 ± 3.95 25.5 ± 4.03 Not reported 0.752
Wilund et al. [66] 30.1 ± 2.4 30.3 ± 2.5 Not reported 29.0 ± 2.0 28.3 ± 1.8 Not reported <0.05

a Same control group; variables displayed as mean ± SD, median (interquartile range). a: Resistance exercise; b: combined exercise; c: aerobic exercise. a,b,c: same control group.

Table 3. Results on MAMC.

Identity Exercise Group
Before

Exercise Group
After

Exercise Group
Change

Control Group
Before

Control Group
After

Control Group
Change p-Value

Abreu et al. [49] 32.3 ± 14.6 33.9 ± 14.7 Not reported 35.6 ± 12.4 34.9 ± 15.2 Not reported >0.05
Cheema et al. [50] 30.1 ± 4.0 Not reported 0.4 ± 1.4 30.1 ± 4.0 Not reported −0.6 ± 0.9 0.004

Olvera-Soto et al. [61] 23.4 (20.3–25.4) 24.1 (20.3–26.5) 2.15 (−0.25 to 4.84) * 22.6 (19.7–25.2) 22.5 (19.6–25.5) 0.67 (−1.35 to 2.87) * <0.01
Song et al. [64] 23.4 ± 1.4 23.5 ± 1.4 0.1 ± 0.7 23.7 ± 2.7 23.8 ± 2.6 0.0 ± 0.6 0.747

Variables displayed as the mean ± SD, median (interquartile range); * percentage (interquartile range).
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Table 4. Effects on Body Fat.

Identity Exercise Group
Before

Exercise Group
After

Exercise Group
Change

Control Group
Before

Control Group
After

Control Group
Change p-Value

Chen et al. [51] (%) 31.3 ± 10.4 29.6 ± 9.8 Not reported 30.8 ± 11.2 33.1 ± 10.1 Not reported 0.9
Groussard et al. [55] (%) 32.2 ± 3.1 32.4 ± 3.2 Not reported 27.2 ± 2.7 27.3 ± 2.8 Not reported >0.05
Johansen et al. [56] (kg) 22.4 ± 11.3 24.5 ± 11.1 2.2 ± 2.9 21.3 ± 11.9 21.4 ± 12.1 0.2 ± 1.6 0.05
Kopple et al. [57] a (%) 27.3 ± 3.0 26.8 ± 3.4 Not reported 24.3 ± 2.5 25.1 ± 2.6 Not reported <0.01
Kopple et al. [57] b (%) 23.5 ± 2.6 23.7 ± 2.6 Not reported 24.3 ± 2.5 25.1 ± 2.6 Not reported <0.01
Kopple et al. [57] c (%) 28.3 ± 2.6 27.1 ± 2.8 Not reported 24.3 ± 2.5 25.1 ± 2.6 Not reported <0.01
Lopes et al. [59] A (kg) 20.0 ± 2.5 19.9 ± 2.5 Not reported 24.7 ± 2.1 24.6 ± 2.1 Not reported 0.69
Lopes et al. [59] B (kg) 23.7 ± 2.3 23.3 ± 2.3 Not reported 24.7 ± 2.1 24.6 ± 2.1 Not reported 0.69
Marinho et al. [60] (kg) 47.4 (33.6–48.8) 46.8 (35.0-48.6) Not reported 53.0 (42.1–54.8) 52.1 (45.5–55.3) Not reported >0.05

