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Dissipative generation of 
significant amount of mechanical 
entanglement in a coupled 
optomechanical system
Rong-Xin Chen1, Chang-Geng Liao2,3,4 & Xiu-Min Lin2,3

We propose an approach for generating steady-state mechanical entanglement in a coupled 
optomechanical system. By applying four-tone driving lasers with weighted amplitudes and specific 
frequencies, we obtain an effective Hamiltonian that couples the delocalized Bogoliubov modes of the 
two mechanical oscillators to the cavity modes via beam-splitter-like interactions. When the mechanical 
decay rate is small, the Bogoliubov modes can be effectively cooled by the dissipative dynamics of 
the cavity modes, generating steady-state entanglement of the mechanical modes. The mechanical 
entanglement obtained in the stationary regime is strongly dependent on the values of the ratio of the 
effective optomechanical coupling strengths. Numerical simulation with the full linearized Hamiltonian 
shows that significant amount of mechanical entanglement can indeed be obtained by balancing the 
opposing effects of varying the ratio and by carefully avoiding the system parameters that may lead to 
amplified oscillations of the mechanical mean values detrimental to the entanglement generation.

Entanglement, especially the entanglement of macroscopic objects, is of great interest both for fundamental phys-
ics and for possible applications in quantum information processing. Recent experimental progress makes it 
possible to manipulate quantum states of macroscopic mechanical objects by means of optical or microwave 
radiation pressure. Many schemes have been proposed to achieve mechanical entanglement, strong electrome-
chanical coupling, and quantum state transfer in opto-and electro-mechanical systems1–7. In particular, one can 
enhance the entanglement between a mechanical resonator and a cavity field by applying suitable time modula-
tion of the driving lasers1,2. By using an auxiliary mode in a three-mode system, an effective two-mode-squeezing 
interaction between two target modes for acquiring optomechanical entanglement can be achieved8–11. The con-
struction of three-mode optomechanical system has recently been widely studied12–17 and realized experimen-
tally18–20. Nevertheless, the amount of optomechanical entanglement achieved in these schemes based on the 
coherent parametric interactions is generally subjected to an upper bound imposed by the stability constraint of 
the systems21. The idea of reservoir engineering, which is previously proposed to cool the trapped ions by lasers22, 
is found to be useful for obtaining large entanglement in the context of atomic systems23–27 and has even been 
realized in experiments28. Recently, the reservoir-engineering-based mechanism is exploited in optomechanical 
systems to create significant amount of steady-state mechanical squeezing29, cavity-cavity entanglement30,31, and 
cavity-mechanical entanglement15,32–35 which can largely surpass the upper bound21.

In this work, we consider the generation of entanglement between two remote mechanical oscillators in a 
coupled optomechanical system using the reservoir-engineering-based mechanism29–33. We note that the gener-
ation of distant mechanical entanglement in coupled optomechanical systems can be achieved via optical-fiber 
mediated coupling36 and by periodically modulating the pumping amplitudes37,38. Here, based on the 
reservoir-engineering method, the created steady-state mechanical entanglement is significantly larger than that 
obtained in refs36,37, and requires only one, rather than two38, steps of implementing the driving lasers. The key for 
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greatly enhancing the entanglement is to drive the coupled cavity modes with four-tone lasers of weighted ampli-
tudes and specific frequencies so that we obtain an effective system Hamiltonian where two nonlocal Bogoliubov 
modes of the mechanical oscillators are coupled to the cavity modes via beam-splitter-like interactions. Notably, 
the Bogoliubov modes can be sufficiently cooled via swapping quanta with the cavity modes which interact with 
optical thermal baths with neglectful mean photons. In this way, after some time of dissipative dynamics, the 
mechanical modes are driven to close to a two-mode squeezed state which is, in fact, the joint vacuum of two 
Bogoliubov modes being cooled. The amount of entanglement is independent of initial states but is strongly 
dependent on the ratio of the effective optomechanical couplings rather than simply on their magnitudes. The 
change in the ratio will simultaneously have two confronting effects on creating mechanical entanglement. The 
entanglement can be maximized by balancing the confronting effects through choosing proper asymmetric driv-
ing amplitudes and as small mechanical decay rate as possible. Our numerical results with the full linearized 
Hamiltonian show that significant amount of mechanical entanglement can indeed be generated. In particular, 
we observe obvious amplified self-sustained oscillations of mechanical mean values for some system param-
eters, which may result from the intrinsic nonlinearity of the optomechanial interaction. The effects of these 
amplified oscillations in some parameter regimes, often unwanted in the generation of mechanical entanglement 
and largely unconsidered in many optomechanical schemes, have been numerically analyzed and been carefully 
avoided in our scheme.

