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Abstract

Background: Retinal diseases associated with the dysfunction or death of

photoreceptors are a major cause of blindness around the world, improvements in

genetics tools, like next generation sequencing (NGS) allows the discovery of

genes and genetic changes that lead to many of those retinal diseases. Though,

there very few databases that explores a wide spectrum of retinal diseases,

phenotypes, genes, and proteins, thus creating the need for a more

comprehensive database, that groups all these parameters.

Methods: Multiple open access databases were compiled into a new

comprehensive database. A biological network was then crated, and organized

using Cytoscape. The network was scrutinized for presence of hubs, measuring

the concentration of grouped nodes. Finally, a trace back analysis was performed

in areas were the power law reports a high r-squared value near one, that

indicates high nodes density.

Results: This work leads to creation of a retinal database that includes 324 diseases,

803 genes, 463 phenotypes, and 2461 proteins. Four biological networks (1) a

disease and gene network connected by common phenotypes, (2) a disease and

phenotype network connected by common genes, (3) a disease and gene network
.e00867
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with shared disease or gene as the cause of an edge, and (4) a protein and disease

network. The resulting networks will allow users to have easier searching for retinal

diseases, phenotypes, genes, and proteins and their interrelationships.

Conclusions: These networks have a broader range of information than previously

available ones, helping clinicians in the comprehension of this complex group of

diseases.

Keyword: Genetics

1. Introduction

Retinal diseases affect 1 in 1,200 people throughout the world [1]. For example, one

disease, retinitis pigmentosa (RP), is a class of inherited degenerative eye diseases

caused by genetic mutations. It is possible that these diseases result from several

different mutations and share molecular features, given that many molecular compo-

nents of the human cell are dependent on one another. Network medicine is an

approach that aims to understand the molecular complexity of specific diseases

and the molecular relationships among different diseases. The many diseases that

are classified as RP are likely to have molecular relationships [2, 3, 4, 5].

RP affects 1 in 3,500 people in the United States and Europe [4]. This class of dis-

eases is characterized by mutations in the genes that produce the photoreceptors or

the retinal pigment epithelium of the retina leading to visual impairment and even-

tual blindness, severely impacting the quality of life of the patients affected. Retinitis

pigmentosa is exceptionally heterogeneous. This includes genetic heterogeneity

(many different genes may cause the same disease phenotype); allelic heterogeneity

(there may be many different disease-causing mutations in each gene); phenotypic

heterogeneity (different mutations in the same gene may cause different diseases);

and clinical heterogeneity (the same mutation in different individuals may produce

different clinical consequences, even among members of the same family). The

extent of heterogeneity of RP and most retinal diseases can be confusing to patients

and clinicians alike and is a confounding factor in diagnosis. Therefore, understand-

ing the molecular relationships between these diseases will allow us to discover the

biological significance of genetic mutations causing diseases and to identify drug tar-

gets and biomarkers to aid in finding an eventual cure [5, 6].

However, actual databases are incomplete or networks lack on all possibly related

information. The hypothesis of this research is that if retinal diseases, phenotypes,

genes, and proteins are put into one database, the interactions can be studied and

mapped into a network. If the biological network is created, then the nodes that

have significantly greater number of associations (hubs) in comparison to others

can be identified and analyzed [7].
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When addressing this problem there are a couple main challenges. First, compiling a

complete relational database including retinal diseases, phenotypes, genes, and pro-

teins is challenging. This challenge includes quarrying through several previously

existing databases that include parts of the needed information and compiling that

information. Another main challenge is visualizing the complex database in a

network that portrays the relevant information and patterns.

Once a more complete retinal network including diseases, phenotypes, genes, and

proteins is created, the benefits are great. Firstly, the knowledge of hubs in the

network can focus future research and medicine efforts on the parts of the network

that have the greatest effect. Additionally, a completed retinal network can guide cli-

nicians to improve patient specific treatment. The presence of a network and data-

base that includes a wide variety of retinal diseases will also increase the

coverage of this solution [8].