Olvera-Soto et al. [61] (%) 16 (12.2–21.1) 16.8 (13.1–20.3) 5.43 (0.0 to 5.21) * 14 (9.4–18.3) 14.3 (11.3–18.8) 0.42 (−13.2 to 7.97) * 0.03
Rosa et al. [62] (%) 23.8 ± 9.21 23.10% ± 8.40 Not reported 23.15 ± 8.98 21.92 ±8.81 Not reported 0.619
Song et al. [64] (%) 27.5 ± 9.4 26.0 ± 8.6 −1.5 ± 3.7 26.0 ± 9.3 27.2 ± 8.9 1.2 ± 3.8 0.020
a,b Same control group; variables displayed as the mean ± SD, median (interquartile range); * percentage (interquartile range). a: Resistance exercise; b: Combined exercise; c: Aerobic
exercise. A: Resistance exercise (moderate load); B: Resistance exercise (heavy load). a, b, c: same control group. A, B: same control group 3.4. Lean body mass.
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According to the study by Johansen et al. [56], lean body mass (LBM) decreased after 12 weeks of
follow-up in both the intervention and control groups, but the decrease was greater in the intervention
group [56]. In the study by Kopple et al. [57], the endurance cycling resulted in a slight reduction in
LBM by ~−0.7 kg, while resistance training and combined exercise resulted in an increase in LBM
by ~0.4 kg and ~0.5 kg, respectively [57]. Surprisingly, in the non-active group, LBM was higher
by ~0.7 kg [57]. Similar outcomes recorded by Marinho et al. [60], where resistance exercise led to
increased LBM compared to the initial measurement, but the increase was smaller in the intervention
group compared to the controls (~1% versus 3%) [60]. On the contrary, in the studies by Chen et al. [51],
Lopes et al. [59], and Rosa et al. [62], LBM increased after the intervention, while in the non-physically
active subjects, LBM decreased or showed a slighter increase [51,59,62]. Similarly, in the Song et al. [64]
study, an increase in the skeletal body mass was observed in the intervention group compared to the
non-active group in which the skeletal body mass decreased [64]. Changes in LBM are presented in
Table 5.

3.4. Skeletal Muscle Index

Two studies included in this systematic review examined changes in SMI, and both of them
concluded that there was a significant improvement in SMI in the intervention group [59,65].
Resistance training with high-load led to a greater increase in SMI compared to the moderate-load
group [59]. Moreover, in the aerobic exercise groups, the increase in SMI was greater than in the
combined aerobic-resistance exercise group (0.15 versus 0.04, p < 0.05) [65]. The relevant results are
presented in Table 6.

In the studies by Abreu et al. [49] and Wilund et al. [66], resistance and aerobic exercise did not
significantly affect sALB, while CRP decreased compared to the non-active group [49,66]. Moreover,
a slight increase in sALB and a reduction in CRP were observed by both Cheema et al. [50] and
Kopple et al. [57], where resistance exercise [50] and cycling were the interventions, respectively [57].
Cycling in Liao et al. [58] increased sALB and decreased CRP after a 12 week intervention [58].
Resistance exercise resulted in a slight reduction in sALB, while combined exercise (i.e., cycling and
resistance exercise) did not result in any significant effects on sALB [57]. In both groups (i.e., cycling and
combined exercise), CRP increased [57]. Endurance-resistance training had an impact neither on sALB
nor on CRP [54], while resistance-stretching exercise led to a greater decrease in CRP compared to
the controls after a 2 year follow-up [52]. Increased CRP was also found in an intervention with
resistance-exercise by Marinho et al. [60], and according to the data from Suhardjono et al. [65] there was
a greater reduction in CRP only in subjects following combined aerobic-resistance exercise compared
to the non-active patients undergoing HD [65]. The SALB and CRP changes are presented in Table 7.
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Table 5. Effects on Lean Body Mass (kg).

Identity Exercise Group
Before

Exercise Group
After

Exercise Group
Change

Control Group
Before

Control Group
After

Control Group
Change p-Value

Chen et al. [51] 45.8 ± 8.9 47.9 ± 9.9 Not reported 47.8 ± 9.0 46.3 ± 8.7 Not reported 0.5
Johansen et al. [56] 47.5 ± 12.3 47.1 ± 11.2 −0.3 ± 3.0 48.4 ± 8.2 48.2 ± 8.8 −0.1 ± 1.6 0.66
Kopple et al. [57] a 52.1 ± 0.28 51.4 ± 0.27 Not reported 47.7 ± 0.27 48.4 ± 0.26 Not reported >0.05
Kopple et al. [57] b 47.3 ± 0.26 47.7 ± 0.27 Not reported 47.7 ± 0.27 48.4 ± 0.26 Not reported >0.05
Kopple et al. [57] c 48.0 ± 0.33 48.5 ± 0.32 Not reported 47.7 ± 0.27 48.4 ± 0.26 Not reported >0.05
Lopes et al. [59] A 39.1 ± 2.1 39.4 ± 2.2 Not reported 41.6 ± 1.8 41.5 ± 1.8 Not reported 0.60
Lopes et al. [59] B 41.6 ± 0.8 41.9 ± 0.8 Not reported 41.6 ± 1.8 41.5 ± 1.8 Not reported 0.60

