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Abstract
Purpose It is thought that orthodontic forces initially reduce periodontal blood flow during orthodontic tooth movement
(OTM) via tissue compression with cells responding to concomitant oxygen deprivation with expression of vascular
endothelial growth factor (VEGF) triggering angiogenesis via binding to its receptor VEGFR-2. To test this hypothesis, we
performed a pilot study to establish a protocol for molecular magnetic resonance imaging (MRI) of rat jaws administering
a VEGFR-2-specific contrast agent.
Methods Mesial OTM of a first upper left rat molar was initiated in one male Fischer 344 rat 4 days prior to MRI by
insertion of an elastic band between the first and second upper molars with the contralateral side left untreated (internal
control). T1-weighted MRI sequences including dynamic contrast-enhanced MRI (DCE-MRI) were recorded before and
after administration of a molecular VEGFR-2 MRI marker with a 7T MRI dedicated for small animal use.
Results After injection of anti-VEGFR2-albumin-gadolinium-DTPA, volume enhancement on T1-weighted images was
increased at the OTM side distally of the moved first upper molar (M1) compared to the control side, whereas the T1
relaxation time was reduced on the OTM side. DCE-MRI resulted in an increased area under the curve (AUC), whereas
time-to-peak (TTP) and washout rate were reduced during OTM distally of the moved M1 compared to the contralateral
side.
Conclusions OTM resulted in uptake of the VEGFR-2-specific MRI contrast agent in tension areas of the periodontal
ligament. The imaging protocol presented here is useful for the assessment of VEGFR-2 expression in tension areas of the
periodontal ligament in vivo.
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Verabreichung eines VEGFR-2-spezifischenMRT-Kontrastmittels zur Beurteilung der
kieferorthopädischen Zahnbewegung
Eine Pilotstudie

Zusammenfassung
Zielsetzung Es wird angenommen, dass kieferorthopädische Kräfte initial den parodontalen Blutfluss während der kie-
ferorthopädischen Zahnbewegung (OTM) durch Gewebekompression reduzieren, wobei die beteiligten Zellen auf einen
begleitenden Sauerstoffmangel mit einer Expression des vaskulären endothelialen Wachstumsfaktors (VEGF) reagieren, der
über die Bindung an seinen Rezeptor VEGFR-2 die Angiogenese induziert. Um diese Hypothese zu untersuchen, führten
wir eine Pilotstudie durch, um ein Protokoll für die molekulare Magnetresonanztomographie (MRT) von Rattenkiefern
nach Verabreichung eines VEGFR-2-spezifischen Kontrastmittels zu etablieren.
Material und Methoden Bei einer männlichen Fischer-344-Ratte wurde der erste obere Molar (M1) auf der linken Kie-
ferseite 4 Tage vor der MRT durch Einbringen eines elastischen Bandes zwischen dem ersten und zweiten oberen Mo-
laren mesialisiert, wobei die kontralaterale Seite unbehandelt blieb (interne Kontrolle). T1-gewichtete MRT-Sequenzen
einschließlich dynamischer kontrastmittelunterstützter MRT (DCE-MRT) wurden vor und nach der Verabreichung eines
molekularen VEGFR-2-MRT-Markers mit einem 7-Tesla-MRT für Kleintiere aufgezeichnet.
Ergebnisse Nach Injektion von Anti-VEGFR2-Albumin-Gadolinium-DTPAwar die Volumenanhebung auf T1-gewichteten
Bildern auf der OTM-Seite distal des bewegten ersten oberen Molaren (M1) im Vergleich zur Kontrollseite erhöht, während
die T1-Relaxationszeit auf der OTM-Seite verkürzt war. Die DCE-MRT führte zu einer erhöhten Fläche unter der Kurve
(AUC), während die TTP-Zeit bis zum Spitzenwert und die Auswaschungsrate während der OTM distal des bewegten M1
im Vergleich zur kontralateralen Seite reduziert waren.
Schlussfolgerungen Die kieferorthopädische Zahnbewegung führte zur Aufnahme des VEGFR-2-spezifischen MRT-Kon-
trastmittels in Zugzonen des Parodontalligaments. Das hier vorgestellte Bildgebungsprotokoll hat sich für die In-vivo-Be-
urteilung der VEGFR-2-Expression in Zugzonen des Parodonts als nützlich erwiesen.

