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Mesenchymal stem cells (MSCs) are adult stem cells (ASCs) known for repairing damaged cells, exerting anti-inflammatory
responses and producing immunoregulatory effects that can be significantly induced into insulin-producing cells (IPCs),
providing an inexhaustible supply of functional β cells for cell replacement therapy and disease modeling for diabetes. MSC
therapy may be the most promising strategy for diabetes mellitus because of these significant merits. In this paper, we focused on
MSC therapy for diabetes.

1. Introduction

Diabetes mellitus (DM), a group of metabolic diseases
characterized by dysregulated glucose metabolism as a result
of insufficient production or effectiveness of the pancreatic
hormone insulin, ultimately leads to a series of serious
complications and has become a global epidemic with
dramatically increasing incidences. Commonly DM falls
into two broad pathogenetic categories: type 1 diabetes
mellitus (T1DM) and type 2 diabetes mellitus (T2DM).
T1DM is characterized by autoimmune destruction of
pancreatic β-cells resulting in severe insulin deficiency [1],
and T2DM results from a combination of insulin resistance
and dysfunction of insulin-producing pancreatic β-cells [2].
Although conventional available treatments, including oral
antidiabetes dugs and exogenous insulin injection, can
improve hyperglycemia-related symptoms or temporarily
improve insulin sensitivity in target tissues, these treatments
reverse neither disease progression nor cellular dysfunction.
As a result, exploring effective ways to permanently cure this
disease is a priority.

It may be a promising approach to find seed cells to
replace damaged or lost β-cells to achieve the goal of curing
diabetes. According to previous reports, pancreatic or islet
cells have been transplanted into patients to replace islet cells
with loss of function and then successfully improve the

insulin requirement [3, 4]. However, its application is
limited by the lack of donors, immune rejection, and severe
postoperative complications [3, 5, 6]. Fortunately, MSCs,
known for their lower immunogenicity and self-renewal
ability, can be induced into insulin-producing cells (IPCs)
and have attracted significant attention for the treatment of
DM. Importantly, MSCs are also well known for their im-
munomodulatory and anti-inflammatory capabilities, which
have been widely used to treat immune diseases such as
severe aplastic anemia [7, 8], multiple sclerosis [9, 10], and
nonalcoholic steatohepatitis [11–13]. Moreover, MSCs can
secrete some cytokines, which is beneficial for improving the
microenvironment of the pancreas, thereby protecting islet
function and even reversing damaged cell function.

2. IPCs Transplantation

Stem cells can spontaneously differentiate into IPCs in vivo
or in vitro, which is one of the key mechanisms by which
MSCs treat DM. However, spontaneous differentiation ef-
ficiency is extremely low [14]. Numerous studies have
chemically [15–17] or genetically [18–20] induced MSCs
into IPCs by effectively applying small molecules or genetic
engineering to improve differentiation efficiency. Genetic
engineering schemes are highly efficient, expensive, cum-
bersome, and time-consuming, andmost of them use viruses
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as vectors, which are teratogenic and form tumors. Chemical
induction is an indirect differentiation application using
small-molecule compounds such as activin A, nicotinamide,
trichostatin A, and β-mercaptoethanol, which are non-
immunogenic and easier to synthesize, standardize, and
preserve [21]. +e published literature on the differentiation
of MSCs into IPCs which has been proved to respond well to
glucose stimulation in vitro and in vivo is shown in Table 1.
+ese induction protocols usually mimic the pancreatic
developmental microenvironment with small-molecule
compounds and gradually induce MSCs to differentiate into
IPCs in stages. Researchers have variously optimized the
schemes to improve induction efficiency. For example,
Karimi et al. [22] demonstrated that vildagliptin (VG)
combined with activin A, nicotinamide, fibroblast growth
factor, epidermal growth factor, N2, B27, etc. elevates the
differentiation of adipose-derived MSCs (AD-MSCs) into
IPCs. Insulin release from VG-treated AD-MSCs showed a
nearly 3.6-fold increase when exposed to high-glucose
medium, and the percentage of insulin-positive cells in the
VG-treated cells was approximately 2.9-fold higher than that
in the untreated AD-MSCs. Mahmoud et al. [23] used
activin A, nicotinamide, and other compounds to directly
induce BMSCs into IPCs, which can express transcription
factors and pancreatic hormone genes similar to those
expressed by pancreatic islets, and further transplantation
into nude diabetic mice could maintain euglycemia in di-
abetic mice for 3 months. Later, their team transferred the
IPCs packaged in a capsule device into diabetic dogs, which
also achieved remarkable results [24]. Many successful cases
have effectively controlled blood glucose in animal models of
diabetes by IPC transplantation [15, 25], which offers a
promising treatment choice for DM. In addition, some
researchers [23, 26] have proven that transplantation of IPCs
is more effective than MSCs in controlling blood sugar.

