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Abstract

Nerve cells produce electrical impulses (“spikes”) through the coordinated opening and clos-

ing of ion channels. Markov processes with voltage-dependent transition rates capture the

stochasticity of spike generation at the cost of complex, time-consuming simulations.

Schmandt and Galán introduced a novel method, based on the stochastic shielding approxi-

mation, as a fast, accurate method for generating approximate sample paths with excellent

first and second moment agreement to exact stochastic simulations. We previously ana-

lyzed the mathematical basis for the method’s remarkable accuracy, and showed that for

models with a Gaussian noise approximation, the stationary variance of the occupancy at

each vertex in the ion channel state graph could be written as a sum of distinct contributions

from each edge in the graph. We extend this analysis to arbitrary discrete population models

with first-order kinetics. The resulting decomposition allows us to rank the “importance” of

each edge’s contribution to the variance of the current under stationary conditions. In most

cases, transitions between open (conducting) and closed (non-conducting) states make the

greatest contributions to the variance, but there are exceptions. In a 5-state model of the nic-

otinic acetylcholine receptor, at low agonist concentration, a pair of “hidden” transitions

(between two closed states) makes a greater contribution to the variance than any of the

open-closed transitions. We exhaustively investigate this “edge importance reversal” phe-

nomenon in simplified 3-state models, and obtain an exact formula for the contribution of

each edge to the variance of the open state. Two conditions contribute to reversals: the

opening rate should be faster than all other rates in the system, and the closed state leading

to the opening rate should be sparsely occupied. When edge importance reversal occurs,

current fluctuations are dominated by a slow noise component arising from the hidden

transitions.

Author summary

Discrete state, continuous time Markov processes occur throughout cell biology, neurosci-

ence, and ecology, representing the random dynamics of processes transitioning among
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multiple locations or states. Complexity reduction for such models aims to capture the

essential dynamics and stochastic properties via a simpler representation, with minimal

loss of accuracy. Classical approaches, such as aggregation of nodes and elimination of

fast variables, lead to reduced models that are no longer Markovian. Stochastic shielding
provides an alternative approach by simplifying the description of the noise driving the

process, while preserving the Markov property, by removing from the model those fluctu-

ations that are not directly observable. We previously applied the stochastic shielding

approximation to several Markov processes arising in neuroscience and processes on ran-

dom graphs. Here we explore the range of validity of stochastic shielding for processes

with nonuniform stationary probabilities and multiple timescales, including ion channels

with “bursty” dynamics. We show that stochastic shielding is robust to the introduction of

timescale separation, for a class of simple networks, but it can break down for more com-

plex systems with three distinct timescales. We also show that our related edge importance
measure remains valid for arbitrary networks regardless of multiple timescales.

Introduction

Variability in dynamical biological systems is ubiquitous. Discrete state, continuous time Mar-

kov process models are used throughout cell biology, neuroscience, and ecology to represent

the random dynamics of processes transitioning among multiple locations or states [1–3].

Examples include transitions between states defined by degree of phosphorylation and subcel-

lular compartment location in a signaling network [4], transitions among several conducting

and non-conducting states in populations of ion channels [5], random genetic drift across a fit-

ness landscape [6], random dispersal of mobile populations [7], and many other processes [8].

Often fluctuations arise at the molecular level, whether from discrete population effects, ther-

mal (Brownian) effects, or deterministic high dimensional nonlinear dynamics (chaos) at

microscopic scales.

In general, nonlinear stochastic systems cannot be solved mathematically in closed form.

Even if we limit ourselves to Markov processes, i.e. models for which the probability distribu-

tion of future states is independent of the past history, given the current state (meaning that

the current state is as complete a description of the process as possible, and no additional “hid-

den” variables exist), the effects of noise on biological dynamics must usually be studied via

computer simulation. However, exhaustively simulating all noise sources within a given

molecular level Markov process is often computationally prohibitive. Hence there is a need for

complexity reduction methods.

In this paper we investigate a complexity reduction method for discrete state, continuous

time Markov process models known as stochastic shielding which we summarize in the next

paragraph [9, 10]. Complexity reduction for such models aims to capture the essential dynam-

ics and stochastic properties of a system via a simpler representation, with minimal loss of

accuracy. There is substantial literature on the approximation of complex random walk models

with simpler models by mapping states of the full model to the nodes of a smaller set of states

[11–23]. This includes coarse-graining of complex networks [11–13], elimination of fast vari-

ables via quasi-steady state approximation [24], marginalization of a partially observed Markov

process through the solution of a filtering problem [25], the k-core decomposition (first pro-

posed in [14] and shown to be effective for visualization in [15]), and various clustering algo-

rithms that have been developed recently [16–20] (reviewed by [21]). Aggregation of tightly

interconnected nodes and adiabatic elimination of fast variables lead to reduced models that
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are no longer Markovian [20, 22]. As another approach, one may eliminate rarely visited

nodes, again leading to a reduction in the number of states [23]. Stochastic shielding provides

an alternative approach by simplifying the description of the noise driving the process, while

preserving the Markov property, by removing from the model those fluctuations that are not

directly observable [9]. As illustrated in Fig 1, rather than reduce the number of nodes in the

graph, the stochastic shielding approximation reduces the number of independent noise

sources used to drive the stochastic process on the graph, while preserving the dynamical

behavior of a particular projection of the random process.

As discussed in more detail in Methods xSummary of Stochastic Shielding in the Langevin

Case, in the Langevin approximation for a time homogeneous first-order transition network,

the population fraction occupying states 1, . . ., n is a vector XðtÞ 2 Rn satisfying

dX
dt
¼ LX þ

X

k2E

Bkxk ð1Þ

where L, the graph Laplacian, captures the mean flux along each directed edge k 2 E (edge

set). The matrix Bk gives the effects of fluctuations ξk around the mean flux along the kth edge.

The noise terms, ξk, are independent, white and Gaussian, one for each directed edge. Given

an observable of interest, represented by a vector M 2 Rn, the stochastic shielding approxima-

tion consists in finding a partition of the edge set into edges of primary importance (E1) and

secondary importance (E2) that gives an approximate process YðtÞ 2 Rn satisfying

dY
dt
¼ LYþ

X

k2E1

Bkxk; Yð0Þ ¼ Xð0Þ ð2Þ

by neglecting the noise forcing along the edges of secondary importance. Such an approxima-

tion typically creates a (small) pathwise discrepency relative to X that can be quantified by our

edge importance measure, also defined in Methods and discussed in more detail below [10].

The stochastic shielding approximation exploits filtering properties intrinsic to any net-

work. Given an observable defined on the network (for example the indicator function for a

subset of states representing nodes of interest), the fluctuations in population flux along

some edges will have a greater impact on fluctuations in the observable, while other edges’

Fig 1. Schematic illustration of the stochastic shielding approximation, for a graph representing 24 transitions

(directed edges) interconnecting eight states (vertices). One of the states (black disk) is distinguishable from the rest

(white disks). For example, the black disk could represent a conducting ion channel state, while the white disks could

represent non-conducting states. Left: Numerical simulation of the full process is computationally expensive: each blue

trace superimposed on an edge represents independently generated stochastic forcing, but not all edges make

significant contributions to fluctuations in the state of interest. Right: Rather than simulate the full process, the

stochastic shielding approximation reduces the number of independent noise sources (blue edges) used to drive the

stochastic process on the graph, while preserving the dynamical behavior of a particular projection of the random

process.

https://doi.org/10.1371/journal.pcbi.1006206.g001
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fluctuations will have a lesser impact. Hence the network “shields” the observable from some

fluctuations, which may therefore be ignored with little loss of accuracy. To put it another way,

the effects of a fluctuation in the movements of populations far removed from a location of

interest do not directly affect the fluctuations in the population of interest; their effect reaches

the observed nodes only via the indirect effect of influencing the population immediately sur-

rounding the node or nodes of interest. One may view the source of fluctuations (relative to

the average flux along a given edge) as independent noise forcing associated with each edge in

the graph [10]. Edges that connect nodes that are indistinguishable, with respect to the mea-

surement vector M, are themselves not directly observable. The fluctuations in rates of transi-

tion along these hidden edges are “averaged over” and their effect on the observed value

(M⊺ X(t)) is reduced.

This filtering effect leads to the possibility of a novel approximation scheme. Rather than

approximating a random process on a graph by aggregating together subsets of nodes, we may

replace the fluxes along a subset of edges with the mean flux along the respective edge. If a

graph has K directed edges, there are 2K − 1 such “approximations”, as the independent noise

along each edge can be either included or excluded from the approximation. Including all

noise terms gives the original model, whereas excluding all noise terms gives a model with no

fluctuations.

Which of these 2K − 1 different approximations is the “best approximation”? The stochastic

shielding method provides the following rule: suppress the noise along those edges connecting

indistinguishable nodes. We extended this method by introducing an edge importance measure
that quantifies the effect of suppressing noise along each edge separately. For a linearized Lan-

gevin equation (multidimensional Ornstein-Uhlenbeck (OU) process) approximating the full

population process, we showed that when the process satisfies detailed balance, the variance of

the observable states can be decomposed into a sum of fluctuations attributable to each pair of

directed edges in the graph. Thus, the edge importance measure allows one to rank the edges

such that the most important edge contributes the most to the stationary variance of the

observable states.

We previously applied the stochastic shielding method to Markov processes arising in neu-

roscience (Hodgkin and Huxley’s sodium and potassium ion channel models) and processes

on Erdos-Renyi random graphs [10]. However, these processes do not include significant

timescale separation. In the present paper we study processes with nonuniform stationary

probabilities and multiple timescales, including ion channel models with “bursty” dynamics.

Separation of timescales is an important property of many neural systems [26]. For

instance, many ion channels exhibit bouts of repeated channel opening and closing, inter-

spersed by long periods of channel closure—often referred to as bursty conductances. The nic-

otinic acetylcholine receptor (nAChR) is a well studied ligand-gated ion channel that can

exhibit bursty behavior [27–29]. Acetylcholine (ACh) is a neurotransmitter that plays a key

role in motor function via this ion channel, and the opening of the nAChR channel pore

requires the binding of ACh. For low acetylcholine concentration ([ACh]), the nAChR is a

classic example of a bursty ion channel.

In the next section, we explore the robustness of the stochastic shielding phenomenon and

the accuracy of the approximation under conditions of timescale separation and sparsity in the

stationary distribution, by way of the edge importance measure described in [10]. We show

that typical edge importance hierarchy is robust to the introduction of timescale separation for

a class of simple networks, but that it can break down for more complex systems with three or

more distinct timescales, such as the nAChR described above. Nevertheless we also establish

that the edge importance measure remains a valid tool for analysis for arbitrary networks

regardless of multiple timescales.