Marinho et al. [60] (%) 34.7 (32.3–53.3) 35.7 (32.8–50.3) Not reported 24.4 (18.9–39.0) 27.4 (23.8–34.0) Not reported >0.05
Rosa et al. [62] 46.55 ± 9.03 47.55 ± 9.49 Not reported 43.48 ± 8.02 44.04 ± 8.23 Not reported 0.277

Song et al. [64] (kg) * 21.4 ± 3.6 22.2 ± 3.7 0.8 ± 1.0 22.8 ± 5.3 22.5 ± 5.2 −0.3 ± 1.1 0.002
a,b Same control group, * skeletal body mass, variables displayed as the mean ± SD, median (interquartile range). a: Resistance exercise; b: Combined exercise; c: Aerobic exercise. A:
Resistance exercise (moderate load); B: Resistance exercise (heavy load). a, b, c: same control group. A, B: same control group.

Table 6. Effects on SMI (kg/m2).

Identity Exercise Group
Before

Exercise Group
After

Exercise Group
Change

Control Group
Before

Control Group
After

Control
Group

Change
p-Value

Lopes et al. [59] a 6.4 ± 1.2 6.6 ± 1.2 Not reported 6.8 ± 1.03 6.6 ± 1.1 Not reported <0.01
Lopes et al. [59] b 6.7 ± 1.2 6.8 ± 1.1 Not reported 6.8 ± 1.03 6.6 ± 1.1 Not reported <0.01
Suhardjono et al.

[65] A
Males 10.4 ± 1.16

Females 9.77 ± 0.58 Not reported 0.15
(−2.11–2.89)

Males 9.92 ± 1.46
Females 9.79 ± 1.17 Not reported 0.01

(−6.14–7.33) >0.05

Suhardjono et al.
[65] B

Males 9.92 ± 1.46
Females 9.79 ± 1.17 Not reported 0.04

(−0.85–4.19)
Males 9.92 ± 1.46

Females 9.79 ± 1.17 Not reported 0.01
(−6.14–7.33) >0.05

a,b Same control group; variables displayed as the mean ± SD or median (min–max). a: Resistance exercise (moderate load); b: Resistance exercise (heavy load). a, b: same control group. A:
Combined exercise; B; Aerobic exercise. A, B: same control group. 3.6. Serum Albumin and C-Reaction Protein.
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Table 7. Changes in sALB (g/dl) and CRP (mg/L).

Identity Parameter Exercise
Group Before Exercise Group After

Exercise
Group

Change

Control
Group Before

Control
Group After

Control
Group

Change
p-Value

Abreu et al. [49] sALB 4.3 ± 0.3 4.3 ± 0.3 Not reported 4.2 ± 0.2 4.2 ± 0.2 Not reported
CRP 7.7 ± 6.0 5.8 ± 4.4 8.54 ± 4.2 8.4 ± 7.5 >0.05

Cheema et al. [50] sALB 3.45 ± 0.31 Not reported 0.03 ± 0.24 3.36 ± 0.79 Not reported 0.01 ± 0.24 0.45
CRP 0.78 ± 0.60 −0.08 ± 0.37 0.72 ± 0.55 0.24 ± 0.37 0.02

Cheng et al. [52] sALB 4.05 ± 0.27 4.09 ± 0.18 Not reported 3.96 ± 0.32 4.02 ± 0.36 Not reported 0.747

hs-CRP 0.25
(0.08–0.37) 0.15 (0.06–0.55) 0.28

(0.16–0.43)
0.26

(0.15–0.52)

Frih et al. [54] sALB 3.96 ± 0.35 0.40 ± 0.26 Not reported 3.99 ± 0.37 4.04 ± 0.37 Not reported
CRP 4.1 ± 1.3 4.1 ± 1.3 4.1 ± 1.1 4.0 ± 1.4 >0.05

Kopple et al. [57] a sALB 3.7 ± 0.1 3.8 ± 0.1 Not reported 3.9 ± 0.1 3.9 ± 0.1 Not reported >0.05CRP 4.5 ± 1.5 2.5 ± 0.6 2.1 ± 0.4 2.8 ± 0.8

Kopple et al. [57] b sALB 3.9 ± 0.1 3.8 ± 0.1 Not reported 3.9 ± 0.1 3.9 ± 0.1 Not reported
CRP 3.5 ± 0.8 4.2 ± 1.3 2.1 ± 0.4 2.8 ± 0.8 >0.05