Model and quantum Langevin equations
As illustrated in Fig. 1, we consider a coupled microtoroidal optomechanical system39–43 where two phonon 
modes B1 and B2 respectively interact with two photon modes A1 and A2 which in turn are coupled via the photon 
tunneling. The arrangement is assumed to be symmetrical, i.e., the two mechanical oscillators have the same 
frequency ωm and damping rate γm. The cavity modes with frequency ωc are driven by lasers with the frequency 
ωL and time-modulated amplitude E(t) through the tapered fibers. In the rotating frame with respect to laser 
frequency ωL, the Hamiltonian of our system reads (ħ = 1)

∑ ω= 

∆ + − + + − 


+ +

=

† † † † † ⁎ † †( )H A A B B gA A B B iE t A iE t A J A A A A( ) ( ) ( ),
(1)j

j j m j j j j j j j j
1,2

0 1 2 1 2

where Aj ( †Aj ) and Bj ( †Bj ) are the annihilation (creation) operators of the jth photon mode and phonon mode, 
respectively. Δ0 = ωc − ωL denotes the detuning between the cavity and the driving field. The parameters g and J 
represent the strengths of the single-photon optomechanical interaction and photon tunneling, respectively.

The dynamics of our system can be described by a set of quantum Langevin equations (QLEs)44:

κ κ= − + ∆ − + + + +


†A i A iJA igA B B E t a t( /2 ) ( ) ( ) ( ), (2a)in
1 0 1 2 1 1 1 1

κ κ= − + ∆ − + + + +


†A i A iJA igA B B E t a t( /2 ) ( ) ( ) ( ), (2b)in
2 0 2 1 2 2 2 2

γ ω γ= − + + + .

†B i B igA A b t( /2 ) ( ) (2c)j m m j j j m j
in

Figure 1. Schematic representation of coupled microtoroidal resonators with a tunneling coupling. Each 
resonator is coupled to a mechanical mode and pumped by the tapered fibers.
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Here, κ is the cavity decay rate; a t( )j
in  and b t( )j

in  stand for independent input vacuum noise operators with zero 
mean value and the following nonzero auto-correlation functions:

δ′ = − ′†a t a t t t( ) ( ) ( ), (3a)j
in

j
in

δ′ = + − ′†b t b t n t t( ) ( ) ( 1) ( ), (3b)j
in

j
in

b

δ′ = − ′†b t b t n t t( ) ( ) ( ), (3c)j
in

j
in

b

where nb is the mean thermal occupancy of the mechanical baths.
In the presence of strong external pumping, we can write the system operators as Aj = αj(t) + aj and 

Bj = βj(t) + bj where aj and bj are quantum fluctuation operators with zero mean value around classical c-number 
amplitudes αj(t) and βj(t) of the system operators, respectively. Under the conditions |αj(t)|, β| | t( ) 1j , standard 
linearization techniques4 can be applied by substituting Aj = αj(t) + aj and Bj = βj(t) + bj into Eq. (2). In this way, 
we obtain a set of nonlinear differential equations for the classical mean values αj(t) and βj(t) only (discarding the 
terms with quantum fluctuation operators and quantum noise operators)

α κ α α β β= − + ∆ + + + +


⁎t i J t ig t t t E t( ) [ /2 ( )] ( ) ( ) [ ( ) ( ) ] ( ), (4a)0

β γ ω β α= − + + t i t ig t( ) ( /2 ) ( ) ( ) , (4b)m m
2

where we have assumed α1(t) = α2(t) = α(t) and β1(t) = β2(t) = β(t) considering the system symmetry. One can 
also get the following linearized QLEs for the quantum fluctuations by neglecting the terms containing classical 
mean values only and all nonlinear terms such as a1b1 and †a b2 2