Schlüsselwörter Parodontalligament · Vaskulärer endothelialer Wachstumsfaktor-Rezeptor-2 (VEGFR-2) · Molekulare
Magnetresonanztomographie · Hypoxie · Tiermodelle

Introduction

When orthodontic forces are applied, compression and
tension areas develop in the periodontal ligament. This
initiates a complex molecular cascade involving multi-
ple molecular and inflammatory mediators [15, 22, 30],
released by mechanically stressed periodontal ligament
fibroblasts [4], osteoblasts and cells of the immune sys-
tem such as macrophages and T cells [29]. Stimulation of
mechanosensitive ion channels and receptors in the cell
membrane occurs [3]. Cells in the periodontal ligament
appear to respond to mechanical stimuli by upregulating
cellular mediators such as cyclic AMP, which catalyzes the
phosphorylation of mediator proteins [5, 15]. Depending
on these, either cell proliferation or cell differentiation may
be stimulated within the cell nucleus. This is controlled by
the phosphorylation of transcription factors, such as c-Jun
and c-Fos [3]. If inflammatory processes are involved,
cyclooxygenase 2 (COX-2) can produce prostaglandin E2
(PGE2), which plays an important role in bone resorp-
tion [21]. Inflammatory processes continue to stimulate
mononuclear phagocytic cells, such as macrophages. These
secrete proinflammatory cytokines which stimulate the se-
cretion of prostaglandins [2]. During the application of

orthodontic forces, these cytokines appear to stimulate the
secretion of the receptor activator of nuclear factor kappa B
ligand (RANKL) by osteoblasts and periodontal ligament
cells in periodontal tissue [20, 31] and osteocytes in the
alveolar bone [19, 23]. Recent studies provide evidence that
osteocytes are critically involved in OTM via expression
of RANKL. RANKL is essential for the differentiation
of osteoclast precursor cells into active multinucleated
osteoclasts, which are responsible for bone resorption.

However, orthodontic forces not only have cellular ef-
fects, but also affect the circulation within the periodontal
ligament. Compression of blood vessels, especially in pres-
sure areas during orthodontic force application, is assumed
to effect reduced perfusion and thus hypoxia, i.e., a reduced
supply of oxygen of the periodontal tissue below physio-
logical levels [8, 18]. Depending on the oxygen gradient,
either the proliferation of different cells is stimulated or, in
extreme cases, apoptosis [18]. Hypoxia has a direct influ-
ence on the energy balance within the cell via a decrease in
glycolytic activity and ATP production. The cell responds
to oxygen deprivation by expression of various cellular me-
diators, such as hypoxia-induced factor-1 (HIF-1), which
stimulates angiogenesis and cell proliferation [8].

K



VEGFR-2-specific MRI contrast agent 119

In addition, hypoxia has a special significance for tran-
scriptionally regulated VEGF (vascular endothelial growth
factor) expression. Thus, hypoxia via an increase in the
HIF-1α level is the relevant inducer for the gene expres-
sion of VEGF under various pathophysiological conditions
[14, 16, 24]. VEGF is an important signalling molecule
that is effective in both vasculogenesis and angiogenesis.
As the name implies, this factor mainly stimulates vascular
endothelium, but it also stimulates the migration of mono-
cytes and macrophages. Seven different forms of VEGF are
known (A-F and PIGF) [32]. All members of the VEGF
family effect a cellular response by binding to a tyrosine
kinase, the VEGF receptor (VEGFR), thus, relaying the
extracellular signal to the cell interior. The stimulation of
VEGF by binding to one of its receptors, VEGFR-2, trig-
gers the proliferation and migration of endothelial cells,
as well as the increase of vascular permeability by acti-
vation of various signalling pathways (phosphatidylinositol
3’kinase [PI3K]/Akt and Ras/mitogen activated protein ki-
nase [MAPK]), thus, effecting increased angiogenesis and
in turn improving perfusion and oxygen supply within the
periodontal ligament [7].