Kopple et al. [57] c sALB 3.8 ± 0.1 3.8 ± 0.1 Not reported 3.9 ± 0.1 3.9 ± 0.1 Not reported
CRP 4.6 ± 1.4 5.8 ± 2.1 2.1 ± 0.4 2.8 ± 0.8 >0.05

Liao et al. [58]
sALB 3.89 ± 0.33 4.16 ± 0.30

Not reported
4.00 ± 0.35 4.01 ± 0.42

Not reportedHs-CRP 1.25 ± 2.01 0.78 ± 0.83 1.24 ± 2.04 1.23 ± 0.21 <0.05
CRP 0.7 ± 0.33 0.6 ± 0.20 1.2 ± 0.97 1.5 ± 0.89 <0.01

Wilund et al. [66] CRP 5.2 ± 0.78 4.9 ± 0.69 Not reported 6.2 ± 0.22. 6.0 ± 0.67 Not reported <0.05sALB 3.9 ± 0.14 3.9 ± 0.15 3.8 ± 0.09 3.8 ± 0.06

sALB: serum Albumin, CRP: C-Reactive Protein, Hs-CRP: high sensitivity C-Reactive Protein; a same control group; variables displayed as the mean ± SD or the median (interquartile
range). a: Resistance exercise; b: Combined exercise; c: Aerobic exercise. a, b, c: same control group.
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3.5. Strength and Functionality Evaluation

In the majority of the studies included in our systematic review, strength increased after the
intervention [50,51,54,56,59,61,62,64,65]. Resistance exercise significantly increased the total strength of
active subjects, while in the control group there was a slight reduction of strength after the intervention
period [50,51,56,64]. Endurance training also led to a notable increase in strength, measured by
HGS measurement. More specifically, there was a mean increase of 12.4 N in the intervention group
versus 0.7 N in the control group [54]. Non-significant differences in handgrip strength were recorded
by Cooke et al. [53] and Suhardjono et al. [65] after pedaling [53,65] and in the moderate-intensity
resistance exercise group by Lopes et al. [59]. These changes are presented in Table 8.

3.6. Performance Status

Regarding to the performance status, several studies illuminated a significant improvement
in physically active subjects [50,52–55,62] as can be seen in Table 9. Assessment tools used for the
evaluation of performance status were walking tests with modifications in distance and time. In the
majority of the studies, the 6MWT method was used. Significant ameliorations were observed mainly
after resistance exercise [50,52,54,62], while in the aerobic intervention group, an improvement was
noted but at a lower grade [53,65]. However, in the study by Johansen et al. [56], resistance exercise led
to a smaller improvement in gait speed compared to the non-active group, (2.7 cm/s versus 6 cm/s,
respectively) [56].
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Table 8. Results of the strength evaluation.

Identity Parameter Exercise Group
Before

Exercise Group
After

Exercise Group
Change

Control Group
Before

Control Group
After

Control Group
Change p-Value

Cheema et al. [50] Total strength 98.1 ± 36.6 Not reported 15.2 ± 15.4 86.0 ± 33.8 Not reported −2.4 ± 13.8 0.002

Chen et al. [51] Knee extensors
strength (kg) 11.4 ± 5.0 15.8 ± 5.0 Not reported 14.8 ± 6.0 12.1 ± 6.1 Not reported 0.08

Cooke et al. [53] HGS 23.2 ± 10.5 Not reported 1.3 (−0.5, 6.5) 25.9 ± 13.8 Not reported 2.5 (−0.5, 4.0) 0.464

Frih et al. [54] Handgrip
force (N) 29.8 ± 6.0 37.4 ± 4.8 Not reported 29.3 ± 5.6 30 ± 5.2 Not reported <0.05

Johansen et al. [56]

Knee extension
3RM (lb) 14.0 ± 8.4 22.6 ± 11.6 8.6 ± 6.9 19.2 ± 8.7 20.0 ± 9.1 0.8 ± 2.0 <0.0001

Hip abduction
3RM (lb) 8.5 ± 5.2 15.4 ± 6.9 6.9 ± 5.0 11.8 ± 4.3 11.8 ± 5.9 −0.1 ± 2.5 <0.0001