Stochastic shielding and edge importance
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Results

Overview

The shielding phenomenon leads the fluctuations associated with directly observable transi-

tions to dominate the variance of the observable states in many networks, but this rule does

not hold universally. The edge importance measure (see Eq 42 in Methods) provides an exact

means to evaluate the applicability of stochastic shielding to any model (Markovian, with first-

order transitions) by quantifying the effect of suppressing noise along each edge separately.

This measure considers the pathwise mean square error between two trajectories: the full sto-

chastic process with all fluctuations included, and an approximate process with a subset of

fluctuations excluded. We use this measure to rank the edges in order of importance with

respect to the stationary variance of the observable states. Moreover, we show that the station-

ary variance decomposes into a sum of contributions from each edge. This decomposition is

unique and follows from a straightforward calculation that we describe and prove in Theorem

1 in the last subsection of Results. We apply the stochastic shielding method and compute the

edge importance measure for the acetylcholine receptor model introduced above and for a set

of simple networks (3-state chains) with timescale separation.

Biological example of a bursty process: Nicotinic acetylcholine receptor

The nicotinic acetylcholine receptor is a ligand-gated ion channel and the opening of the chan-

nel pore requires the binding of acetylcholine. For low acetylcholine concentration, the

nAChR is a classic example of a bursty ion channel. This channel has been described many

times in the literature, and we will follow the formulation from Colquhoun and Hawkes [30].

Following Figure 4.1 in their paper, the channel has five states with ten possible transitions

between states. The states form a graph with vertices i 2 V ¼ f1; 2; 3; 4; 5g and edges

k 2 E ¼ f1; � � � ; 10g (see Tables 1 and 2). Fig 2A shows the transition state diagram. The chan-

nel can be bound to zero, one, or two ACh molecules. When singly or doubly bound the chan-

nel may be open or closed, whereas the unbound state is always closed. Table 1 gives the

definition of the states and labels each state as open (observable) or closed (unobservable).

State 5 (T) is the unbound state (closed), state 4 (AT) is singly bound (with 1 molecule of ACh)

and closed, state 3 (A2T) is doubly bound and closed, state 2 (A2R) is doubly bound and open,

and state 1 (AR) is singly bound and open. The measurement vector M specifies which states

are open and which are closed by labeling each state with a 1 or 0, respectively. In this case, M

is given by

M ¼ ð 1 1 0 0 0 Þ
⊺ ð3Þ

meaning that states 1 and 2 are open/conducting states and states 3, 4, and 5 are closed/non-

conducting states. Table 2 gives the definition of the edges and the transition rates. Note that

Table 1. Colquhoun & Hawkes’ five-state model for the nicotinic acetylcholine receptor [30], cf. Fig 2A. Definition

of the states and the measurement vector M (normalized conductance). Mi = 1 means that state i is open (conducting/

observable) and Mi = 0 means that state i is closed (non-conducting/non-observable).

i∈V State Mi

1 AR (singly bound and open) 1

2 A2R (doubly bound and open) 1

3 A2T (doubly bound and closed) 0

4 AT (singly bound and closed) 0

5 T (unbound and closed) 0

https://doi.org/10.1371/journal.pcbi.1006206.t001
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the ten transitions are numbered starting with the pair of transitions connecting states 1 (AR)

and 2 (A2R) and moving clockwise back to state 1; these are reactions 1-8. The last pair of tran-

sitions (9 and 10) connect states 4 (AT) and 5 (T). We will write the per capita transition rate

for the kth reaction, with source node i and destination node j, either with a single index denot-

ing the reaction (αk) or with a double index denoting the source followed by the destination

(αij). Thus, α1 and α21 are synonymous.

Burstiness is defined by the observation of isolated single channels opening and closing in

bouts [29–31]. Fig 2D shows a sample trace of our model simulation exhibiting burstiness of

the channel for low agonist concentration ([ACh] = 0.5μ Mol). (For details on the model simu-

lation, see Numerical Methods, in Methods.) Fig 2E zooms in on the burst in panel D labeled

by the red arrow. The distribution of closed intervals shows a mixture of slow and fast time-

scales, requiring combinations of two or more exponentials with widely separated time con-

stants. These time constants are related to the eigenvalues of the graph Laplacians (see Eq 4,

and see Methods for details). The ratio of eigenvalues will be used as a measure of timescale

separation. Fig 2B shows the presence of timescale separation at low [ACh] concentrations by

plotting the ratios of the eigenvalues {λ2/λj}j = 3,4,5. Significant timescale separation occurs

when λ2/λj<< 1, or in words, when the two eigenvalues differ by at least one order of magni-

tude. The graph Laplacian has leading eigenvalue λ1 = 0. For the acetylcholine receptor, and

for the systems we study here, the remaining eigenvalues are real and negative, and are ordered

so that 0 > l2 � l3 � . . . � ljVj, where jVj is the number of states.

We apply the stochastic shielding method to the nAChR model and show that it works well

for high acetylcholine concentration, but not in the bursty regime characterized by low ACh

concentration. In fact, we see a reversal of edge importance at low agonist levels (see Fig 2C

and discussion below). In light of the network filtering effect underlying stochastic shielding,

we might naïvely expect that the edges connecting states 2 and 3, and states 1 and 4, should

contribute the most to the stationary variance of the observable states (1 and 2), but this is not

the case. There is even a regime where the observable edge pair (edges 3 and 4) is only the

third most important edge, as defined by our edge importance measure.

Computing the edge importance measure (Eq 42 in Methods), the fraction of the stationary

variance contributed by edge k, requires the graph Laplacian L (and its corresponding eigen-

values and eigenvectors), the noise coefficient matrix B (defined below), the stationary mean

flux Jk, and the measurement vector M. The graph Laplacian L as a function of ACh

Table 2. Colquhoun & Hawkes’ five-state model for the nicotinic acetylcholine receptor [30], cf. Fig 2A. Definition

of the edges and the transition rates αij. The acetylcholine concentration is c� 0. Bold font denotes edges with [ACh]-

dependent transition rates.

k∈E Transition i(k)! j(k) αij

1 A2R! AR (release) 2! 1 a21 ¼ 2k�
� 2
¼ 0:�6 � 10� 3

2 AR! A2R(binding) 1! 2 a12 ¼ k�
þ2c ¼ 5� 10� 1c

3 A2T! A2R (opening) 3! 2 α32 = b2 = 15

4 A2R! A2T (closing) 2! 3 α23 = a2 = 0.5

5 A2T! AT (release) 3! 4 α34 = 2k−2 = 4

6 AT! A2T(binding) 4! 3 α43 = k+2 c = 5 × 10−1 c

7 AT! AR (opening) 4! 1 α41 = b1 = 1.5 × 10−2

8 AR! AT (closing) 1! 4 α14 = a1 = 3

9 AT! T (release) 4! 5 α45 = k−1 = 2

10 T! AT(binding) 5! 4 α54 = 2k+1 c = 10−1 c

https://doi.org/10.1371/journal.pcbi.1006206.t002
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Fig 2. (A) Colquhoun & Hawkes’ five-state model for the nicotinic acetylcholine (ACh) receptor [30]. White disks: closed (non-conducting) states (Mj = 0). Gray

disks: open (conducting) states (Mj = 1). Nodes 1-5 (large black numbers) are defined in Table 1. Transitions 1-10 (small blue numbers) are defined in Table 2. The

opening of the channel requires the binding of acetylcholine. Transitions 2, 6, and 10 are driven by ACh concentration. Transitions 3, 4, 7, 8 are directly observable

through a conductance change. (B) Timescale separation (ratio of non-zero eigenvalues of the graph Laplacian) as a function of ACh concentration. (C) Edge

importance Rk for k 2 {1, . . ., 10} for each edge in the graph as a function of [ACh], see Eq 42. (D) Sample trace of the model exhibiting burstiness of the channel for

low agonist concentration, here [ACh] = 0.5μM. (E) Zoomed in version of the burst in (D) labeled by the red arrow.

https://doi.org/10.1371/journal.pcbi.1006206.g002
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concentration c is

L ¼

� ða1 þ k�
þ2

cÞ 2k�
� 2

0 b1 0

k�
þ2

c � ða2 þ 2k�
� 2
Þ b2 0 0

0 a2 � ðb2 þ 2k� 2Þ kþ2c 0

a1 0 2k� 2 � ðb1 þ kþ2cþ k� 1Þ 2kþ1c

0 0 0 k� 1 � 2kþ1c

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

ð4Þ

and matrix B is

B ¼
ffiffiffiffi
J1

p
z1

ffiffiffiffi
J2

p
z2 . . .

ffiffiffiffiffi
J10

p
z10ð Þ; ð5Þ

where Jk = Ntot αij πi(k) is the stationary flux across edge k for a total population of Ntot ion

channels, αij is the appropriate transition rate of reaction k (Table 2) and zk is the stoichoime-

try vector for reaction k. The kth stoichoimetry vector describes how an individual moves from

node i to node j in reaction k. For instance, the first two stoichoimetry vectors are

z1 ¼ ð 1 � 1 0 0 0 Þ
⊺ ð6Þ

z2 ¼ ð � 1 1 0 0 0 Þ
⊺ ; ð7Þ

which correspond to transition 1 (an individual moves from state 2 to state 1) and transition 2

(an individual moves from state 1 to state 2), respectively, in Fig 2A. Note that z1 = −z2, and

this relationship holds for each edge pair in the ACh transition graph.

The matrix B depends on the equilibrium population distribution~p ¼ ðp1; . . . ; p5Þ
⊺
. Since

~p is the leading eigenvector of the graph Laplacian L, the equilibrium fraction πi of the popula-

tion in state i will change as a function of c (ACh concentration). Lastly, recall that the mea-

surement vector M = (1 1 0 0 0)⊺ as described in Table 1.

Fig 2C plots the relative edge importance Rk (fraction of the stationary variance contributed

by edge k) for each edge k 2 {1, . . ., 10} as a function of acetylcholine concentration over the

range [ACh] 2 [10−1, 102] μMol. At high concentrations, the most important edges are those

connecting the doubly bound closed state to the doubly bound open state (edges 3 and 4), that

is, the edges along which transitions are directly observable. This situation is consistent with

results for Hodgkin-Huxley ion channels and generic Erdos-Renyi random graphs with ran-

domly assigned binary measurement vector [9, 10]. In contrast, the most important edges at

low concentrations are those connecting the singly bound state to the doubly bound closed

state (edges 5 and 6 in Fig 2A). Although transitions along this edge are not directly observable,

they make a greater contribution to the stationary variance of the open state than the opening/

closing transitions.

Moreover, we find that edges 5 and 6 have the highest relative importance for low and inter-

mediate concentrations, followed by edges 3,4 and 9,10. Just below a concentration of 10

μMol, the relative importance switches so that edges 3 and 4 become the most important for

higher concentrations (� 10 μMol). To begin to understand why the edge importance ranking

changes for low [ACh], we note that the relative importance depends heavily on state occu-

pancy probability.