Despite the supposed effects of orthodontic force appli-
cation on local microcirculation within the periodontal liga-
ment and concomitant hypoxia-mediated angiogenesis dur-
ing orthodontic tooth movement (OTM), it is still unclear to
what extent local perfusion is actually altered during OTM
and how this impacts on associated VEGF-induced angio-
genesis within the periodontal ligament. For this reason,
we performed a pilot study in the animal model rat using
magnetic resonance imaging (MRI) to establish an imag-
ing protocol for administration and detection of a VEGF
receptor 2 (VEGFR-2)-specific MRI contrast agent within
the periodontal ligament of an orthodontically moved upper
rat molar.

Materials andmethods

General information regarding the animal
experiment

One male Fischer 344 rat (Rattus norvegicus Berkenhout,
Charles River Laboratories, Sulzfeld, Germany) was in-
cluded in this pilot study. The rat was 7 weeks old at the
beginning of the experiment, which was carried out with
the approval of the responsible authorities (Government
of Lower Franconia, AZ: 55.2.2532-2-510) and in com-
pliance with the German Animal Protection Act. In order
to avoid unnecessary animal suffering, corresponding ter-
mination criteria were predefined and animal condition as
well as gross body weight monitored daily. The animal was
kept in a conventional S1 animal laboratory at the Univer-

sity of Erlangen-Nuremberg (Preclinical Experimental An-
imal Centre PETZ) and had ad libitum access to tap water
and to a standard rat diet (V1535, ssniff) with feed pel-
lets. After 4 days of OTM and after the respective mMRI
(molecular magnetic resonance imaging) measurements, the
rat was euthanized by an i.p. injection of 200mg Narcoren
per kg gross body weight (Merial GmbH, Hallbergmoos,
Germany) according to legal guidelines.

Induction of orthodontic toothmovement

After 7 days of acclimatization, the rat was sedated by in-
traperitoneal (i.p.) injection of 6mg xylazine and 90mg
ketamine per kg gross body weight [11] and an orthodon-
tic elastic band (774-200-01, Dentaurum, Ispringen, Ger-
many) was inserted into the approximal space between the
first and second upper left molar of the rat according to the
method described by Waldo and Rothblatt ([27]; Fig. 2a).
The contralateral jaw side was left untreated and served as
nonforce internal control [11]. The renewed expansion of
the compressed elastic band caused a reciprocal orthodon-
tic force and divergence of the first and second upper left
molars and thus an anterior experimental tooth movement
of the first upper left molar for 4 days. After insertion, the
oral cavity was disinfected with a cotton pellet soaked in
chlorhexidine.

Magnetic resonance imaging without/with an
VEGFR-2marker

Quantitative assessment of local VEGFR-2 expression with
and without OTM was carried out by magnetic resonance
imaging (MRI) in this study. MRI allows in vivo charac-
terization and measurement of biological processes at the
cellular level [28]. The examination by MRI was performed
4 days after insertion of the elastic band, since at this
time the cellular tissue response during the induced OTM
is reported to be most pronounced [27]. To assess the ki-
netics of a VEGF receptor 2 (VEGFR-2)-specific contrast
agent within the periodontal ligament of the orthodontically
moved upper rat molar compared to the contralateral con-
trol side, we obtained a corresponding validated molecular
MRI marker (anti-VEGFR-2 bound to albumin (Gd-diethy-
lene penta-acetic acid [DTPA])—biotin, Rheal A. Towner,
Advanced Magnetic Resonance Center, Oklahoma Medi-
cal Research Foundation, and The Oklahoma Center for
Neurosciences, The University of Oklahoma Health Sci-
ences Center, Oklahoma City, OK, USA). After 4 days
of OTM, the rat was anesthetized with 4% isoflurane and
maintained at 1.5% isoflurane. The head of the rat was
fixed in a rat brain MRT surface coil and scanned on a pre-
clinical 7T MRI scanner (Fig. 1, ClinScan 70/30, Bruker,
Ettlingen, Germany). Respiration was monitored by a pres-
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Fig. 1 MRI (magnetic resonance imaging) in the rat using a 7T MRI
scanner dedicated for small animals