Hip flexion 3RM
(lb) 7.6 ± 5.3 13.7 ± 6.8 6.1 ± 4.3 10.9 ± 4.5 11.4 ± 6.3 0.5 ± 2.7 <0.0001

Lopes a et al. [59] a HGS (kg) 29.2 ± 10.2 32.1 ± 11.4 Not reported 25.3 ± 9.1 25.4 ± 9.9 Not reported 0.60
Lopes a et al. [59] b HGS (kg) 30.0 ± 8.7 29.9 ± 10.1 Not reported 25.3 ± 9.1 25.4 ± 9.9 Not reported 0.60

Olveira-Soto et al. [61] HGS (kg) 19.6 (11–28) 21.2 (13–32) Not reported 19.8 (14-26) 17.8 (15-26) Not reported <0.01

Rosa et al. [62] HGS
(kg/strength) 65.7 ± 23.3 66.61 ± 22.22 Not reported 59.21 ± 20.66 58.52 ± 18.19 Not reported 0.213

Song et al. [64] HGS (kg) 26.3 ± 8.5 28.7 ± 9.0 2.4 ± 2.8 26.2 ± 10.2 27.8 ± 11.8 1.6 ± 4.0 0.465
Leg muscle

strength (kg) 33.0 ± 15.3 37.3 ± 19.0 4.3 ± 8.7 34.8 ± 20.3 33.4 ± 19.5 −1.4 ± 7.0 0.027

Suhardjono b et al. [65]
A

HGS (kg) Males: 24.8 ± 9.19
Females: 14.6 ± 4.66 Not reported −0.08

(−2.83–18.50)

Males: 22.1 ±
9.26

Females: 17.3 ±
8.27

Not reported −0.1
(2.78) >0.05

Suhardjono b et al. [65]
B

HGS (kg) Males: 21.6 ± 8.84
Females: 18.3 ± 5.45 Not reported 0

(−5.33–9.50)

Males: 22.1 ±
9.26

Females: 17.3 ±
8.27

Not reported −0.1
(2.78) >0.05

HGS: Handgrip strength; RM: repetition maximum; a,b same control group; variables displayed as the mean ± SD, median (interquartile range), median (min–max). a: Resistance exercise
(moderate load); b: Resistance exercise (heavy load). a, b: same control group. A: Combined exercise; B; Aerobic exercise. A, B: same control group.
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Table 9. Changes on performance status.

Identity Test Used Exercise Group
Before

Exercise Group
After

Exercise Group
Change

Control Group
Before

Control Group
After

Control Group
Change p-Value

Cheema et al. [50] 6MWT (m) 496.0 ± 138.9 Not reported 19.6 ± 4.0 412.6 ± 138.9 Not reported 1.5 ± 23.7 0.16
Cheng et al. [52] 6MWT (m) 439.1 ± 85.5 490.5 ± 70.3 Not reported 460.3 ± 79.1 456.7 ± 94.1 Not reported 0.207

Cooke et al. [53]
6 m course as

quickly as
possible (m/s)

0.8 ± 0.2 Not reported 0.02
(−0.02, 0.11) 0.9 ± 0.3 Not reported −0.11

(−0.17, 0.08) 0.158

Frih et al. [54] 6MWT (m) 420 ± 35.1 480.5 ± 31.9 Not reported 422.2 ± 26.6 415.6 ± 36.3 Not reported <0.05
Groussard et al. [55] 6MWT (m) 406 ± 18 500 ± 30 Not reported 376 ± 20 406 ± 18 Not reported <0.001

Johansen et al. [56]

Walking 6m at
their usual pace

and as fast as
possible (gait
speed-cm/s)

100.9 ± 35.5 103.5 ± 34.2 2.7 ± 17.3 99.8 ± 31.5 105.7 ± 31.1 6.0 ± 17.2 0.71

Rosa et al. [62] 6MWT (m) 506.1 ± 130.3 526.5 ± 126.2 Not reported 452.65 ± 169.19 469.4 ± 162.9 Not reported 0.277

Suhardjono et al. [65]
a

Walk 4 m back
and forth for a

total distance of
8 m (m/s)

Males: 0.86 ± 0.25
Females: 0.81 ± 0.2 Not reported 0.08 ± 0.16 Males: 0.8 ± 0.25

Females: 0.81 ± 0.23 Not reported 0.07 ± 0.19 >0.05

Suhardjono et al. [65]
b

Walk 4 m back
and forth for a

total distance of
8 m (m/s)