As has been previously observed, one of the nodes in the 5-state nAChR model has very low

occupancy probability across all agonist concentrations [32]. In particular, states 2 (A2R) and 5

(T) are the most likely states to be occupied over the range of [ACh] considered. However,

state 1 (AR, one of the open states) has very low occupancy probability and hence is rarely

Stochastic shielding and edge importance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006206 June 18, 2018 8 / 35

https://doi.org/10.1371/journal.pcbi.1006206


visited by the process. As a result, the most likely path between the unbound/closed state 5 (T)

and the doubly bound/open state 2 (A2R) is 5! 4! 3! 2. This means that transitions 7,8

and 1,2 do not happen very often. The stochastic shielding method predicts that these reactions

should be important, but if they rarely happen, they contribute little to the stationary variance.

Thus, their relative importance as computed by our edge importance measure is very small.

Indeed, for all values of [ACh], the equilibrium occupancy probability of state 1, π1 is� 1. The

variance of the open states for a population of Ntot channels at equilibrium is

V½Open� ¼ Ntotðp1ð1 � p1Þ þ p2ð1 � p2Þ � 2p1p2Þ

� Ntotp1ð1 � 2p2Þ þ Ntotp2ð1 � p2Þ þ Oðp2
1
Þ; as p1 ! 0þ:

Although the goal of the stochastic shielding approximation is not to change the network

topology by eliminating nodes as other authors have suggested [23, 32, 33], when edges are

“unimportant” it is natural to consider eliminating them. If all the edges to a node are unim-

portant, eliminating them would eliminate the node, and in this case the change in stationary

variance of the open states would be approximately Ntotπ1(1 − π1) − 2Ntotπ1π2, if π1 is small.

(Compare to [32], “Scheme 1”.)

The edge importance measure Rk (for each edge k) provides an intrinsic idea of how many

edges could be suppressed in an approximation (whether by suppressing the fluctuations gen-

erated by that edge, which is the focus here, or by removing the edge entirely). For the typical

operating range of the nAChR, roughly 1-10 μM [ACh], there are three transition pairs with

similar edge importance (edge pairs 3,4, 5,6, and 9,10), suggesting that accurate simulations of

stochastic effects would require keeping the fluctuations generated by all three of these edge

pairs.

The acetylcholine receptor example suggests that the inversion of edge importance is related

to timescale separation. In the next subsection, we investigate the edge importance measure in

the presence of timescale separation, as well as a combination of sparsely and abundantly pop-

ulated vertices. We show that edge importance ranking is preserved despite the introduction

of arbitrary timescale separation in simple graphs (3-state chains) with per capita transition

rates at two distinct timescales. As we will see, a system needs at least three distinct timescales

in order to see the method break down. Nevertheless, the edge importance measure remains

exact, and informative, for arbitrary networks, and can be used to extend the original stochas-

tic shielding method to systems with timescale separation and bursty behavior.

3-state model with timescale separation

Motivated by the example of the acetylcholine receptor, we systematically study the effects of

introducing timescale separation into the simplest nontrivial model to which stochastic shield-

ing applies: the 3-state chain with one observable state (or one pair of observable transitions

into and out of the observable state). Specifically, we consider a discrete state, continuous time

Markov jump process NðtÞ 2 N3 with Ntot random walkers moving independently on a graph

with three nodes. See Fig 3 for an illustration of the graph, and see Methods for general nota-

tion and see S1 Supporting Information for a detailed description of the 3-state model. Here

we assume that state 3 (black disk) is the observable state, which yields the following measure-

ment vector: M = (0 0 1)⊺.

If we think of this model as a simplified ion channel with three states, then the observable

state is the open or conducting state of the system, and all other states are closed or non-con-

ducting. There are four directed edges in the graph, and edge k represents a transition from

source node i(k) to destination node j(k) which happens at rate αk (or αij, see Methods for

details on notation). We focus on the observed process M⊺N(t) which describes the evolution

Stochastic shielding and edge importance
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of the open state, and approximate processes that suppress noise along a subset of the four

edges. In particular, we use the following two approximate processes to illustrate how stochas-

tic shielding “usually” works: (i) suppress noise along edge pair 1,2 (and preserve noise along

edge pair 3,4) and (ii) suppress noise along edge pair 3,4 (and preserve noise along edge pair

1,2). In most cases (i) is the best approximation; we investigate here whether or not this heuris-

tic holds universally.

The mechanism of stochastic shielding can be readily understood by considering the power

spectrum of the observed process M⊺N(t). The relationship between the power spectrum and

the covariance matrix of a stochastic process is well known; the power spectrum is the Fourier

transform of its covariance [34]. The stationary covariance C of a discrete state Markov process

(such as N described above) is given by Gadgil, et al. [8], and satisfies the Lyapunov Eq 46 (see

Methods).

The stationary variance R of the full and approximate observed processes has the following

connection to the power spectrum: integrating over the power spectral density (PSD) S(ω)

gives the stationary variance. Moreover, since the stationary variance decomposes into a sum

of contributions from each edge in the graph (R = ∑kRk where Rk is the edge importance mea-

sure of edge k given in Eq 42), the power spectrum decomposes as well (S(ω) = ∑k Sk(ω), see Eq

66). We provide more details on how the power spectrum is obtained in Methods xNumerical

Methods.

Fig 4B shows sample trajectories for the full process (denoted by X, black trace) and the two

approximations (i) and (ii) described above (denoted by X3,4 (red trace) and X1,2 (blue trace),

respectively) in the Gaussian (OUP) version of the model. Fig 4A shows the corresponding

power spectral contributions for the three processes: S(ω) is the total PSD (shown in black),

S3,4(ω) is the PSD for approximation X3,4 (red), and S1,2(ω) is the PSD for approximation X1,2

(blue). See Methods xNumerical Methods for details on model simulation and calculation of

the power spectra.

At all frequencies, the power from the observable edge pair 3,4 predominates, as shown by

the red dashed line (S3,4(ω)) closely following the black line (total PSD). This spectral decom-

position agrees with our edge ranking based on edge importance (i.e. edge pair 3,4 contributes

the most to the stationary variance), and illustrates why the stochastic shielding method says

that the best approximation of the full process is to preserve the noise along edge pair 3,4 and

to suppress the noise along edge pair 1,2. Fig 4B illustrates the consequence in the time

domain: the red trajectory closely follows the black trajectory, but the blue trajectory only cap-

tures a rough approximation of the full process.

However, this situation breaks down and leads to edge importance reversal for certain

bursty systems, which we aim to understand in the rest of the paper. In the remainder of this

section, we show that edge importance inversion cannot be obtained by taking a 3-state chain

and accelerating or decelerating any single edge, pair, or trio of edges with a single parameter

Fig 3. An illustration of the general 3-state chain with per capita transition rates αk for k = 1, 2, 3, 4. State 3 (black)

is the observable state (or open/conducting state) of the system, and all other states are not observable (or closed/non-

conducting states). By convention, we identify α1� α12, α2� α21, α3� α23, and α4� α32.

https://doi.org/10.1371/journal.pcbi.1006206.g003
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(i.e. by introducing two distinct timescales). As we shall see, in order to invert the edge impor-

tance as we did in the nAChR example for low agonist concentration, we need to introduce

a third timescale. This will be addressed in xGeneralized 3-State Model with Timescale

Separation.

Two distinct timescales. Starting with two distinct timescales, we systematically survey all

3-state chains with one, two, or three out of four edge transition rates (αk) accelerated or decel-

erated relative to the remaining edges. The graph Laplacian L and matrix B for the 3-state

model are given by

L ¼

� a1 a2 0

a1 � a2 � a3 a4

0 a3 � a4

0

B
B
B
@

1

C
C
C
A
; B ¼

�
ffiffiffiffi
J1

p ffiffiffiffi
J2

p
0 0

ffiffiffiffi
J1

p
�

ffiffiffiffi
J2

p
�

ffiffiffiffi
J3

p ffiffiffiffi
J4

p

0 0
ffiffiffiffi
J3

p
�

ffiffiffiffi
J4

p

0

B
B
B
@

1

C
C
C
A

ð8Þ

recalling that the stationary flux along the kth edge is given by Jk = Ntotαkπi(k). The systems we

consider satisfy detailed balance, which means that J1� J2 and J3� J4. Matrices L and B will be

used to compute the relative edge importance Rk for each edge in all cases described below.

We introduce a parameter α (ranging from 10−4 to 104) and consider seven different cases:

three cases where two transition rates are set to α and the other two rates are 1, and four cases

where one rate is set to α and the other three rates are 1. See Table 3 for a detailed description

Fig 4. Stochastic shielding and the power spectrum when all transition rates equal unity. Panel A shows that the majority of the power comes

from the observable edges (red dashed line), as expected from the edge importance measure and the stochastic shielding method. Black line is the

total power spectral density (S) for the observed process X, red dashed line is the PSD (S3,4) for the approximate process X3,4 with noise from

observable edges preserved, blue dashed line is PSD (S1,2) for the approximation X1,2 with noise from hidden edges preserved. Panel B shows

trajectories (Gaussian version of the model) of the full observed process with all noise sources included (black trace), the approximate process

with noise preserved on the observable edges (red), and the approximate process with noise preserved on the hidden edges (blue). The red trace

closely follows the black trace, whereas the blue trace only tracks mean behavior and misses most fluctuations; X3,4 is the best approximation of X,

in agreement with the stochastic shielding method.

https://doi.org/10.1371/journal.pcbi.1006206.g004
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of these cases. In Case 1, transition rates between closed states differ from transition rates

between the open and closed states; in Case 2, transition rates into the middle (closed) state

differ from transition rates out of the middle state; in Case 3, upward transition rates differ

from downward transition rates; in Cases 4-7, one of the four transition rates differs from the

other three. We use Eq 42 (see Methods) to compute the relative edge importance Rk for each

edge k as a function of α. The relative edge importance is computed with respect to the total

variance of the third state.

Fig 5 shows all possible cases of the 3-state chain with state 3 as the open/conducting state

and α ranging from 10−4 to 104. The left column gives the 3-state diagram for each case with

transition rates αk equal to 1 or α, as described in Table 3. The middle column shows the “time-

scale separation” for each case, defined to be the logarithm of the ratio of the two non-zero

eigenvalues (λ2/λ3) versus α. As in the nAChR model, significant timescale separation occurs

when λ2/λ3� 1, or when the two eigenvalues differ by at least one order of magnitude. The

right column shows the relative edge importance Rk versus α for each case.