κ β β α κ= − + ∆ − + + + + +

⁎ †a i a iJa ig a t t t b b a t( /2 ) { [ ( ) ( ) ] ( ) ( )} ( ), (5a)in
1 0 1 2 1 1 1 1

κ β β α κ= − + ∆ − + + + + +

⁎ †a i a iJa ig a t t t b b a t( /2 ) { [ ( ) ( ) ] ( ) ( )} ( ), (5b)in
2 0 2 1 2 2 2 2

γ ω α α γ= − + + 
 + 

 +

† ⁎b i b ig a t a t b t( /2 ) ( ) ( ) ( ), (5c)j m m j j j m j
in

which correspond to a system Hamiltonian with linearized optomechanical interactions

∑ ω= ∆ + + + + + +
=

† † ⁎ † † † †H t a a b b G t a G t a b b J a a a a{ ( ) [ ( ) ( ) ] ( )} ( ),
(6)j

j j m j j j j j j
lin

1,2
1 2 2 1

with Δ(t) = Δ0 − g[β(t) + β(t)*] and G(t) = −gα(t) being the effective detuning and enhanced optomechanical 
coupling, respectively.

Effective Hamiltonian and the mechanism
In this paper, we focus on the weak optomechanical coupling regime, namely ω g/ 1m . In this case, approxi-
mate analytical solutions for Eq. (4) can be found by expanding the classical mean values α(t) and β(t) in powers 
of g as29,30,38

α α α α= + + + t t t t( ) ( ) ( ) ( ) , (7a)(0) (1) (2)

β β β β= + + + .t t t t( ) ( ) ( ) ( ) (7b)(0) (1) (2)

Substituting these expressions into Eq. (4), one finds the equations for zero order of g

α κ α= − + ∆ + +


i J E t[ /2 ( )] ( ), (8a)(0)
0

(0)

β γ ω β= − + i( /2 ) , (8b)m m
(0) (0)

When a four-tone driving laser = ∑ ω
=

−E t E e( ) k k
i t

1
4 k  is implemented, the asymptotic solutions for time κt 1/ , 

1/γm are given by

∑α α β= =ω

=

−t e t( ) , ( ) 0,
(9)k

k
i t(0)

1

4
(0)k

where

α κ ω= + ∆ + −E i J/[ /2 ( )], (10)k k k0
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One can follow similar procedures to derive higher-order corrections which are tedious and will not be presented 
here. In view of α(t)(1) = 0, α αt t( ) ( )(2) (0) , and β β ω+ ∆ ∼

⁎g t t[ ( ) ( )] m0 , we can make the approxima-
tions α αt t( ) ( )(0) and ∆ ∆t( ) 0. In the asymptotic regime, the Hamiltonian in Eq. (6) then becomes

∑ ω= ∆ + + + + + +
=

† †
¯

⁎
¯

† † † †H a a b b G t a G t a b b J a a a a{ [ ( ) ( ) ] ( )} ( ),
(11)

asy
lin

j
j j m j j j j j j

1,2
0 1 2 2 1

where

∑α= − = ω

=

−G t g t G e( ) ( ) ,
(12)g

k
i t(0)

1

4
k

with α= −G gk k.
To obtain the targeted Hamiltonian, we select the modulating frequencies ωk as specified in Fig. 2. We then 

rewrite the Eq. (11) in the interaction picture of ω∆ +† †a a b bj j m j j0  and make the rotating-wave approximation by 
neglecting all fast oscillating terms under the conditions J > 2ωm and ω  Gm k to arrive at the effective 
Hamiltonian

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

† † †

† † †

= + + − + + + −

+ − + + + − + + + . .