Unfortunately, there are many issues that need to be
addressed. First, the cell survival time is shortened due to
chemical toxicity after MSCs are induced into IPCs.
Moreover, some researchers have considered that there is no
evidence for significant transdifferentiation of bone marrow
into pancreatic cells in vivo [14]. In addition, in Hassanin
et al.’s [27] opinion, despite the weak immunogenicity of
IPCs derived from MSCs in vitro, they could still induce an
immune response or different degrees of inflammatory
response.

3. Clinical MSCs Transplantation

3.1. Clinical Study of MSCs �erapy for T1DM. T1DM is a
multifactorial disorder characterized by T cell-mediated
autoimmune destruction of β-cells [34]. In particular,
T1DM is a silent killer of β-cells that only occurs when the
β-cell mass is reduced to less than 20%, resulting in the
inability to secrete insulin [35]. As a result, daily insulin
injections are needed for T1DM as a life-saving measure.
Insulin is required for regulating the rate at which cells are
able to uptake and metabolize glucose and is thus critical
for determining how cells store and utilize fuels [36].
Unfortunately, it quickly became clear that the delivery of

exogenous insulin via subcutaneous injections was non-
physiological and crude. Moreover, exogenous insulin
cannot respond to changeable blood glucose levels in vivo,
although insulin saves the lives of T1DM patients. In terms
of physiology, pancreatic β-cells can release insulin phys-
iologically in response to changes in blood sugar in glucose-
stimulated insulin secretion (GSIS) and cannot be replaced
by exogenous insulin injections to balance the glucose level,
which is exquisitely adjusted by the islet cells. +e im-
balance demonstrated itself in the development of hyper-
glycemia-driven micro- and macrovascular complications
over time. Moreover, hypoglycemia, a dangerous acute
complication, is still a frequent occurrence due to delayed
insulin action [37, 38].

To improve this dilemma, many scientists are working
on MSC therapy for diabetes. Some clinical projects have
been approved. As of March 2021, there are 27 clinical
studies on MSCs in the treatment of T1DM in the clinical
trials registry (http://www.clinicaltrials.gov), most of which
were umbilical cord MSCs (UC-MSCs), namely, Wharton’s
jelly MSCs (WJ-MSCs) and bone marrow-MSCs (BM-
MSCs) for the treatment of diabetes, and another was
menstrual blood-derived MSCs and one detached tooth-
derived MSCs for T1DM. +is review does not discuss the
treatment of DM complications as its main subject. +e
published literature except for the treatment of DM com-
plications for evaluating transplanted MSCs for T1DM is
shown in Table 2. Carlsson’s study [39] was an open single-
center randomized pilot study to first evaluate the safety and
efficacy of autologous BM-MSCs in the treatment of recently
diagnosed T1DM. All patients who received autologous BM-
MSCs treatment during the follow-up period tolerated
treatment well, with no adverse events. In addition, most
patients randomized to the MSC treatment group increased
their capacity for C-peptide response to the mixed-meal
tolerance test (MMTT) during the study period, with in-
creased delta values for both peak C-peptide response and
MMTT C-peptide response to the MMTT when compared
with the control group [39]. However, in this study, there
were no significant improvements in C-peptide peak values
and C-peptide, HbA1c, and insulin requirements before
treatment with MSCs and only a significant improvement
compared with the control group. Hu et al. [40] and Cai et al.
[41] reported that UC-MSCs significantly improved the
patient’s metabolic index after treatment, which is en-
couraging and promising. None of these studies showed
significant side effects, demonstrating the safety of MSC
therapy.