According to the stochastic shielding method, we expect edge pair 3,4 to have higher rela-

tive edge importance than edge pair 1,2. In Fig 5, this is shown by the blue curve (R3, R4) lying

above the red curve (R1, R2) in the edge importance graphs in the right column. This holds for

all cases except cases 2 and 6 which show a convergence of the two edge importance curves for

large values of α. In these cases we also find significant timescale separation for large α, as

shown by widely separated eigenvalues of the graph Laplacian (middle column graphs). For

instance, when α = 104, Cases 2 and 6 show that λ2 differs from λ3 by four orders of magnitude.

However, there are several cases for which we find significant timescale separation but do not

see a convergence or reversal of edge importance. Therefore, timescale separation is a neces-

sary but not sufficient condition to see a breakdown of the stochastic shielding phenomenon.

Cases 2 and 6 share a feature that distinguish them from the other cases: although the

importance of the hidden edges never exceeds that of the observable edges, they become

equally important in the limit α� 1. In both cases, this “fast” rate applies to the transition

from the closed states to the open state (2! 3). In Case 6, the 2! 3 transition has the only

accelerated rate; in Case 2 the 2! 1 transition is also accelerated. However, in Case 3, which

accelerates both the 2! 3 and the 1! 2 transitions, the edge importance does not converge.

This conundrum will be resolved when we consider the general 3-state model (cf. Eq 22).

Table 3. Detailed description of each case for the 3-state model. The first seven cases correspond to the chain that has the third state observable (see Fig 3). The last five

cases have the middle state as the observable state. Transition rates αk for k = 1, 2, 3, 4 are given by columns 3-6. The final column shows the characterization of each case

into one of six different types determined by their edge importance graph as a function of parameter α (see right most column in Figs 5 and 6).

Case

(1-12)

Observable

State

Edge

1! 2

Edge

2! 1

Edge

2! 3

Edge

3! 2

Type

(I-VI)

1 3 α α 1 1 I

2 3 1 α α 1 II

3 3 α 1 α 1 III

4 3 α 1 1 1 I

5 3 1 α 1 1 III

6 3 1 1 α 1 II

7 3 1 1 1 α I

8 2 α α 1 1 IV

9 2 1 α α 1 V

10 2 α 1 α 1 VI

11 2 α 1 1 1 VI

12 2 1 α 1 1 IV

https://doi.org/10.1371/journal.pcbi.1006206.t003
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Fig 5. All possible cases for the 3-state chain with state 3 conducting. Left column: 3-state diagram with

accelerated/decelerated edges labeled 1 or α where α 2 [10−4, 104]. Middle column: logarithm of the ratio of the two

non-zero eigenvalues (λ2/λ3) versus α. This shows the “timescale separation” (present when λ2/λ3� 1). Right column:

relative edge importance Rk versus α.

https://doi.org/10.1371/journal.pcbi.1006206.g005
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3-state model with middle state conducting

For completeness, we may consider the same 3-state chain as in Fig 3, except that we set the

middle state (state 2) to be the open/conducting state instead of state 3. The measurement vec-

tor in this case is M = (0 1 0)⊺. See the left column of Fig 6 for an illustration, and note that

there are five possible cases to consider. In this version of the 3-state chain, all transitions are

observable since each edge connects the conducting state to a closed state, and hence, all edges

should be important in terms of stochastic shielding. State 2 no longer acts as a “shield” as it

did when state 3 was the conducting state. We expect that the most important edges will either

depend on the parameter α or all edges will be equally important in terms of the edge impor-

tance measure. We repeat the same analysis as in the previous section and the results are

shown in Fig 6.

Fig 6 has the same three column format as Fig 5. The left column shows the 3-state diagram

with accelerated/decelerated transition rates (1 or α as outlined in Table 3) where again α 2
[10−4,104]. The middle column shows timescale separation as defined by the ratio of the two

non-zero eigenvalues (λ2/λ3) versus α. The right column shows the relative edge importance

Rk versus α. In contrast to the previous cases with state 3 conducting, now we see edge impor-

tance reversal or convergence in every case. This is what we expect, given that the stochastic

shielding method says that all edges are important in this version of the model. However, we

find edge importance reversal in Case 10 without corresponding timescale separation since λ2

and λ3 differ by less than one order of magnitude in that case.

Generalized 3-state model with timescale separation

We showed above that the presence of two distinct timescales was not sufficient to see an

inversion of the edge importance in a 3-state network. However, as we show next, a network

exhibiting three separate timescales can lead to edge importance reversal. In order to find

examples of inversion, we study an ensemble of 3-state chains with observable state 3 (see Fig

2) with arbitrary transition rates {α12, α21, α23, α32}. We randomly draw the transition rates αij

independently from a lognormal distribution with a given width w, that is, log(αij) is Gaussian

distributed with mean zero and standard deviation w. Then we calculate the edge importance

for each realization of transition rates for this general 3-state model and look at the instances

for which R12 = R21 > R23 = R32. Note that Rij refers to the importance measure for the edges

connecting node i to node j.
For an ensemble of 105 samples with log ðaijÞ � N ð0; 10Þ (i.e. w ¼

ffiffiffiffiffi
10
p

), we find that

inversion of the edge importance occurs approximately 9.8% of the time. This observation

raises a number of questions. Which factors contribute to inversion of the usual edge impor-

tance relation (e.g. timescale separation)? Given an arbitrary set of transition rates, is there a

canonical transformation leading to edge importance reversal? Can we obtain an exact expres-

sion for the relative contribution of the hidden edges to the stationary variance? The balance of

this section addresses these questions.

Fig 7 illustrates the distribution, for this ensemble, of several factors that might be expected

to play a role in inverting edge importance. Each panel plots the relative importance of the hid-

den edges

Z ¼
R12

R12 þ R23

ð9Þ

versus factors representing node occupancy, timescale separation, flux distribution, and local

timescale difference. Inversion of edge importance occurs when R12 > R23, that is, when η>
1/2.
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Fig 6. All possible cases for the 3-state chain with middle state 2 conducting. In this case there are no hidden transitions, and hence no stochastic

shielding effect. Left column: 3-state diagram with accelerated/decelerated edges labeled as 1 or α where α 2 [10−4, 104]. Middle column: logarithm of ratio

of the two non-zero eigenvalues (λ2/λ3) versus α. This shows the timescale separation (present when λ2/λ3� 1). Right column: relative edge importance

Rk versus α.

https://doi.org/10.1371/journal.pcbi.1006206.g006
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Fig 7. Factors contributing to edge importance reversal. The relative importance due to the hidden edges, η = R12/

(R12 + R23), was calculated for an ensemble of 3-state chains (100,000 samples, see text for details). Relative edge

importance is inverted when η> 0.5. Left column shows η plotted versus stationary occupancy probability of node 3

(π3, panel A), node 2 (π2, C), and the ratio of nodes 2 to 3 (π2/π3, E). The corresponding plot for π1 appears similar to

that for π3 (not shown). Edge importance can be inverted for any values of π1 and π3, but requires π2 ≲ 1/6. Right

column shows η plotted versus timescale separation (ν = λ3/λ2, B), relative fraction of flux generated by the hidden

edges (ΔJ = (J12 − J23)/(J12 + J23), D), and ratio of relaxation times for isolated 2-state systems corresponding to the

hidden versus observable transitions (τ12/τ23, F). Edge importance reversal requires timescale separation (|λ3| ≳ 15|λ2|

or ν ≳ 15), larger mean flux along the observable edges than the hidden edges (J23 > J12), and faster relaxation along

the visible edges than along the hidden edges (τ12 > τ23). None of these conditions alone are sufficient. However, panel

G shows η versus the two factors F1 and F2 in the exact expression for η, black ‘+’ line is F1 � F2 (see Eq 22).

https://doi.org/10.1371/journal.pcbi.1006206.g007
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Node Occupancy: The left column of Fig 7 plots η versus the stationary occupancy proba-

bility of each state: π3 for state 3 (panel A), π2 for state 2 (panel C), and the ratio π2/π3 (panel

E). Panel A suggests that edge importance can be inverted for any values of π3 (mutatis mutan-
dis π1), but panel C suggests that inversion requires π2 ≲ 1/6. Moreover, panel E indicates that

inversion requires π2 < π3 (equivalently, α23 > α32 since π2/π3� α32/α23). Together, these

conditions suggest that sparse occupancy of the hidden state directly connected to the observ-

able state (relative to the occupancy of the observable state) contributes to inversion of edge

importance. However, this condition alone is not sufficient, as shown by Example A below

(see Examples subsection), for which the relative importance due to the hidden edges is

η = 0.4132 < 0.5.

We can extract several strict inequalities relating η to properties of the 3-state process. Max-

imizing η with π2 fixed, we find

Z �
1 � p2

1þ p2

� �2

: ð10Þ

Fig 7C shows this inequality is tight (dashed red curve superimposed on the dots matches the

upper boundary). In panel E, maximizing ηwith π2/π3 fixed, we observe that

Z � 1 �
p2=p3

1þ p2=p3

� �

¼
p3

p3 þ p2

¼
a23

a23 þ a32

ð11Þ

(dashed red curve matching boundary), which shows that inversion (η> 0.5) is only possible

if π2 < π3, or equivalently, α23 > α32. More extreme edge importance inversion requires a

more extreme likelihood difference between the observable state and its neighbor or between

the transition rates connecting these states.

Timescale Separation: We introduce two different notions of timescale separation. First,

we define

n ¼ l3=l2 ð12Þ

which is the ratio of the two non-zero eigenvalues of the graph Laplacian L. This quantity is

shown in Fig 7B where η is plotted versus ν. (Note ν is the reciprocal of the ratio used to define

timescale separation in the previous 3-state model sections with two distinct timescales and

discussed in Figs 5 and 6). Large timescale separation, defined via the eigenvalues of the graph

Laplacian, occurs when ν� 1. Specifically, Fig 7B shows that edge importance reversal

requires timescale separation such that |λ3| ≳ 15|λ2| or (ν ≳ 15).

Second, we consider the relaxation time

tij ¼ ðaij þ ajiÞ
� 1

ð13Þ

for an isolated 2-state Markov processes with rates αij, αji between the nodes i, j. The ratio of

two such local relaxation times gives an alternative measure of timescale separation within the

network. Specifically, consider the two possible 2-state processes in our 3-state model (nodes

1-2 and nodes 2-3). In the first system (between nodes 1 and 2), the eigenvalues of the graph

Laplacian are 0 and α12 + α21 = 1/τ12. Likewise, looking at states 2 and 3 as a 2-state Markov

process yields eigenvalues 0 and α23 + α32 = 1/τ23. Fig 7F shows the dependence of η on the

ratio of the non-zero eigenvalues for these two 2-state systems. Empirically, we see that

Z �
t12=t23

1þ t12=t23

¼
t12

t12 þ t23

ð14Þ

(dashed red curve in Fig 7F where η is plotted versus τ12/τ23). That is, inversion of the edge
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importance (η> 0.5) occurs only when equilibration along the hidden edges is slower than

along the observable edges (τ12 > τ23).