H G G b G G b G G b G G b a

G G b G G b G G b G G b a H c

1
2

[( ) ( ) ( ) ( ) ]

1
2

[( ) ( ) ( ) ( ) ]
(13)

eff 1 3 1 1 3 2 2 4 1 2 4 2 1

1 3 1 1 3 2 2 4 1 2 4 2 2

Assuming that

= − = = = >+ − − +G G G G G G G G, , , (14)2 4 1 3

we finally have the following kind of Hamiltonian with beam-splitter-like interactions

θ θ= + + . .˜ † †H G a a H c( ) , (15)eff 1 1 2 2

where = −− +
G G G2 2 . The introduced Bogoliubov modes θ1 and θ2 are defined as unitary transformations of the 

mechanical modes b1 and b2 with a two-mode squeezed operator, respectively,

θ = = +† †S r b S r b r b r( ) ( ) cosh sinh , (16a)1 1 1 2

θ = = +† †S r b S r b r b r( ) ( ) cosh sinh , (16b)2 2 2 1

= − † †S r r b b b b( ) exp[ ( )], (16c)1 2 1 2

= .−
+ −r G Gtanh ( / ) (16d)1

Note that the joint ground state of θ1 and θ2 is the two-mode squeezed vacuum state of the mechanical modes b1 
and b2, which can be readily checked θ | 〉 = | 〉 =†S r S r b S r S r[ ( ) 00 ] ( ) ( ) ( ) 00 0j b b j b b1 2 1 2

.
For sufficiently small mechanical damping rate, the mechanical modes only weakly interact with the mechan-

ical thermal baths with relatively large mean thermal occupancies. The dynamics of mechanical modes, i.e., the 
Bogoliubov modes, is dominated by the coupling to the cavity modes. In fact, the Bogoliubov modes θ1 and θ2 
can be simultaneously cooled to near ground states after long enough time via the beam-splitter-like interactions 
with cavity modes a1 and a2 which in turn strongly couple to optical thermal baths with neglectable small thermal 
occupancies. In this way, the dissipation of the cavity modes is exploited to cool the Bogoliubov modes, in other 
words, to generate two-mode squeezed (thermal) states of the mechanical modes.

Figure 2. Representation of the modulating frequencies of the four-tone driving pulse.
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Evolution equation of the covariance matrix
The fact that the dynamics of our four-mode bosonic system is governed by a linearized Hamiltonian ensures 
that the evolved states are Gaussian states whose information-related properties are fully represented by the 8 × 8 
covariance matrix (CM) σ with entries defined as45–47

σ = 〈 + 〉 .R R R R /2 (17)j k j k k j,

Here =R q p q p q p q p( , , , , , , , )b b b b a a a a
T

1 1 2 2 1 1 2 2
 is a vector of dimensionless quadrature operators related to bosonic 

modes o via = + †q o o( )/ 2o  and = − †p o o i( )/( 2 )o . By further introducing the vector of input noise quad-
rature operators

γ γ γ γ κ κ κ κ= ( )N q p q p q p q p, , , , , , , , (18)m b m b m b m b a a a a

T
in in in in in in in in
1 1 2 2 1 1 2 2

we can transform the QLEs for the quantum fluctuations in Eq. (5) into a more compact form

= + .R MR N (19)

Here M is an 8 × 8 real coefficient matrix

γ ω
ω γ

γ ω
ω γ

κ
κ

κ
κ

=







−
− − − −

−
− − − −

− ∆
− −∆ − −

− ∆
− − −∆ −







M

G t G t

G t G t
G t t J
G t t J

G t J t
G t J t

/2 0 0 0 0 0 0
/2 0 0 2 ( ) 2 ( ) 0 0

0 0 /2 0 0 0 0
0 0 /2 0 0 2 ( ) 2 ( )

2 ( ) 0 0 0 /2 ( ) 0
2 ( ) 0 0 0 ( ) /2 0

0 0 2 ( ) 0 0 /2 ( )
0 0 2 ( ) 0 0 ( ) /2

,

(20)

m m

m m R I

m m

m m R I

I

R

I

R

where GR(t) and GI(t) are respectively real and imaginary parts of the effective coupling G(t). Given that the 
quantum states of our system remain Gaussian throughout the evolution, the QLEs in Eq. (5) is equivalent to 
the equation of motion for the CM. From Eqs (3), (17) and (19), we can deduce a linear differential equation 
for the CM1