Abb. 1 MRT (Magnetresonanztomographie) einer Ratte mit einem
7-Tesla-MRT-Scanner für Kleintiere

sure sensor and kept constant during the entire imaging
procedure. Also the body temperature was kept constant
employing a heating bed for the animal. A T1-weighted
spin echo sequence (TR: 600ms, TE: 10ms, voxel size:
0.078× 0.078× 0.7mm, acquisition time: 12:05min) pre-
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Fig. 2 a Experimental anterior orthodontic tooth movement (OTM) of the first upper left molar (M1) by insertion of an elastic band (774-200-01,
Dentaurum, Ispringen, Germany) between the first (M1) and second (M2) upper left molar according to the Waldo/Rothblatt method. b Axial T1-
MRI section at the root level of the rat molars before i.v. injection of the VEGFR-2 molecular marker. c Axial T1-MRI plane at the root level of
the rat molars after i.v. injection of the VEGFR-2 molecular marker. d Area under the curve (AUC) mapping of dynamic contrast-enhanced MRI
(DCE-MRI). VEGFR vascular endothelial growth factor, OTM left jaw side with orthodontic tooth movement; control untreated right jaw side
Abb. 2 a Experimentelle kieferorthopädische Zahnbewegung (OTM) des ersten oberen linken Molaren (M1) durch Insertion eines elastischen
Bandes (774-200-01, Dentaurum, Ispringen, Deutschland) zwischen dem ersten (M1) und zweiten (M2) oberen linken Molaren nach der Waldo/
Rothblatt-Methode. b Axialer T1-MRT-Schnitt auf Wurzelniveau der Molaren der Ratte vor i.v.-Injektion des molekularen Markers VEGFR-2.
c Axiale T1-MRT-Ebene auf Wurzelniveau der Molaren der Ratte nach i.v.-Injektion des molekularen Markers VEGFR-2. d AUC(Fläche unter der
Kurve)-Kartierung der DCE-MRI. VEGFR „vascular endothelial growth factor“, OTM linke Kieferseite mit kieferorthopädischer Zahnbewegung;
Kontrolle unbehandelte rechte Kieferseite

ceded the administration of the molecular marker. Dynamic
contrast-enhanced MRI (DCE-MRI) was performed using
a fast low angle shot (FLASH) sequence with the follow-
ing parameters: TR: 2.92ms, TE: 0.88ms, flip angle: 25°,
voxel size: 0.182× 0.182× 0.7mm, acquisition time: 12min
18s and 100 measurements. Then, 200μl of anti-VEGFR-2-
BSA-Gd-DTPA-biotin was injected intravenously into a tail
vein catheter (24G) after 30s and over a time period of 10s.
After running the DCE sequence the above-mentioned T1-
weighted MRI sequence was repeated and a T1-mapping
sequence with the following parameters was scanned: ac-
quisition time: 7:35min, voxel size: 0.313× 0.313× 0.6mm,
TR: 40ms, TE: 1.5ms, flip angle 1: 5°, flip angle 2: 29° [9,
10, 25, 26].