Stationary Flux Distribution: Recall that the stationary flux along edge k is given by Jk =

Ntotαkπi(k). We can also represent this term as Jij, the stationary flux from node i(k) to node j(k)

(see xNotation in Methods). Here we define

DJ ¼
J12 � J23

J12 þ J23

ð15Þ

which is the relative fraction of the stationary flux generated by the hidden edges. In Fig 7D,

we observe that the upper boundary is given by

Z �
1

2
�

DJ
2

ð16Þ

which says that edge importance reversal (η> 0.5) requires larger mean flux along the observ-

able edges than along the hidden edges. In other words, the system needs to satisfy ΔJ< 0 or

J12 < J23.

Conditions for edge importance inversion. The results of our ensemble analysis suggest

that in order to invert the edge importance, the following conditions must hold:

1. The channel opening rate must be significantly faster than the other transition rates. That

is, α23�max{α12, α21, α32}. This condition introduces a “fast” and a “slow” timescale.

2. Of the “shielded” transitions, the rate away from the observable state must be significantly

faster than the rate towards the observable state. That is, α12� α21. This condition intro-

duces a third “super slow” timescale, and guarantees a low occupancy probability for the

middle state.

Further examination of the stationary flux along the edges reveals a third condition that is

implied by the the first condition:

3. The majority of the stationary flux must be along the visible edges rather than the hidden

edges. That is, J12 < J23.

To see this, note that (see Methods for derivation of stationary occupancy probability and

flux)

J12 ¼ p1a12 ¼
a12a21a32

Z
ð17Þ

J23 ¼ p2a23 ¼ p3a32 ¼
a12a23a32

Z
ð18Þ

where Z = α12α23 + α12α32 + α21α32. Then

J23 � J12 ¼
a12a23a32

Z
�

a12a21a32

Z
¼

a12a32

Z
ða23 � a21Þ ð19Þ

J23 þ J12 ¼
a12a32

Z
ða23 þ a21Þ ð20Þ

)
J23 � J12

J23 þ J12

¼
a23 � a21

a23 þ a21

: ð21Þ

Condition 1 guarantees that α23 > α12, and hence, J23 > J12.
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Examples. Our ensemble suggests that both conditions 1 and 2 are necessary to see a

reversal of the edge importance. However, the following two examples show that one condition

can hold without inverting edge importance.

• Example A: α12 = α21 = 1, α23 = 10, and α32 = 0.1. Condition 1 holds, but not condition 2

since the first two transition rates are equal. Note that π2 < π3 (specifically, π2/π3 = 0.01).

The fraction of the stationary variance generated by the hidden edges is η = 0.4132 < 0.5

which means that the observable edges have higher edge importance than the hidden edges,

in agreement with the stochastic shielding method (i.e. no edge importance reversal).

• Example B: α12 = 0.1, α21 = 1, and α23 = α32 = 10. Condition 2 holds, but not condition 1

since the last two transition rates are equal. The fraction of edge importance due to the

hidden edges is η = 0.4308 < 0.5 which, again, means that there is no reversal of edge

importance.

Moreover, it is straightforward to see that the simple inequalities α23 > max(α12, α21, α32),

and α12 < α21, are not sufficient. When αij� 1 we have R12 = 1/8 and R23 = 7/8; the edge

importance varies continuously with the αij so there will be some neighborhood of (1, 1, 1, 1)

satisfying the simple inequalities for which inversion does not occur. For instance, setting

α23 = β, α12 = 1/β, and α21 = α32 = 1, we find the hidden edges contributing the majority of

the variance to the observable state 3 when β≳ 3.848, while inversion does not occur for

β≲ 3.847, although all values β> 1 satisfy the simple inequalities.

Exact expression for η
Reproducing edge importance reversal in 3-state chain models is advantageous because such

simple Markov models can be analyzed more completely than models with greater numbers of

states [23]. Fortunately, explicit expressions may be derived for the eigenvalues and eigenvec-

tors of the 3-state chain model which allows direct calculation of η, the fraction of the station-

ary variance generated by the hidden edges (see S1 Supporting Information xExplicit

calculation of η for detailed derivation):

Z �
R12

R12 þ R23

¼
a21

a12 þ a21

� �
a23

a12 þ a21 þ a23 þ a32

� �

¼
p1

p1 þ p2

� �
a23

Tr½� L�

� �

ð22Þ

where Tr[L]� ∑i Lii is the trace of L.

The fraction in Eq 22 is a product of two factors (denoted by F1 and F2 and shown in Fig 7G

for the ensemble). The first factor F1 is the ratio of the speed of transition from hidden state 2

to hidden state 1 (α21) to the sum of the transition rates between states 1 and 2. Equivalently,

this is the proportion of time spent in hidden state 1 relative to hidden state 2. F1 approaches 1

as α12 decreases, which only occurs if condition 2 holds (α12� α21). The second factor F2 is

the ratio of the opening transition rate (α23) to the sum of the four rates. This factor is large if

and only if the opening rate is much faster than the other rates, and this is exactly condition 1

(α23�max{α12, α21, α32}). Together these two conditions bring about a reversal of edge

importance (η> 0.5) in this simple scenario.

While the exact formula for the relative edge importance (22) applies only for the 3-state

chain model considered here, we anticipate that analogous results may hold for more general

Markov processes. We consider this question further in xDiscussion.

Canonical transformation leading to edge importance reversal. In xGeneralized 3-State

Model with Timescale Separation, we posed the question: Given an arbitrary set of transition
rates, is there a canonical transformation leading to edge importance reversal? That is, can we

show that inversion holds asymptotically in the following sense: given any αij> 0, if we
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accelerate the transition to the open state while simultaneously decelerating the exit from the

hidden state, can we guarantee that we will eventually have inversion, and pushing the ratios

further, approach 100% inversion? The answer is yes, and the exact expression (22) allows us

to show this.

Given an arbitrary initial set of transition rates a0
ij > 0 and � > 0, define the following

rescaled transition rates

a12 ¼ �a
0

12
ðdecelerate transition 1! 2Þ ð23Þ

a21 ¼ a0

21
ð24Þ

a23 ¼
1

�
a0

23
ðaccelerate transition 2! 3Þ ð25Þ

a32 ¼ a0

32
: ð26Þ

In S1 Supporting Information xExplicit calculation of η, we show that as � approaches 0, we

eventually reverse the edge importance and then approach η = R12/(R12 + R23)! 1. At the

same time π2! 0, the timescale separation grows, as does the flux imbalance. In other words,

an arbitrarily large fraction of the stationary variance in the occupancy of the third state arises

from the fluctuations in the transitions between nodes 1 and 2.

In summary, inversion of edge importance requires two conditions: the observable state

dominates its immediate neighbor (higher occupancy probability), with which it rapidly

comes to equilibrium, and this neighboring state is connected to a third state by a slow hidden

transition. This combination results in a low occupancy of the intermediate state, but at the

same time a larger stationary flux along the observable edges than along the hidden edges.

These two conditions also explain why inversion occurs in roughly 10% of cases in our ensem-

ble. To construct the ensemble we chose the edge weights αij to be independently and identi-

cally distributed (iid). Given four iid random variables W, X, Y and Z, it is an elementary

exercise to show that P[{Z> max(W, X, Y)} \ {W< X}] = 1/8. Identifying α12 = W, α21 = X,

α32 = Y, α23 = Z, and considering that the two conditions above are necessary but not suffi-

cient, we expect the frequency of edge importance inversion to be less than, but not too differ-

ent from, 12.5%.

Edge importance is a useful measure for evaluating the stochastic shielding effect that

remains valid for arbitrary transition rates, despite the introduction of multiple timescales or

sparsely occupied states. The stochastic shielding phenomenon occurs for a broad range of

possible transition rates, with exceptions characterized by particular inequalities. Introducing

a second timescale does not promote reversal of the edge importance, but introducing a second

and third timescale to the graph dynamics in a specific way does.

Edge importance and power spectra

Additional insight into the error arising from different noise-suppressing approximations can

be obtained by examining the power spectral density distributions of the true and approximate

processes. Recalling Fig 4A in the case αij� 1, the power spectra for the full process with all

noise sources included (S, black curve) and the approximate process with hidden edge flux

noise suppressed (S3,4, red curve) are very similar, with an order of magnitude less power aris-

ing from the hidden edges at all frequencies. In contrast, Fig 8A shows the power spectra for

the 3-timescale model. In particular, it shows that at low frequencies, the power spectrum for

the approximate process with visible edge flux noise suppressed (S1,2, blue curve) is very
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similar to the PSD for the full process, but that the blue and red curves cross at an intermediate

frequency (ω� 3) so the red curve dominates at high frequencies.

The change in power spectral contributions is also reflected in model simulations (see

Numerical Methods for details on simulations). Fig 8B illustrates sample trajectories for the

three processes described above: full process X (black), approximation X3,4 (red), and approxi-

mation X1,2 (blue) where α = 10. Comparing this edge importance reversal case to the base

case shown in Fig 4B, we see that the blue trajectory (instead of the red one) closely follows the

black trajectory. Hence, X1,2 is the better approximation to the full process in this case.

Thus, the edge importance reversal observed under the combined conditions α12� α21

and α23�max(α12, α21, α32) may be understood as resulting from enhancement of the noise

power contribution from the hidden edges at low frequencies, as well as the small amplitude of

the full process’ power spectrum at high frequencies.

We see a similar mechanism at work in the 5-state acetylcholine receptor model in the low-

[ACh] regime (where a hidden edge becomes more important than a visible edge) as opposed

to the high-[ACh] regime, in which the usual edge importance ordering is observed. Figs 9

and 10 show the power spectrum and Gaussian model trajectories in the high-[ACh] and low-

[ACh] regimes, respectively. Here we have similar notation to the 3-state cases: X (black) is the

full observed process (Gaussian version) with all sources of noise included and Xi,j is the

approximate process that preserves noise on edge pair i, j but suppresses noise on all other

edges. In particular, we focus on the red trace (X3,4, noise preserved on visible edges 3,4) and

the blue trace (X5,6 noise preserved on hidden edges 5,6).

Fig 8. Stochastic shielding and the power spectrum in the 3-state chain for the case where edge importance is reversed (α = 10 shown here).