σ σ σ= + +


M M D, (21)T

where D is a diffusion matrix whose components are associated with the input noise correlation functions in Eq. (3)

δ − ′ = 〈 ′ + ′ 〉 .D t t N t N t N t N t( ) ( ) ( ) ( ) ( ) /2 (22)j k j k k j,

It is found that D is diagonal

γ γ γ γ κ κ κ κ= × + + + +D 1
2

diag[ (2n 1), (2n 1), (2n 1), (2n 1), , , , ] (23)m b m b m b m b

In the following, we will utilize the Eq. (21) to study the time evolution of the mechanical entanglement. Note that 
the coefficient matrices in Eq. (20) correspond to the system Hamiltonian in Eq. (6) where the only approxima-
tion is the commonly used linearization techniques in optomechanics.

Discussion
The entanglement of two mechanical oscillators can be calculated from the two-mode CM σm which is the first 
four rows and columns of the CM σ for the whole system. When σm is arranged in the following block form

σ =









.

V V

V V (24)
m T

1 3

3 2

with each Vj being a 2 × 2 matrix, the entanglement of the mechanical modes b1 and b2 called logarithmic nega-
tivity can then be calculated48,49

η= −E max [0, ln(2 )] (25)N

with η σ= ∑ − ∑ −−2 { [ 4det( )] }1/2 2
m

1/2 1/2 and ∑ = + −V V Vdet( ) det( ) 2 det( )1 2 3 .
To demonstrate the mechanism of generating mechanical entanglement via cavity dissipation discussed priv-

iously, we plot in Fig. 3 the time evolution of the entanglement EN between two mechanical modes b1 and b2 
with all mechanical and cavity modes initially in thermal equilibrium with their baths. The results are numeri-
cally evaluated with the full linearized Hamiltonian in Eq. (6), using a set of experimentally achievable param-
eters39,42,50,51. Obviously, there is no entanglement between b1 and b2 until the Bogoliubov modes θ1 and θ2 have 
been sufficiently cooled after some time. Then, following a dramatic increase, EN eventually tends to be saturated 
with small vibrations which derive from the effects of non-resonant terms. The steady-state mechanical entan-
glement achieved (EN ~ 1.6) in our scheme is much larger than the optomechanical entanglement (EN ~ 0.63) 
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generated in many previous schemes1,4,21,36 which are based on the coherent parametric interactions and sub-
jected to the stability constraint. For larger mechanical decay rate, one has stronger interactions of the mechanical 
modes with the mechanical thermal baths, which raises the final effective temperature of Bogoliubov modes, 
accordingly reducing the steady-state mechanical entanglement as illustrated in Fig. 3.

As shown in related three-mode cases30,33, the amount of stationary entanglement is a nonmonotonic function 
of the ratio of the effective couplings G+/G−. The increase in G+ (holding G− constant) has two competing effects. 
On the one hand, it can increase the squeezing parameter = −

+ −r G Gtanh ( / )1  of the two-mode squeezed thermal 
states for the mechanical modes in the stationary regime, i.e., enhance the stationary entanglement. On the other 
hand, it will weaken the cooling effects of the Bogoliubov modes due to the declining coupling strength 

= −− +
G G G2 2  between the cavity mode a1(2) and the Bogoliubov mode θ1(2). The achievable mechanical entan-
glement is determined by balancing these opposing effects.

Another effect of varying G+/G− that needs particular attention is its influence on the dynamics of the 
mechanical mean values. All previous analyses are based on the assumptions that we have a stationary and 
well-behaved system dynamics which does not enter the strongly oscillating, unstable, or chaotic regime52–56. 
From Eqs (10), (12) and (14) we have

κ ω
κ ω

=
+ ∆ + −
+ ∆ + −

.+

−

G
G

E i J
E i J

[ /2 ( )]
[ /2 ( )] (26)