Males: 0.87 ± 0.19
Females: 0.85 ± 0.17 Not reported 0.10 ± 0.12 Males: 0.8 ± 0.25

Females: 0.81 ± 0.23 Not reported 0.07 ± 0.19 >0.05

6MWT: 6 min walk test; variables displayed as the mean ± SD or median (interquartile range). a: Combined exercise; b: Aerobic exercise. a, b: same control group.
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4. Discussion

The aim of our systematic review was to investigate the effects of exercise on the nutritional
status and body composition among patients undergoing HD. According to our systematic review,
physical activity in patients undergoing HD resulted in beneficial outcomes, i.e., improved muscle
strength and muscle mass, better performance status, increased Alb, and decreased CrP. Regarding the
effects of physical activity on BMI, the findings were inconclusive. A decrease in BMI is not always
desirable for patients undergoing HD, as in most cases it is difficult to identify if this reduction is
associated with a decrease in LBM or in FM. According to studies including measurements of MAMC,
there was a significant increase of this parameter in the physically active groups following resistance
exercise. This improvement advocates an increase in muscle mass. Therefore, the reduction in BMI
that was found was mostly accompanied by an increase in MAMC which means a preservation of
muscle mass, with a relevant reduction in FM. These results are in concordance with studies including
measurements of muscle mass by BIA and the calculation of SMI in which muscle mass as well as
SMI increased after resistance exercise and were found to have a tendency to increase in the aerobic
training group [46,69].

The results regarding body composition changes were inconclusive. Aerobic exercise and
especially cycling seemed to reduce %BF [57]. On the other hand, results from our review could
not significantly correlate physical activity with changes in LBM between intervention and control
groups. The fact that the %BF results were unclear could explain similar uncertainty in LBM changes
since the latter is defined as the difference between total body weight and body fat weight. Moreover,
LBM estimation is influenced by fluids’ balance in the body, which in HD patients is heavily modified
as a result of the fluid management between the HD sessions and the intradialytic fluid management.

One of the most commonly used laboratory markers for the evaluation of nutritional status is
sALB [70,71]. However, sALB, as a nutritional parameter is characterized by a low specificity due to
the fact of its long half-time, lasting approximately 20 days [72]. Therefore, nutritional status cannot
be assessed solely by sALB [73]. Inflammation is also a significant factor influencing nutritional
status and at the same time affecting the levels of sALB [73,74]. A variety of factors increase
inflammation status in patients undergoing HD, i.e., alterations in gut microbiota, vascular disorders,
and immunosuppression [74–76]. Therefore, the evaluation of both sALB and CRP can be used for
the first approach of the overall nutritional and inflammatory status of patients undergoing HD [74].
Regarding the effect of physical activity on sALB and CRP, in the majority of studies, resistance exercise
decreased CRP and slightly increased sALB, whereas aerobic exercise resulted in a reduction in
sALB and an increase in CRP. A possible explanation of the irregularity of the results is the limited
intervention time which could possibly mask the positive effects on sALB due to its long half time.
Nevertheless, in the study by Cheng et al. [52], with an intervention of resistance exercise lasting for
2 years, there was a slight increase in sALB and a decline in CRP. In the Cheema et al. [50] study,
the protein catabolic rate showed a slight increase in the active group compared to passive group in
which a slight decrease was observed (0.02 ± 0.31 g/kg/d versus −0.04 ± 0.17 g/kg/d). In the same
study, a mini-nutritional assessment (MNA) was used in order to assess the risk of malnutrition and
showed that the score was better in the passive group after the intervention [50]. On the contrary,
in the Frih et al. [54] study in which the MNA was also performed, it was observed that the nutritional
status was ameliorated after the intervention of resistance exercise [54]. Specifically, at baseline in the
passive and intervention group, the risk of malnutrition was 85.7% and 70% accordingly, and in the
final assessment the risk of malnutrition in the intervention group was 23.8% compared to an 85% risk
for the passive group [54]. Further research is needed in this field in order to reach to safe conclusions
due to the fact that nutritional and inflammation status can be affected both negatively and positively
by lifestyle and nutritional parameters, i.e., smoking and overall food quality [10]. According to
the existing studies, only in one study was pre-albumin, which can better reflect nutritional status,
recorded [77]. A significant increase in pre-albumin was observed after resistance training compared to
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non-active patients [77]. Chan et al. [78] and Zhang et al. [79] found preliminary evidence that resistance
training can reduce malnutrition and no significant improvement in nutrient intake, respectively.