Panel A shows that the majority of the power comes from the hidden edges (blue) for low frequencies, but the red and blue curves cross at ω� 3,

so for high frequencies the majority of the power comes from the observable edges (red). This switch in dominant spectral contributions is

reflected in the corresponding Gaussian model trajectories shown in Panel B with the blue trace closely following the black trace, and the red

trace deviating from the black trace. This shows that X1,2 best approximates the full process X in this case (whereas X3,4 is the best approximation

in the uniform transition rate case shown in Fig 4).

https://doi.org/10.1371/journal.pcbi.1006206.g008
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The usual edge ordering via the edge importance measure for high [ACh] ranks edge pair

3,4 the most important, followed by edges 5,6, then 9,10 (the last two edge pairs have relative

importance close to 0 and make the two lowest spectral contributions); See Fig 2. Fig 9A shows

that for [ACh] = 100 μM, most of the power is attributable to the observable edge pair 3,4, and

this agrees with the edge importance ranking. Model trajectories in panel B illustrate that X3,4

is the best approximation of the full process X and that the other approximations at best only

capture the mean behavior of the system.

In the low-[ACh] case shown in Fig 10 ([ACh] = 0.5 μM), however, we see the crossing of

the top blue and red power spectral density curves at an intermediate frequency (ω� 2). As in

the 3-state case, this indicates a reversal of edge importance whereby now the hidden edge pair

5,6 contributes the most to the stationary variance of the observable process. Again, this

change in spectral contributions is reflected in model trajectories shown in panel B. We see

that the blue curve X5,6 closely follows the full process X, and is the best approximation in this

case, but the blue curve misses some of the fluctuations captured by the red curve X3,4 even

though the red curve clearly deviates from the other two processes.

Edge importance and decomposition of the stationary observed variance

for a general first-order transition network

Gadgil et al. showed rigorously that the time evolution of the second moments of a discrete

population evolving as a first-order reaction network system can be represented explicitly in

terms of the eigenvalues and eigenvectors of the matrix that governs the evolution of the mean

population dynamics [8]. We apply their general results to the specific example of a first-order

transition network in two ways. First, we use the spectral decomposition of the stationary vari-

ance to establish our main stochastic shielding result. Second, their result on time varying sys-

tems allows us to obtain the decomposition of the power spectrum in terms of the eigenvalue

spectral decomposition, shown in Eqs 64–66.

Consider an arbitrary first-order reaction network with graph Laplacian L and matrix B sat-

isfying Eqs 32–36 (see Methods). The fact that the stationary covariance matrix decomposes

Fig 9. Stochastic shielding and the power spectrum in the acetylcholine receptor model. For a high concentration ([ACh] = 100 μM shown

here), edge importance is not reversed. Panel A shows that the majority of the power comes from the visible edges at all frequencies (S3,4, red

trace), in agreement with the usual edge importance ranking. The corresponding Gaussian model trajectories shown in Panel B illustrate that X3,4

is the best approximation to X, whereas the other approximation only captures average behavior.

https://doi.org/10.1371/journal.pcbi.1006206.g009
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into a sum of contributions from each edge in the graph follows from a straightforward calcu-

lation that we describe in Lemma 1 and Theorem 1. We defer the proof of Lemma 1 to

xMethods, below.

Definition 1 Let X denote the set of n × n real matrices C such that for all j = 1, . . ., n,
Pn

i¼1
Cij ¼ 0. Let Y = {C 2 X | C⊺ = C}.

Lemma 1 Let L be an n × n real valued matrix with Lij� 0 for i 6¼ j, and Lii = −∑i,i 6¼ j Lij (so
that

Pn
i¼1

Lij ¼ 0) for j = 1, . . ., n, and satisfying dim(ker(L)) = 1, and with a null eigenvector
Lv = 0 satisfying vi� 0 for i = 1, . . ., n. Then for any F 2 Y, the equation

LC þ CL⊺ ¼ F ð27Þ

has a unique solution C 2 Y.

Theorem 1 For an arbitrary first-order reaction network with graph Laplacian L and matrix
B satisfying Eqs 32–36, there is a unique linear decomposition of the stationary covariance matrix
C as a sum of contributions from each edge:

C ¼
X

k2E

Ck where ð28Þ

Ck ¼

Z 1

0

ðetLÞBkB
⊺
kðe

tLÞ
⊺dt ð29Þ

Proof 1 Proof of Theorem 1. Consider a first-order reaction network defined by graph Lapla-
cian L and matrix B, satisfying Eqs 32–36. We want to solve the Lyapunov equation

LC þ CL⊺ ¼ � BB⊺ ð30Þ

for matrix C. Note that L satisfies the conditions in Lemma 1, and BB⊺ 2 Y since BB⊺ is an n × n
real symmetric matrix with columns that sum to zero. Then by Lemma 1, Eq 30 has a unique
solution C 2 Y. By replacing F with BB⊺ in the proof of Lemma 1, we see that the unique solution

Fig 10. Stochastic shielding and the power spectrum in the acetylcholine receptor model. For a low concentration ([ACh] = 0.5 μM shown

here), edge importance is reversed. Panel A shows that the majority of the power comes from the hidden edges at low frequencies (S5,6, blue trace)

and from the visible edges at high frequencies (S3,4, red trace), just as we saw in the 3-state model under the case of edge importance reversal. The

corresponding Gaussian model trajectories shown in Panel B illustrate that X5,6 (blue) is the best approximation to X, although it misses some the

fluctuations captured by X3,4 (red).

https://doi.org/10.1371/journal.pcbi.1006206.g010
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is

C ¼
Z 1

0

etLBB⊺ðetLÞ
⊺dt ð31Þ

since all eigenvalues of L have negative real part (except for the Perron-Frobenius eigenvalue
λ1� 0), u⊺

1
B ¼ 0, and B⊺u1 = 0.

Since BB⊺ can be written as a sum of BkB⊺
k, we can repeat the calculation above to get Eq 29 for

each k separately. The integral in Eq 29 holds for all k since the kth stoichiometry vector zk appear-
ing in the kth column of B is orthogonal to the steady state eigenvector. Therefore, C decomposes
into a sum over the Ck terms, and Eq 28 holds.

The decomposition in Theorem 1 allows us to rank each edge in the network in terms of its

contribution to the stationary variance of any given node, which we call its “importance” rela-

tive to that node. In the case of a single open or conducting node, we refer simply to the edge

importance. Moreover, the decomposition allows us to quantify the accuracy of the stochastic

shielding approximation with respect to the population process projected onto individual

nodes. The decomposition given by Theorem 1 is exact regardless of timescale separation or

node sparsity.

Discussion

Markov chains provide a general framework for mathematically modeling and simulating sto-

chastic processes in natural and artificial systems. However, Markov chains are computation-

ally expensive as their simulations require random numbers at each time step for every

transition (edge). The stochastic shielding approximation relies on the fact that, when hidden

states are present, the edges are not equally important, so that random fluctuations in some

(typically most) edges can be neglected. Here, we provide a thorough study addressing how to

identify the relevant and irrelevant edges when the stochastic fluctuations span slow and fast

timescales. Our analysis shows that the stochastic shielding approach not only provides a prac-

tical increase in computational efficiency, but also facilitates a systematic understanding of the

propagation of fluctuations in a general Markovian network, and hence, is applicable to many

areas of mathematical biology and related disciplines.

The stochastic shielding method is being used increasingly to incorporate fast, accurate

simulation of stochastic ion channels into larger neuronal network models. A recent paper

[35] comparing different methods for simulating ion channels, based on diffusion approxi-

mations, recommended using the stochastic shielding approximation in conjuction with a

direct Langevin approach advanced by Orio and Soudry [36]. Two examples in which sto-

chastic shielding makes large-scale simulations tractable include [37] and [38]. In the first

paper, the use of stochastic shielding allowed for a significant reduction in computation time

of multiple simulations of a conductance-based model with synaptic and ion channel noise

that are necessary to reliably estimate the entropy and information rate of neuronal firing. In

the second paper, stochastic shielding is applied to a heterogeneous neural circuit for the

first time, allowing the authors to investigate the role of channel noise in the generation of

breathing variability in the isolated central pattern generator of respiration. In both cases,

these studies would have not been possible in practice without the stochastic shielding

approximation.

The analysis conducted here and in [10] is restricted to the case of a stationary Markov pro-

cess, i.e. with time-invariant per capita transition rates. In many applications, for example

under current-clamp (rather than voltage-clamp) in electrophysiology, the transition rates

vary over time. In [9], which introduced the stochastic shielding method, stochastic shielding
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was shown to produce accurate approximations through comparison of voltage traces and

spike trains generated via both stochastic shielding and full Monte Carlo simulations.

In the present paper, we have shown that in the presence of multiple timescales, for instance

as seen in the dynamics of the nicotinic acetylcholine receptor (nAChR) under low agonist

concentrations, one or more unobserved edges can become more important than the observ-

able edges, in terms of making a greater contribution to the stationary variance of the occu-

pancy of the open channel state (and hence the variance of the ionic current through the

population of channels). In such a case the stochastic shielding phenomenon is still present,

but is significantly reduced, to the point that the approximation given by suppressing the noise

on the hidden edges does not provide the best approximation. Indeed, as seen in Fig 10, one

may conclude that in this situation there is no suitable approximation of the type we consider,

since the traces generated by reduced models with noise suppressed either on the observed or

unobserved edges do not bear much similarity to the trace generated by the full model (with

identical noise forcing where the noise is included). On the one hand, the edge importance

measure remains exact under all conditions, as long as the network is irreducible (meaning

here that α12, α21, α23 and α32 are all nonzero). On the other hand, the stationary variance does

not capture the full shape of the trajectories. The decomposition of the fluctuations at one

node as a sum of contributions from distinct edges extends to the correlation function and the

power spectrum and the cross-spectrum, as well as to the variance.

Motivated by the example of the nicotinic acetylcholine receptor, we systematically studied

the effects of introducing separation of timescales into the simplest nontrivial model to which

stochastic shielding applies: the 3-state chain with one observable state. We found that, in the

case of two distinct timescales, accelerating or decelerating a subset of edges relative to a base-

line case (αij = 1 for all adjacent nodes (i, j)) could in some cases enhance, and in other cases

reduce the gap in edge importance between the observed and unobserved edges, but in no case

could induce a reversal of the edge importance (as observed in nAChR).

Finally, by sampling an ensemble of different transition rates, we found that inversion of

edge importance can be seen in a 3-state chain when the channel opening rate is large (that is,

α23�max(α12, α21, α32)), and also the rate of return from the first hidden state to the middle

hidden state is small (that is, α12� α21). These complementary conditions are captured by the

exact expression for the relative edge importance (Eq 22). Together, these conditions lead to

sparse occupation of the middle node, introducing a bottleneck, while also introducing time-

scale separation in such a way that equilibration between the observable node and its immedi-

ate neighbor occurs much faster than between the two unobservable nodes.