Analysis of MRI datasets and dynamic contrast-
enhanced (DCE) MRI

The periodontal region of the first upper left and right mo-
lars within the T1-weighted images was analyzed. For de-
termination of the volume enhancement after administration
of anti-VEGFR-2-BSA-Gd-DTPA-biotin, T1-weighted im-
ages were segmented using a threshold of 100 for signal
intensity. Relaxation times in the selected regions of inter-
est (ROIs) were derived from T1-mapping and DCE-MRI
resulted in the semiquantitative parameters area under the
curve (AUC), time to peak (TTP) and washout (WO).
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Fig. 3 Results from the MRI analyses after i.v. injection of the VEGFR-2 molecular marker at the left jaw side with orthodontic tooth movement
(OTM) and the contralateral right untreated jaw side (control). a mMRI volume T1. b mMRI relaxation time. c Dynamic contrast-enhanced MRI
(DCE-MRI) area under the curve (AUC). d Time to peak (TTP). e DCE-MRI washout rate. AU arbitrary units
Abb. 3 Ergebnisse der MRT-Analysen nach i.v.-Injektion des molekularen Markers VEGFR-2 auf der linken Kieferseite mit kieferorthopädischer
Zahnbewegung (OTM) und der kontralateralen rechten unbehandelten Kieferseite (Kontrolle). a mMRT-Volumen T1. b mMRI-Relaxationszeit.
cDCE-MRT(dynamische kontrastmittelunterstützte MRT)-Bereich unter der Kurve (AUC). d Zeit bis zur Spitze (TTP). eDCE-MRT-Auswaschra-
te. AU arbiträre Einheiten

Results

Analysis of a T1-weightedmMRI of the upper jaw
during orthodontic toothmovement

In this pilot study, we first assessed T1 volume, which repre-
sents the enrichment of the molecular marker for VEGFR-2
in the indicated region of interest (ROI) (Fig. 2b,c). Intra-
venous injection of the molecular marker for VEGFR-2
resulted in an increased T1 volume in the distal part of the
periodontal ligament at the orthodontically moved upper
first left molar compared to the contralateral control side
(Fig. 2c and 3a). T1 relaxation time was reduced on the
OTM side compared to the untreated side (Fig. 3b).

Analysis of DCE-MRI datasets of the upper jaw
during orthodontic toothmovement

Analysis of DCE-MRI datasets revealed an increased signal
(area under the curve [AUC]) during OTM (Fig. 2d and 3c)
compared to the contralateral control side, reflecting the
degree of signal enhancement of the contrast agent in the
tissue after molecular marker administration. Time to peak
(TTP) was reduced at the OTM jaw side (Fig. 3d). In ad-
dition, we determined the washout rate and observed that

the washout of the gadolinium-based contrast agent was
accelerated during OTM (Fig. 3e).

Discussion

The aim of this pilot study was to establish an imag-
ing methodology that allows noninvasive assessment of
VEGFR-2 expression using MRI. This study was based
on the idea that reduced local perfusion and concomitantly
created hypoxic conditions during OTM result in increased
VEGF-mediated angiogenesis. As current evidence sup-
porting this assumption is scarce and actual perfusion and
angiogenesis levels have not been evaluated before using
advanced MRI imaging, we used a molecular MRI marker
for VEGFR-2 coupled to gadolinium biotin to help shed
light on this question. Here, we describe an imaging proto-
col that clearly visualizes uptake of the VEGFR-2-specific
contrast agent after OTM including quantitative measures
for noninvasive determination of VEGFR-2 expression.

In MRI analysis, T1-weighted images represent the stan-
dard sequences used to display variations in T1 relaxation
times of various tissues in mice and humans. They are
primarily dependent on the longitudinal relaxation of the
net magnetization vector in a certain tissue [1]. In gen-
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eral, a radiofrequency pulse impacts on the alignment of
spins, which are commonly orientated in a magnetic field,
by transversing the orientation of the nuclear spins [1].
Accordingly, they return into the original alignment after
a certain amount of time, which critically depends on the
investigated tissue, as various tissues differ from each other
in the duration needed to return to the initial orientation [1].