2 0 1

1 0 2

Assuming that all system parameters except the driving amplitudes are kept fixed, we have G+/G− proportional to 
the ratio of the driving amplitudes E2/E1. Figure 4 shows the time evolution of the classical mechanical mean 
values β(t) for two selected values of G+/G−, which are numerically calculated via Eq. (4). After some transient 
time, β(t) reaches self-sustained oscillations. The oscillation amplitudes can be apparently different depending on 
the values of the ratio G+/G−. Generally, for those driving amplitudes E2/E1 corresponding to G+/G− that are not 

Figure 3. Time evolution of the mechanical entanglement evaluated using the full linearized Hamiltonian in 
Eq. (6) for two different values of the mechanical decay rate, with all mechanical and cavity modes are initially 
in thermal equilibrium with their baths. A set of experimentally feasible parameters39,42,50,51 are chosen here: 
G+/G− = 0.8, =n 2b , and (in units of ωm) κ = 0.1, J = 3, Δ0 = 4, g = 10−5, G− = 0.03, γm = 0 (blue line), γm = 10−4 
(orange line).

Figure 4. Dynamical behaviors of classical mechanical mean values numerically calculated from Eq. (4) with 
the mechanical decay rate γm = 10−4 ωm. (a) G+/G− = 0.8 and (b) G+/G− = 0.98. In both figures, all remaining 
parameters are the same as those in Fig. 3.
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very close to 1 (such as G+/G− = 0.8), as demonstrated in Fig. 4(a) we have small mecahincal oscillations in the 
asymptotic regime so that β β ω+ ∆ ∼

⁎g t t[ ( ) ( ) ] m0  and ∆ ∆t( ) 0, ensuring that the effective Hamiltonian 
derived in Eq. (15) is valid. However, for some larger E2/E1 associated with G+/G− only slightly less than 1 (such 
as G+/G− = 0.98), β(t) oscillates with amplified amplitudes55,56 as shown in Fig. 4(b). In this case, the condition 
∆ ∆t( ) 0 and accordingly the derived Hamiltonian in Eq. (15) for generating mechanical entanglement are no 
longer effective, thus no significant entanglement can be obtained.

Finally we would like to briefly discuss the experimental feasibility of our scheme. The microtoroidal cavities 
in our system shown in Fig. 1 can be fabricated at the edges of two separate chips. The whispering-gallery modes 
of the two microtoroidal cavities couple to mechanical modes via the radiation pressure, while the direct cou-
pling between the two cavities can be achieved by placing them on nanopositioning systems capable of precisely 
controlling the distance39,40. An electro-optic modulator is exploited to generate the required time-modulated 
amplitudes of lasers pumping the whispering-gallery modes of the resonators by means of taper couplings. A 
set of optomechanical parameters comparable to the adopted ones in our scheme is reported in recent exper-
iments with mechanical resonance frequency ωm = 2π × 78 MHz, single-photon optomechanical coupling rate 
g = 4.35 × 10−5 ωm, cavity decay rate κ = 0.09 ωm, mechanical decay rate γm = 1.5 × 10−4 ωm, and thermal occu-
pancy ~2 using cooling technique42,50. Although we use coupled microtoroidal optomechanical system in our 
scheme, the mechanism for generating distant mechanical entanglement can be extended to other coupled 
optomechanical systems, such as microwave-circuit optomechanical systems where similar parameters are 
achieved in recent state-of-the-art experiments57,58.

Conclusion
In summary, we have proposed a scheme to generate steady-state mechanical entanglement in a coupled optom-
echanical system. By applying four-tone driving lasers with weighted amplitudes and specific frequencies, we 
can get beam-splitter-like interactions between the cavity modes and the delocalized Bogoliubov modes of the 
two mechanical oscillators, which enables the cooling of the Bogoliubov modes by the cavity decay as long as the 
mechanical decay rate is small. The mechanical oscillators are then driven to close to two-mode squeezed states 
when the Bogoliubov modes have been sufficiently cooled to near vacuum after some time of dissipative dynam-
ics. By balancing the opposing effects of varying the ratio of the effective optomechanical couplings and carefully 
avoiding the system parameters that may lead to the unwanted amplified oscillations, we obtain steady-state 
mechanical entanglement that is significantly larger than the generated entanglement based on the coherent 
parametric interactions in many previous schemes.
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