Although our exact formula applies only to the 3-state chain model from which it was

derived, we are optimistic that it may be extended to broader classes of Markov processes. The

forms of such extensions are not a priori obvious, for several reasons. Consider the case of an

ion channel with n states of which a single open conducting state (On) is connected to the

closed, non-conducting states (C1, . . ., Cn−1) through a single bottleneck state (Cn−1); the closed

states may interconnect arbitrarily with rates αij, 1� i, j� (n − 1). In this case the analog of

the first factor in Eq 22 would be the conditional occupancy probability of the bottleneck node

Cn−1, given the channel is in any of the states C1, . . ., Cn−1. However, the analog of the second

factor, the ratio of the Cn−1! On transition to some combination of all the rates in the system,

is far from clear. For ion channel models with multiple transitions into and out of a single

open state (see Fig 1), the parallel to our exact 3-state chain analysis is scarcely obvious, and

remains for future investigation.

The stochastic shielding approximation and method provide an approach distinct from

aggregation based on community structure [20] or similarity of spectral components [13,

39], and pruning of sparsely populated nodes [23, 33], although there are some relations
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between these methods. Both spectral coarse graining [13] and our edge importance measure

[10] rely on spectral decomposition of the graph Laplacian. As Ullah et al. point out, finding

eigenvalues and eigenvectors of the Laplacian for a large complicated graph can be challeng-

ing [23]. An advantage of the stochastic shielding method is that it can be applied in the vast

majority of cases without calculating the edge importance explicitly. Exceptions can occur

when there is significant timescale separation with fast relaxation of the observable node with

its immediate neighbors and slow relaxation among unobservable states, with a hidden bot-

tleneck state separating the observable from a well populated pool of unobservable nodes.

Except in this particular case, the stochastic shielding method can be applied without neces-

sarily having to calculate the edge importance in detail. The effect of fluctuations in rates

along the hidden edges is filtered by the network, and their impact on fluctuations at the

observable nodes is diminished.

Materials and methods

In this section we fill in the details behind the results. We introduce notation, define the edge

importance measure relative to an arbitrary measurement vector, justify our use of the Lyapu-

nov equation, prove Lemma 1, and describe our numerical methods.

In S1 Supporting Information, we establish the decomposition of the stationary variance.

We provide explicit calculations for the 3-state process, and calculate η, the fraction of variance

of the observable state arising from the hidden edges. We review the connection between the

population process and Gaussian approximations thereof, and give a detailed derivation of the

Lyapunov equation for the 3-state case.

Notation

We begin with a directed graph G ¼ ðV; EÞ with edge weights αij� 0 representing a popula-

tion of Ntot individuals moving randomly and independently among n states (i; j 2 V) along m
edges {i(k)!j(k)}1�k�m, with per capita transition rates {αk}1�k�m. We emphasize that edge k
is the unique directed edge connecting source node i(k) to destination node j(k). The n × 1

stoichiometry vector zk corresponding to edge k is defined such that zk(i) = −1 and zk(j) = +1,

otherwise zk(l) = 0; these vectors represent the effect of a transition along edge k. We use this

notation to be consistent with the edge importance formula in the next subsection which is a

sum of contributions to the variance of the observable state coming from each edge. Also, note

that we will write the per capita transition rates either with double indexing denoting the

source and destination nodes (αij) or with a single index denoting the reaction (αk).

We represent the population state at time t with an integer-valued vector N(t) = (N1(t), . . .,

Nn(t))⊺, where Ni(t)� 0 and
Pn

i¼1
NiðtÞ ¼ Ntot for all t. In other words, N(t) is a discrete state

continuous time Markov process. Such processes are ubiquitous in biology [1].

We denote by M a measurement vector indicating a direction in the state space along which

there is an observable of interest. For instance, Mi 2 {0, 1} could denote the conducting state

({closed, open}) in a multi-state ion channel model. We denote the observed process by Y(t) =

M⊺N(t). The remainder of our set up follows standard nomenclature for representing a popula-

tion process on a graph [8, 40–42].

Let L be the Laplacian of graph G which is the n × n matrix defined by L = (A − D)⊺ where A
is the weighted adjacency matrix and D is the diagonal matrix of node out-degrees. Specifically,

the entries in A are Aij = αij(k) = αk� 0 and the diagonal entries in D are Dii ¼
Pn

j¼1
Aij for i 2

{1, . . ., n}. Note that L = Q⊺ where Q is the standard generator matrix of the Markov process. It
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follows that, for any vector x 2 Rn, L satisfies the following equation

Lx �
Xm

k¼1

zkakxiðkÞ: ð32Þ

The stoichiometry vector zk is a difference of two standard unit vectors, zk = ej(k) − ei(k).

Although we do not assume that the graph Laplacian L must be a symmetric matrix, we do

assume that the stationary system satisfies detailed balance, and that L has only real eigenval-

ues. Moreover, we assume that L has an expansion into real-valued biorthogonal eigentriples

(wλ, λ, vλ) such that

Lvl ¼ lvl ð33Þ

L⊺wl ¼ lwl ð34Þ

w⊺
l
vl0 ¼ dll0 : ð35Þ

We further assume that G is connected and the process is irreducible. The Perron-Frobenius

theory guarantees the existence of a unique null eigenvector with nonnegative components

summing to unity, corresponding to the stationary distribution on the graph. We denote the

stationary probability vector~p ¼ ðp1; . . . ; pnÞ
⊺

and the stationary mean flux along edge k by

Jk = Ntotαkπi(k).

Let B be the n × m matrix defined such that

B ¼
ffiffiffiffi
J1

p
z1

ffiffiffiffi
J2

p
z2 � � �

ffiffiffiffi
Jm
p

zmð Þ: ð36Þ

In other words, the kth column of B is given by the square root of the stationary flux Jk multi-

plied by the stoichoimetry vector zk. We can express B as a sum of matrices

B ¼
Xm

k¼1

Bk ð37Þ

where all the entries of Bk are zero except for the kth column. Moreover, we will exploit the fact

that the product BB⊺ can be represented with a similar sum

BB⊺ ¼
Xm

k¼1

BkB
⊺
k: ð38Þ

This product appears on the right hand side of the Lyapunov equation (see Eq 46 below) and

its decomposition into the above sum is a key factor in establishing the decomposition of the

stationary variance into a sum over the edges.

Computations were done either by hand, or using Matlab or Mathematica.

Summary of stochastic shielding in the Langevin case

In the Langevin approximation for a time homogeneous first-order transition network, the

population fraction occupying states 1, . . ., n is a vector X 2 Rn satisfying

dX
dt
¼ LX þ

X

k2E

Bkxk ð39Þ

where L, the graph Laplacian, captures the mean flux along each directed edge k 2 E. The

matrix Bk gives the effects of fluctuations ξk around the mean flux along the kth edge. The noise
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terms are independent, white and Gaussian, with hξk(t)ξk0(t0)i = δkk0 δ(t − t0), one for each

directed edge. Given an observable of interest, represented by a vector M 2 Rn, the stochastic

shielding approximation consists in finding a partition of the edge set, E ¼ E1

‘
E2, into edges

of primary importance (E1) and secondary importance (E2) such that jE2j � jE1j and, at the

same time lim t!1EjjM⊺ðYðtÞ � XðtÞÞjj2 � lim t!1EjjM⊺XðtÞjj2 (stationary variances),

where Y is the approximate population vector satisfying

dY
dt
¼ LYþ

X

k2E1

Bkxk; Yð0Þ ¼ Xð0Þ: ð40Þ

The noise samples ξk for k 2 E1 are identical in the full and approximate models. Neglecting

the noise forcing along the edges of secondary importance causes a pathwise discrepancy

U(t) = Y(t) − X(t) that satisfies

dU
dt
¼ LU �

X

k2E2

Bkxk; Uð0Þ ¼ 0: ð41Þ

The stochastic shielding effect consists in suppression of the resulting fluctuations in the

observable process M⊺U(t) due to the filtering effects of the network—hence “stochastic

shielding”.

The (stationary) mean squared pathwise approximation error can be written

exactly as a sum of contributions Rk from each directed edge neglected in the

approximation, lim t!1EjjM⊺UðtÞÞjj2 ¼
P

k2E2
Rk. This error is small compared to

lim t!1EjjM⊺XðtÞÞjj2 ¼
P

k2ERk ¼
P

k2E1
Rk þ

P
k2E2

Rk. We call Rk the importance of the kth

directed edge (defined in the next section). As we show below, the decomposition holds

exactly not only for the Langevin process but for the discrete population process as well.

Edge importance measure

The general formula for the edge importance measure is as follows. For an arbitrary stationary

population process N(t) satisfying detailed balance on a graph with n nodes, m edges, and mea-

surement vector M (defining the observable states), R ¼
Pm

k¼1
Rk is the stationary variance of

the observable states where

Rk ¼ Jk
Xn

i¼2

Xn

j¼2

� 1

li þ lj

 !

ðM⊺viÞðw
⊺
i zkÞðz

⊺
kwjÞðv

⊺
j MÞ: ð42Þ

In this formula, λn� λn−1� � � � � λ2 < 0 are the nontrivial eigenvalues of the graph Laplacian

L (which always has λ1� 0); vi and wi are the right and left eigenvectors of L, respectively.

Here and henceforth, Rk is normalized to the variance due to a single random walker by divid-

ing out Ntot.

The stationary variance R is related to the power spectral density (PSD) S(ω) of the observed

process M⊺N. From the Wiener-Khinchin theorem, integrating the PSD gives the stationary

variance: R ¼
R1
� 1

SðoÞ do. Moreover, since the stationary variance decomposes into a sum of

contributions from each edge in the graph, the power spectral density decomposes as well. By

introducing

Rk ¼

Z 1

� 1

SkðoÞ do ð43Þ

we define a power-spectral edge importance such that the integral of Sk(ω), the power spectral
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density for the observed process with noise suppressed everywhere except edge k, gives the

edge importance corresponding to edge k.

To see this, note that the power spectral density of the observed process is

SðoÞ ¼
X

k2E

SkðoÞ where ð44Þ

SkðoÞ ¼
1

2p
Jk
Xn

l¼2

Xn

j¼2

1

ll þ io

� �
1

lj � io

 !

M⊺vlð Þ u⊺l zk

� �
z
⊺
kuj

� �
v⊺j M
� �

ð45Þ

provided ω> 0. For more details, see xNumerical Methods: Calculation of power spectra,

below. We can use this power spectral decomposition to explore how the spectral contribu-

tions differ between the typical cases (where edge importance ranking agrees with the stochas-

tic shielding method) and in the edge importance reversal cases.