In our study, we observed an increased volume enhance-
ment in T1-weighted imaging distally of the orthodontically
moved first upper molar after injection of the VEGFR-2
marker. In future studies, this may be used to confirm an
increased local expression of this receptor hinting at in-
creased VEGF-induced angiogenesis taking place at tension
areas of the periodontal ligament, which has been assumed
before [6, 15, 17, 18].

The time for realignment of nuclear spins in an exter-
nal magnetic field after a high-frequency pulse is defined
as T1-relaxation time [1]. Thus, the duration strongly de-
pends on multiple variables like composition of the tissue,
magnetic flux density, and strength of the magnetic field.
A reduced relaxation time, which was observed in our pi-
lot study during OTM distal to the orthodontically moved
first upper molar after injection of the VEGFR-2 marker,
corresponds to an increased uptake of contrast agent.

In general, dynamic contrast-enhanced (DCE) MRI can
determine the perfusion parameters of different tissues by
calculation of T1-shortening evoked by a contrast agent,
which diffuses through tissue (in this case the VEGFR-2
molecular marker), by evaluating T1 changes in tissues over
a certain amount of time. One main characteristic of con-
trast agents, like the most commonly used gadolinium, is
a rapid dissemination into the plasma, where it circulates
through tissues via blood flow, as they can very easily pass
through the vascular endothelium due to their small size. In
DCE analysis, the time course of contrast agent enrichment
is quantified, which strongly depends on the vascularisza-
tion of the investigated tissue.

Despite the statements that can be taken from the pre-
sented pilot experiment, there are several limitations that
should also be mentioned at this point. First, we only inves-
tigated one animal in this study as proof-of-principle and
to reduce animal suffering. Thus, generalizability of our
findings cannot be shown at the statistical level. Further-
more, no MRI control prior to insertion of the elastic bands
could be recorded as a nonforce control to contrast our
findings to. Given the fact that the procedure of MRI scan-
ning is very time-consuming and the corresponding long-
term anesthesia applied, MRI scanning prior to insertion
may have affected the results, as the final MRI scan would
have taken place only 4 days later due to the limited time
of orthodontic tooth movement. Finally, we used an elas-
tic band instead of a nickel–titanium (NiTi) coil to induce
experimental tooth movement, as the appliance had to be

in place during MRI measurements and NiTi coil springs
would have created MRI artifacts. Therefore, we could not
control the applied force during OTM. Additional exam-
inations such as histological staining will be essential in
the future to corroborate VEGFR-2 expression during or-
thodontic tooth movement in rats.

Nevertheless, we observed an increased AUC at the re-
gion of interest distally of the orthodontically moved first
upper molar, whereas the time to peak and washout rate
were all decreased compared to the untreated contralateral
jaw side in our pilot study. These preliminary findings indi-
cate that perfusion of this area was increased during OTM.
According to current theory, blood perfusion is believed to
be predominantly reduced at compression areas of the pe-
riodontal ligament with the tooth roots pressing against the
alveolar bone surfaces of the alveolar sockets thus com-
pressing the periodontal ligament (PDL) in-between [12,
13, 15]. A possible explanation for the observed increased
blood perfusion in tension areas of the PDL could be the fact
that VEGF-mediated angiogenesis has taken place within
the OTM phase of four days, thus increasing the number of
periodontal blood vessels, which has been postulated before
[6, 12, 13, 15, 17].

Conclusions

Our results from this pilot study, which for the first time
used a VEGFR-2 (vascular endothelial growth factor recep-
tor 2)-specific MRI (magnetic resonance imaging) contrast
agent to assess tissue effects during OTM (orthodontic tooth
movement), indicate that noninvasive MRI assessment of
VEGFR-2 expression within the jaw and PDL (periodon-
tal ligament) after OTM is feasible. Our preliminary results
suggest that local perfusion is actually increased in ten-
sion areas of the PDL during OTM. This is most likely
due to increased VEGF-mediated angiogenesis within the
periodontal ligament at tension areas. Taken together, our
pilot study provides a novel method and quantitative imag-
ing markers to noninvasively assess VEGFR-2 expression
during OTM.
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