However, these studies have a small sample size and
lack a multicenter study, which cannot be applied as a
specification in clinical practice. Although these studies
fully demonstrate the short-term safety, effectiveness, and
inspiration of MSC therapy for T1DM, they have small
sample sizes and lack multicenter research to be used on a
large scale. +e safety and efficacy of MSCs in the treat-
ment of T1DM have been validated in animals and are
currently in the small-sample clinical trial phase. Many
studies have been initiated and are in the process of
research.
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3.2. Clinical Study of MSC �erapy for T2DM. T2DM is
caused by immune dysfunction and inflammation, which are
likely key factors in the development of insulin resistance in

T2DM. MSC therapy has been reported to be expected to
effectively cure diabetes and ameliorate insulin resistance,
which has already been validated in animal trials [49–51]. In

Table 1: Protocols that induce MSCs into IPCs.

Cell source Induce MSCs into IPCs Transplantation way and results

Rat BM-
MSCs [26]

Stage 1, 6 days: 10 ng/ml bFGF, 10 ng/ml EGF, 2% B27 Transplantation way: injected into intraperitoneal
Stage 2, 6 days: 10 ng/ml HGF, 10 ng/ml b-cellulin, 10 ng/ml

AA, 10mmol/L NA, 2% B27
Results: IPC transplantation improved insulin level better

than MSC transplantation
Human BM-
MSCs [24]; Stage 1, 3 days: 55 nmol/L TSA, serum-free DMEM Transplantation way: cells were loaded in 2 +eraCyte

capsules and transplanted under the rectus sheath

Mice BM-
MSCs [28]

Stage 2, 7 days:10 nmol/L GLP-1, 10% FBS, DMEM :DMEM/
F12

Results: the transplanted cells were glucose-responsive and
insulin-secreting. Four weeks after transplantation, blood

sugar values became normal

Rat AD-MSCs
[29]

Stage 1, 2 days: 10mmol/l NA, 0.5mmol/l β-mercaptoethanol
and serum-free high-glucose DMEM (25mmol/l)

Transplantation way: transplanted into the distal tip of the
spleen

Stage 2, 26 days: 30 ng/ml FGF, 10mmol/l NA and serum-free
high-glucose DMEM (25mmol/l)

Results: IPC transplantation significantly reduced the
glucose level. And IPCs were indeed responsive to a glucose

challenge in vivo

Human UC-
MSCs [30]

Stage 1, 7 days: CMRL1066 medium containing 10% FBS, 1%
PSA, 100 ng/ml of β-nerve growth factor, 4 nM AA, 10mM

NA, and 25 ng/ml EGF
Transplantation way: injected through a retroorbital vein

Stage 2, 7–10 days: the culture medium was changed to
DMEM/F12, and the other components were the same as

those in stage 1

Results: IPC transplantation decreased blood glucose,
improved glucose tolerance, increased body weight, and
prolonged the survival time of NOD mice. And IPCs
containing human C-peptide and human nuclei were

located in the liverStage 3, 17 days: 10mM NA, ITS, and 10 ng/ml bFGF

Human BM-
MSCs [23]

Stage 1, 2 days: serum-free, glucose-rich DMEM (25mmol/L)
containing 0.5mmol/L β-mercaptoethanol Transplantation way: inserted under the renal capsule