According to our results, physical activity, especially resistance exercise, has a beneficial effect on
body strength as measured by HGS dynamometry. Both upper and lower body mass strength were
found to be increased at the end of the intervention in the active group versus the non-active one. On the
other hand, cycling did not result in any statistically significant change in muscle strength. All types of
exercise resulted in improvements in performance status, but resistance exercise seems to be the superior.
However, we cannot ignore the fact that aerobic exercise is associated with improved cardiorespiratory
function, lipid profile improvement, and an overall improvement in mental health and QoL [42].
Therefore, combined exercise could be the ideal choice for HD patients, providing a combination of
positive results in many aspects of the patients’ lives. According to the recently revised criteria for
the diagnosis of sarcopenia, muscle strength is the first alarming sign of sarcopenia, followed by the
reduction of muscle mass [80]. Skeletal muscle mitochondrial dysfunction as well as reduction of
muscle mitochondria are more prevalent in patients with CKD and could provide an explanation of
the higher prevalence of sarcopenia in this population [81,82]. Mitochondria dysfunction plays an
important role in inflammation and oxidative stress and, therefore, contributes to the pathogenesis of
atherosclerosis and CVD [83,84]. According to Balakrishnan et al. [85], resistance exercise seems to
act protectively by increasing the biogenesis and restoration muscle mitochondria in patients with
CKD [85]. Therefore, the improvement in functional tests and the performance status after the analysis
of the included RCTs in our study, especially of studies with interventions of resistance exercise
protocols, could be a guide towards interventions that could prevent sarcopenia in this population [80].

Moreover, two recently published studies in which performance status [86] and strength [87] were
examined concluded that the heterogeneity and the indistinct bias of the existing studies cannot lead
to general conclusions [86,87].

The significant strengths of our systematic review are the careful selection of included studies,
where all of them were randomized and had a similar control group. Moreover, most of the physical
activity interventions were intradialytic, i.e., during the HD session and, therefore, physical activity was
supervised during the entire time, had a specific duration and frequency (2–3 times per week), and was
not omitted or skipped. Some limitations in the present study are that the assessment tools for body
composition were different, and this could produce a bias of the results. The remarkable variability
observed in the protocols and duration of training programs may partly explain the inconclusive
evidence for some of the parameters. Moreover, serum prealbumin, which could be a more sensitive
nutritional marker, was not assessed and, therefore, it could not be evaluated. Moreover, as nutritional
intake was recorded in none of the RCTs, no conclusions can be derived about the possible effect of
nutritional parameters in combination with exercise in patients undergoing HD.

5. Conclusions

Physical activity, in particular resistance exercise, seems to influence the body composition of
patients undergoing HD. Increased MAMC and SMI were observed, whereas the results regarding
%BF, LBM, and BMI were not clear. Resistance exercise may also control inflammation in patients
undergoing HD, something that can have beneficial effects on lowering nutritional risks and/or
malnutrition, but further research is needed in this field. Finally, performance status and strength (i.e.,
muscle functionality) can be improved in physically active patients undergoing HD, an effect with
an undeniably positive impact on the QoL of all these patients. However, it needs to be noted that
the existing evidence is insufficient to prove significant beneficial effects of exercise training on body
composition and markers of nutritional/inflammation status mainly due to the high heterogeneity of
protocols (in duration and type of exercise programs) of the existing clinical studies.
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Abbreviations

BCM Body composition monitor
BF Body fat
BMI Body mass index
CKD Chronic kidney disease
CRP C-reactive protein
CVD Cardiovascular diseases
DEXA Dual-energy x-ray absorptiometry
ESRD End-stage renal disease
FM Fat mass
HD Hemodialysis
HrQoL Health related quality of life
HGS Hand grip strength
LBM Lean body mass
MAMC Mid arm muscular circumference
MNA Mini-Nutritional Assessment
PD Peritoneal dialysis
RCT Randomized clinical trial
RRT Renal replacement therapy
sALB Serum Albumin
SD Standard deviation
SMI Skeletal muscle mass
QoL Quality of life
WC Waist circumference
6MWT 6 min walk test
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