Lyapunov equation

The Perron-Frobenius null eigenvector, suitably normalized, gives the stationary probability

vector~p ¼ ðp1; . . . ; pnÞ
⊺

of Markov process N(t). Snapshots of the process N(t), taken under

stationary conditions, are multinomial with parameters Ntot;~p, so the covariance matrix C is

known. In particular, each diagonal entry in C is the variance of state i, Cii = Ntotπi(1 − πi), and

each off-diagonal entry in C is the covariance of states i and j, Cij = −Ntotπiπj for i 6¼ j.
The stationary covariance matrix C satisfies Lyapunov’s equation (a special case of Sylve-

ster’s equation) [43]

LC þ CL⊺ ¼ � BB⊺: ð46Þ

The fact that C satisfies Eq 46 above is widely known for linear Gaussian processes such as

multivariate Ornstein-Uhlenbeck processes [34], but it also holds for discrete state population

processes in which the transition rates are linear functions of the population at each node, i.e.
first-order transition networks, such as those we consider here (see [8, 44]).

Our system is an important special case of the general first-order reaction network pre-

sented in [8]; we only consider conversion type reactions (denoted by kcon in [8]). For our sys-

tem Pi represents vlu⊺l, summed over all identical λ if they occur with multiplicity (we both

assume semisimple eigenvalue spectra). The following parameters in [8] are zero for our sys-

tem: C(i, k, l), kcat, ks, and kd. This simplifies Equation 50 in [8] (representing the variance of

the lth reactant in the network) and is equivalent to our edge importance measure (Eq 42).

However, to our knowledge, we are the first to describe the unique decomposition of the sta-

tionary variance into a sum of contributions from each edge in the network, and [9, 10] were

the first to propose the stochastic shielding approximation and justify it based on this

decomposition.

The Lyapunov equation has also been used in the context of stochastic gene networks

under the name of “linear noise approximation” [45, 46]; in particular [45] (pg. 1, ¶5) further

cites Eqs 3.46 and 6.115 in Risken [47] for additional details. See also [48] Supporting Informa-

tion x4. For the linear networks we consider here, the equation is exact.

Proof of Lemma 1

We restate the lemma for the reader’s convenience. Recall from Definition 1 that Y is the space

of n × n symmetric matrices with columns (and rows) summing to zero.
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Lemma 1 (restated) Let L be an n × n real valued matrix with Lij� 0 for i 6¼ j, and Lii =

−∑i,i 6¼ j Lij (so that
Pn

i¼1
Lij ¼ 0) for j = 1, . . ., n, and satisfying dim(ker(L)) = 1, and with a null

eigenvector Lv = 0 satisfying vi� 0 for i = 1, . . ., n. Then for any F 2 Y, the equation

LC þ CL⊺ ¼ F

has a unique solution C 2 Y.

Proof 2 Proof of Lemma 1. Given L 2 X, define the linear operator A by A: C! LC + CL⊺.
First, we show that A: Y! Y. If C 2 Y then for all j = 1, . . ., n,

Xn

i¼1

ðLC þ CL⊺Þij ¼
Xn

i;k¼1

ðLikCkj þ CikLjkÞ ¼
Xn

k¼1

Ckj

Xn

i¼1

Lik þ
Xn

k¼1

Ljk

Xn

i¼1

Cik ¼ 0; ð47Þ

because each sum over i is zero, by assumption. Moreover, (LC + CL⊺)⊺ = LC + CL⊺. Therefore
LC + CL⊺ 2 Y whenever C 2 Y, so A maps Y into itself.

By the Fredholm alternative(cf. [49], Theorem 2.27), A(C) = F has a unique inverse for F 2 Y
provided F is in the range of A and the homogeneous equation A(C) = 0 has only the trivial solu-
tion C = 0.

Let C0 2 Y be a solution of the homogeneous equation, LC0 + C0L⊺ = 0. Because C0 2 Y is sym-
metric and the nullspace of L is one dimensional, C0 must have the form C0 = (c1v|� � �|cnv) for
constants c1, . . ., cn. However, the columns of C0 must sum to zero, and

Pn
i¼1

vi > 0, therefore
c1 = . . . = cn = 0, hence C0 = 0.

To see that F is in the range of A, we construct an explicit solution as follows:

C ¼
Z 1

0

etLFðetLÞ
⊺dt; ð48Þ

and we show that this integral is well defined whenever F 2 Y. To see this, first note that if all
eigenvalues of L have negative real part, then

LC þ CL⊺ ¼
Z 1

0

Sdt ð49Þ

where

S ¼ LetLFetL⊺ þ etLFetL⊺L⊺ ð50Þ

¼
d
dt

etLFetL⊺
� �

ð51Þ

and the solution in Eq 48 follows from the fundamental theorem of calculus.
It remains to show that the integral in Eq 48 is well defined whenever F 2 Y. Assuming detailed

balance, a unique null space, and that L is diagonalizable, we have that all eigenvalues of L are
negative (and real) except λ1� 0, and we can write

L ¼
X

l

vlu
⊺
l

ð52Þ

) etL ¼ v0u
⊺
0
þ
X

l<0

etlvlu
⊺
l
: ð53Þ
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Then

C ¼
Z 1

0

etLFðetLÞ
⊺dt ð54Þ

¼

Z 1

0

ðv1u⊺1ÞFðv1u⊺1Þ
⊺
þ ðv1u⊺1ÞF

X

l<0

etlvlu⊺l

 !⊺(

ð55Þ

þ
X

l<0

etlvlu
⊺
l

 !

Fðv1u
⊺
1
Þ
⊺
þ
X

l<0;l0<0

etðlþl0Þvlu
⊺
l
Ful0v

⊺
l0

)

dt ð56Þ

¼

Z 1

0

v1 u⊺
1
F

� �
ðu1v⊺1Þ þ v1 u⊺

1
F

� �X

l<0

etlulv⊺l

(

ð57Þ

þ
X

l<0

etlvlu
⊺
l
ðFu1 Þv

⊺
1
þ
X

l<0;l0<0

etðlþl0Þvlu
⊺
l
Ful0v

⊺
l0

)

dt ð58Þ

¼
X

l<0;l0<0

vlu
⊺
l
Ful0v

⊺
l0

Z 1

0

etðlþl0Þ dt
� �

ð59Þ

¼
X

l<0;l0<0

� 1

lþ l
0 vlu

⊺
l
Ful0v

⊺
l0
: ð60Þ

The underlined expressions in parentheses are all zero because the columns (and rows since F is a
symmetric matrix) of F sum to zero by assumption; u⊺

1
� ð1; . . . ; 1Þ is orthogonal to every column

of F and u1 is orthogonal to every row of F and so u⊺
1
F ¼ 0 and Fu1 = 0. Thus, the integral in Eq

54 is finite and Eq 60 gives an explicit expression for it.

Numerical methods

Discrete state simulations. To represent the trajectory of the state or the measurement

functional (e.g. ion channel conductance) due to a single random walker, as for instance in Fig

2, we used Gillespie’s exact stochastic simulation algorithm (SSA) [50] implemented in Matlab.

Briefly, the SSA is a method for constructing simulated trajectories of finite populations in

continuous time. If Ni(t) is the number of individuals in state i (for i 2 {1, . . ., n}) at time t, the

SSA generates the state vector N(t) = (N1(t), . . ., Nn(t)) given that the system was initially in

state N(t0) = x0 at time t0. Reactions cause the state of the system to change over time. The

SSA method samples the time τ to the next reaction and updates the state of the system

accordingly.

Continuous state simulations. To represent the trajectory of a population (Ntot = 500) of

random walkers for the full processes or different fluctuation-suppressed approximations

derived from the stochastic shielding method, as for instance in Figs 4 and 8–10, we used a

Langevin approximation. Briefly, we consider a linear Langevin equation with strictly additive

noise, given by

dX ¼ LX dt þ BdW ð61Þ

where XðtÞ � NðtÞ � �N and the graph Laplacian L and matrix B are those considered in Eqs
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32–36. See S1 Supporting Information xConnection to Gaussian approximation for more

details, and note that Eq S40–S42 define L and B specifically for the 3-state process. We used

the Euler-Maruyama method implemented in Matlab to numerically solve the SDE above.

Calculation of power spectra. See Equation 4.5.78 in Gardiner x4.5.6 for the spectrum

matrix of a stationary multivariate Ornstein-Uhlenbeck process [34]. The power spectrum of

the observable process M⊺X is

SðoÞ ¼
1

2p
M⊺ðLþ ioÞ� 1BB⊺ðL⊺ � ioÞ� 1M ð62Þ

¼
1

2p

X

l

X

l0

1

lþ io

� �
1

l
0
� io

� �
X

k2E

Jk M⊺vlð Þ u⊺
l
zk

� �
z
⊺
kul0

� �
v⊺

l0
M

� �
ð63Þ

¼
1

2p

X

k2E

Jk
X

l

X

l0

1

lþ io

� �
1

l
0
� io

� �

M⊺vlð Þ u⊺
l
zk

� �
z
⊺
kul0

� �
v⊺

l0
M

� �
ð64Þ

¼
X

k2E

SkðoÞ; where ð65Þ

SkðoÞ ¼
1

2p
Jk
X

l

X

l0

1

lþ io

� �
1

l
0
� io

� �

M⊺vlð Þ u⊺
l
zk

� �
z
⊺
kul0

� �
v⊺

l0
M

� �
ð66Þ

provided ω> 0. The left eigenvector for λ = 0 is orthogonal to zk for each edge k, so the sum de
facto excludes all terms with λ = 0 or λ0 = 0. Notice that the integral of the power spectrum cor-

responding to edge k gives the edge importance for edge k:

Rk ¼

Z 1

� 1

SkðoÞ do: ð67Þ

More generally, one could use the lagged covariance of the Gaussian process, given by

Equation 4.5.71 in Gardiner x4.5.6 [34]

hxðtÞ; x⊺ðsÞi ¼ exp ðLtÞhxð0Þ; x⊺ð0Þi exp ðL⊺sÞ

þ

Z s^t

0

exp ½Lðt � t0Þ�BB⊺ exp ½L⊺ðs � t0Þ�dt0:
ð68Þ

If we write instead (assuming s = t + τ, τ� 0)

hxðtÞ;x⊺ðt þ tÞi ¼ expðLtÞhxðaÞ;x⊺ðaÞiexpðL⊺tÞ

þ

Z t

a
exp½Lðt � t0Þ�BB⊺ exp ½L⊺ðt þ t � t0Þ�dt0;

ð69Þ

and take the limit a! −1, then we see that C(τ), the stationary lagged covariance at lag τ, sat-

isfies C(τ) = ∑k Ck(τ), where

CkðtÞ ¼
X

l;l0<0

� elt

lþ l
0 vlu

⊺
l
BkB

⊺
kul0v

⊺
l0
: ð70Þ

Multiplying by the measurement vector M and taking the Fourier transform of this expression

yields Sk(ω) above.
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Supporting information

S1 Supporting Information. We establish the decomposition of the stationary variance and

calculate η, the fraction of variance of the observable state arising from the hidden edges, pro-

viding explicit calculations for the 3-state process. We also detail the connection between the

population process and Gaussian approximations thereof, and derive the Lyapunov equation

for the 3-state case.

(PDF)
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