Stage 2, 8 days: serum-free, glucose-rich medium containing
1% nonessential amino acids, 20 ng/ml bFGF, 20 ng/ml EGF,

2% B27 supplement, and 2mmol/L L-glutamine Results: IPC treatment resulted in control of nude diabetic
mice diabetic status for 3 monthsStage 3, 8 days: serum free, glucose-rich DMEM containing

10 ng/ml betacellulin, 10 ng/ml AA, 2% B27 supplement, and
10mmol/L NA

Human BM-
MSCs [31]

Stage 1, 3 days: DMEM, 55 nmol/L TSA Transplantation way: implanted beneath the renal capsule
Stage 2, 7 days: high-glucose (25mmol/L) medium

containing a 1 :1 ratio of DMEM :DMEM/F12, 10% FBS, and
10 nmol/L GLP-1

Results: diabetic mice became euglycemic 8± 3 days after
transplantation. +e results of the oral glucose tolerance

test were normal

Rat BM-
MSCs [32]

Stage 1, 2 days: DMEM low-glucose medium containing
10mmol/L NA,0.5mmol/L

2-mercaptoethanol, and 5% FBS
Transplantation way: injected via tail veins

Stage 2, 24 hours: serum-free DMEM high-glucose medium
containing 0.5mol/L

2-mercaptoethanol, 10mmol/L NA, 5% FBS, and10 ng/Ml
AA

Results: IPC therapy significantly improved the body
weight and serum insulin, alpha-amylase, adiponectin,
creatinine, total cholesterol, triacylglycerol, IL-6, TNF-α,
liver L-malonaldehyde, and glycogen levels in the STZ-

induced diabetes model
Stage 3, 8 days: DMEM-HG medium containing 20 ng/mL
bFGF, 20 ng/mL EGF, 2mmol/L L-glutamine, 5% FBS,

and10mmol/L NA

Human UC-
MSCs [33]

Stage 1, 2 days: DMEM/F12 (1 :1) with 17.5mM glucose, 1%
fatty acid-free BSA Cohn fraction V, 4 nM AA, 1% PSA, 1×

ITS-X (ITS-X; 5mg/L insulin, 5mg/L transferrin, and 5mg/L
selenium), and 50 μM 2-mercaptoethanol

Transplantation way: injected via the portal vein

Stage 2, 2 days: DMEM/F12 (1 :1) with 17.5mM glucose, 1%
BSA, 1% PSA, ITS-X, and 0.3mM taurine Results: IPC treatment increased serum insulin and C-

peptide level and improved glucose toleranceStage 3, 6 days: DMEM/F12 (1 :1) with 17.5mM glucose, 1.5%
BSA, ITS-X, 1% PSA, 3mM taurine, 100 nM GLP-1, 1mM

NA, and 1× nonessential amino acids
VG : vildagliptin, bFGF: basic fibroblast growth factor, HGF: hepatocyte growth factor, EGF: epidermal growth factor, AA: activin A, NA: nicotinamide, TSA:
trichostatin A, DMEM:Dulbecco’s Modified Eagle’s Medium, GLP-1: glucagon-like peptide 1, FBS: fetal bovine serum, ITS: insulin transferrin selenium, and
PSA: penicillin/streptomycin/amphoteric B.
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addition, there are 21 clinical studies on MSC therapy in the
ClinicalTrials registry (http://www.clinicaltrials.gov) as of
March 2021, in which 7 studies were completed. +e pub-
lished literature for evaluating transplantedMSCs for T2DM
is shown in Table 3. In these published studies, it has been
confirmed that MSC therapy can effectively reduce FBG,
PBG, and HbA1c, reduce insulin requirements, and improve
insulin resistance in follow-up time, proving that MSC
therapy has a significant effect in clinical trials. In these
clinical evaluations, there are some side effects, including
fever, subcutaneous hematoma, nausea, vomiting, headache,
and minor hypoglycemia; fortunately, they can be relieved
after symptomatic treatment without serious complications
or side effects. However, these studies were too short for
follow-up evaluations, as they were always only 12 months,
to assess long-term side effects and complications. Despite
many challenges, the current results, which are reassuring
and encouraging, demonstrate that MSC therapy is a
promising method for T2DM and suggest a new era of
diabetes treatment.

4. Mechanisms of MSC Therapy for DM

4.1. Differentiation into IPCs. MSCs can be induced to
differentiate into IPCs, which is the earliest discovered
mechanism for treating diabetes; as a result, MSCs can be
used to replace the damaged or hypofunctional β-cells to
secrete insulin for hypoglycemic treatment, which is the
most direct and fundamental treatment for diabetes.
Moreover, it is also the basic mechanism by which all stem
cells treat diabetes. Many induction protocols have been
developed to stably induceMSCs to differentiate into IPCs in
vitro, which can effectively control blood sugar within the
normal range. After transplanting IPCs into mice, it was
found that the content and release profile of human insulin
in diabetic mice were similar to those of normal mice, while
diabetic mice release very little endogenous insulin [23, 52].
+is shows that the IPC cluster derived from human MSC
differentiation replaced impaired islet cells to release insulin
in mice, fully proving that IPCs derived from human MSCs
can treat diabetes. However, there are still many problems to
be resolved in the differentiation of MSCs into IPCs. For
example, the induced cells may cause immune rejection,
some compounds commonly used to induce differentiation
can damage the cells, and the risk of tumorigenicity caused
by virus-mediated differentiation [53–56]. Although MSCs
has immunomodulatory effect to inhibit immune rejection,
some studies have shown that MSCs lose immunoprivileged
state and acquire immunogenicity after differentiating into
IPCs [53], smooth muscle cells, and endothelial cells [54].
Previous study showed that the use of viral vectors to in-
troduce exogenous genetic material into cells carries the risk
of tumorigenesis [55]. As for chemically induced differen-
tiation, some small molecular compounds commonly used
to induce stem cells to differentiate into IPCs, such as TSA,
can increase the apoptosis rate of cells [56]. +erefore, it is
important to improve the existing induction methods and
find new induction methods to obtain effective and safe
IPCs.

4.2. Amelioration of Insulin Resistance. Insulin resistance
(IR) is an abnormal physiological state in which the body’s
response to insulin secreted either endogenously or exog-
enously is decreased. IR is implicated in the pathogenesis of
T2DM [57]. To achieve a good effect of lowering blood
glucose, it is necessary to improve IR clinically. As research
progressed, researchers found that the effect of MSCs on
diabetes was not just mediated by the secretion of insulin;
most MSCs could ameliorate IR by their anti-inflammatory
potential. In 2012, it was first reported that MSC treatment
could improve insulin sensitivity in T2DM [58]. MSC
treatment resulted in the expression of GLUT4, phos-
phorylated insulin receptor substrate-1 (IRS-1), and in-
creased protein kinase B (AKT) in insulin target tissues [58].
GLUT4, IRS-1, and AKT are essential for insulin signaling
and glucose uptake [59–61]. Decreased expression of
GLUT4 and dysregulation of IRS-1 and AKT phosphory-
lation indicate IR. Similarly, Sun et al. [62] discovered that in
the presence of UC-MSCs, knockdown of NLRP3 or IL-1β
partially improved palmitic acid and lipopolysaccharide-
induced insulin signaling impairments. Simultaneously,
UC-MSC infusion significantly ameliorated hyperglycemia
in T2DM rats and decreased inflammatory activity, which
resulted in improved insulin sensitivity in insulin target
tissues. Gao et al. [63] improved insulin resistance in T2DM
rats by overexpressing apelin in MSCs. During this process,
it was found that the secretion of the inflammatory factors
IL-6 and TNF-α significantly decreased, whereas the se-
cretion of the anti-inflammatory factor adiponectin signif-
icantly increased. +e inflammatory cytokines IL-6 and
TNF-α have been implicated in insulin resistance [61].
Moreover, Xie et al. and Gao et al. [64, 65] used UC-MSCs to
differentiate macrophages into M2 cells with an anti-in-
flammatory phenotype to improve IR in T2DMmice or rats.
In addition, Zhang et al. [66] proved that M2 cells ameliorate
IR by remodeling inflammatory/macrophage homeostasis in
obese mice. Further analysis showed that proinflammatory
phenotype M1 cells stimulated UC-MSCs to increase the
expression of IL-6, a molecule upregulating IL4R expression,
promoted phosphorylation of STAT6 in macrophages, and
eventually polarized macrophages into the M2 phenotype
[64]. Changes in the levels of IL-6 in these two studies seem
contradictory. However, this also explains the process of
inflammation. When IR is present, MSCs increase the ex-
pression of IL-6 to promote the differentiation of M1 to M2
macrophages, thereby ameliorating IR and reducing the
levels of inflammatory cytokines. +erefore, IL-6 expression
levels increase in the early stage of treatment with MSCs (24
hours [64]), while IR is ameliorated and IL-6 levels decrease
in the late stage of transplantation (after 42 days of trans-
plantation [63]). +ese results prove that MSCs ameliorate
insulin resistance by regulating the release of inflammatory
factors, upregulating anti-inflammatory factors and/or
downregulating inflammation.

4.3. Actions on β-Cells. Some studies have found that MSCs
home to the pancreas after infusion and differentiate into
islet β-cells [67]. However, very few cells can be located in
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the pancreas of diabetic animals after infusion, and only a
small portion differentiate into islet β cells, which is far from
sufficient to explain the large number of new β-cells induced
by cell therapy [68]. +erefore, there may be other mech-
anisms by which MSCs promote β-cell regeneration.

+e study found that human bonemarrowmesenchymal
stem cells (hBM-MSCs) treatment increased the volume,
number, and insulin immunoreactivity of diabetic mice. In
addition, the study also observed that many pancreatic islets
in diabetic mice treated with hBM-MSC germinated from
the pancreatic duct, indicating that hBM-MSCs promote the
repair and regeneration of endogenous pancreatic islets [69].
Similarly, studies by Hao et al. have shown that a single
injection of BM-MSCs infusion can reduce the morpho-
logical and structural damage of islets, significantly restore
the proportion of insulin-positive cells per islet, and increase
the number of islets, though the numbers were still lower
than normal. After multiple injections of BM-MSCs, the
damaged islets gradually recovered to near normal levels,
and the number of islets and the proportion of insulin-
positive cells per islet also returned to almost normal levels
[70]. In addition, coculture of human pancreatic islets with
human adipose-derived MSCs overexpressing betatrophin
can induce pancreatic islet proliferation, β-cell-specific
transcription factor expression, and insulin production
under the stimulation of glucose or KCl and Arg [71].

In addition to promoting islet proliferation and repair,
MSCs also inhibit cell dedifferentiation. Pancreatic β-cell
dedifferentiation means that islet β-cells lose their specific
phenotype, resulting in reduced endocrine function, which
is an important mechanism of T2DM [72]. Animal exper-
iments have shown that in a mouse model of T2DM, the
specific identity transcription factors Nkx6.1 and Pdx1 of
pancreatic β-cells decrease, while the progenitor cell markers
Neurogenin 3 (Ngn3) and OCT4 increase, affecting the

function and number of pancreatic β-cells [73]. Clinical
trials have also confirmed that pancreatic β cells in T2DM
patients have undergone significant dedifferentiation [74].
Wang et al. found that MSCs can alleviate β-cell dysfunction
by reversing β-cell dedifferentiation in an IL-1Ra-mediated
manner. +e results of this study showed that increased
expression of proinflammatory cytokines in human T2DM
pancreatic islet cells activates MSCs to secrete an IL-1R
antagonist (IL-1Ra), which acts on inflamed pancreatic islets
and reverses β-cell dedifferentiation. In vivo experiments
further showed that treatment of db/db mice with MSCs can
improve blood sugar in db/db mice and reverse the dedif-
ferentiation of pancreatic β-cells [75]. However, there are
still few published studies on the dedifferentiation effect of
MSCs on diabetic pancreatic β-cells. Further in-depth ex-
ploration will help researchers understand the mechanism of
MSCs in the treatment of diabetes and provide new ideas for
MSCs in the treatment of diabetes. Figure 1 summarizes the
various mechanisms of MSC therapy for DM.

5. Conclusions

MSCs have an immunosuppressive effect and secrete a
variety of cytokines, improve the microenvironment of
diabetic patients, target insulin-resistant tissue, ameliorate
the metabolic disorder of islet damage, and protect and
regenerate islet β-cells, thereby reducing blood sugar levels.
Due to the main immune mechanism of T1DM, MSCs can
also effectively cure type 1 diabetes, precisely because of the
immune regulation of MSCs. Among the clinical studies of
cell therapy for type 1 diabetes, nearly half of them are
studyingMSC therapy (http://www.clinicaltrials.gov), which
is sufficient to show that MSCs are likely to be an excellent
candidate for the treatment of T1DM in the future. More-
over, for T2DM, MSCs can effectively ameliorate IR and

Modulation of inflammation

Macrophage polarization: M1→M2
Inflammatory cytokines: IL-6, 

IL-1β, TNF-α et al. ↓

Differentiation

Amelioration of IR Replacing damaged β cells

Mesenchymal stem cells

Diabetes improvement

GLUT-4, IRS-1, and AKT in 
skeletal muscle, adipose, and liver

tissues ↑

Repairing injury islet 
Endogenous β cell regeneration ↑

Pancreatic β cell dedifferentiation ↓

Liver Skeletal muscle AdiposeIPCs

Figure 1: Mechanisms of MSC therapy for DM.
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anti-inflammatory effects and can partially restore β-cell
function, which can allow T2DM patients to control blood
glucose without using any oral antidiabetic medications or
exogenous insulin for a certain period of time.

Although clinical trials of MSC therapy are effective and
have few side effects, there are still many problems that need
to be solved before MSCs can be applied in the clinic. First,
which is the better approach, transplanted MSCs or IPCs?
Both methods work effectively regardless of whether MSCs
or IPCs are transplanted into patients. However, Anshu
Sharma [76] believes that because MSCs have immuno-
regulatory capabilities over IPCs, autologousMSCs grown in
high-glucose medium for 10 to 13 passages may have
beneficial effects in individuals at high risk of developing
type 1 diabetes. From the clinical trials above, it can be found
that the main clinical applications are UC-MSCs and BM-
MSCs. MSCs derived from Wharton’s jelly of human um-
bilical cord are generally from healthy and pregnant women
with informed consent, and most bone marrow-derived cells
are from patients themselves. In previous research, Katar-
zyna et al. [77] reported that dysfunction of MSCs isolated
from T2DM patients may limit their potential therapeutic
use as a result of oxidative stress and autophagy. +is means
that cells of autologous origin, similar to autologous BM-
MSCs, will affect the efficacy of cells due to the influence of
their own metabolic disorders. Conversely, MSCs allogeneic
transplantation, in some cases, such as differentiation which
may eliminate the immunoprivileged state of MSCs, may
cause immune rejection, even though MSCs have more or
less immunomodulatory capabilities [53, 54, 78, 79].
+erefore, which one is the best? +e effects need to be
compared with large samples from multiple centers, and
then a standard clinical treatment needs to be developed,
including specifications, injection site, injection method,
injection dose, and other variables.
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