The current state-of-the-art method for looking at relationships between retinal dis-

eases, phenotypes, genes, and proteins is to search through the various databases and

find the relative information. This method is slow and makes it very easy to obtain

miss desired information. This method also does not allow visualization of the rela-

tionships present.

Another method includes the use of the RPGeNet (https://compgen.bio.ub.edu/

RPGeNet/). RPGeNet is a good initial retinitis pigmentosa gene network, but it

does not cover all the properties that may be of interest to researchers and

physicians. Additionally, RPGeNet only covers information regarding retinitis

pigmentosa, and does not contain information of other retinal diseases [1].

The approach used in this paper will start by gathering a detailed set of information

of many different diseases, phenotypes, genes, and proteins from a variety of sour-

ces. This will improve on the variety and coverage of information included in the

dataset.

Disease networks have been made before, but never for retinal diseases as a whole.

One example of a currently existing disease network is a network containing 727 dis-

eases grouped by disorder class [1, 3, 8, 9].
2. Methods

The methods include details of the databases used in this paper, methods for database

and network creation, and assessment protocol. In overview, all the process started

by identifying databases that contained the information needed to collect in the data-

base. Then, those databases were mined for the desired information using SQL

queries and Python scripts. The information was filtered and packed in Microsoft

Access, for posterior relationship creation.
on.2018.e00867
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2.1. Databases

In order to create a database that includes retinal diseases, phenotypes, genes, and

proteins all the information was retrieved from a variety of datasets and databases.

The description of each dataset and database used is described here.

A variety of datasets was used to allow a more complete database to be assembled.

The biggest dataset used was RetNet, which is a retinal information network. This

dataset is availible at https://sph.uth.edu/Retnet/. RetNet contains genes and

mapped loci causing retinal diseases [8].

RetinoGenetics dataset. This dataset can be reached at http://www.retinogenetics.

org/Analysis/ana2/ [10]. The RetinoGenetics dataset contains retinal diseases,

gene symbols, gene location, and corresponding OMIM ID.

The OMIM database was also incorporated. This database can be found at https://

www.omim.org/. The OMIM database was used to find relationships between

genes, gene locations, phenotypes, and diseases [11, 12].

The UniProt database was used. This database is available at http://www.uniprot.

org/mapping/. The UniProt database was used for information regarding proteins

related to the disease genes [13, 14].

The DisGeNET database was used to retrieve information of retinal disease gene

ID’s and names. This database can be found at http://www.disgenet.org/web/

DisGeNET/menu [6, 15].

The Monarch Initiative database was used to retrieve retinitis pigmentosa and related

diseases’ genes, phenotypes, genotypes, models, and variants. This database can be

found at https://monarchinitiative.org/disease/DOID:10584 [16].
2.2. Database and network creation

The retrieval process involved creating SQL queries and Python scripts to run

through each database and record the desired information into compacted new Mi-

crosoft Access Database.

To set up this new database, was necessary the creation of new tables for Disease,

Disease-Gene Network, Phenotype Occurrence, Phenotypes, Genes, Proteins, and

Related Proteins. The layout of the Microsoft Access tables and relationships be-

tween tables can be seen in Fig. 1.

By creating grouped queries in Microsoft access, was possible to export the data

directly into Cytoscape 3.6.0.

Cytoscape is a graph theory open-source software for the visual exploration of bio-

logical networks involving genes, proteins, phenotypes and other types of
on.2018.e00867
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Fig. 1. Microsoft Access relationship view of created Retinal Network Database. This figure shows the

different tables that make up the created retinal database, including Disease, Disease-Gene Network,

Phenotype Occurrence, Phenotypes, Genes, Proteins, and Related Proteins. The relationships are one-

to-many and many-to-one. The links between tables are through ID keys, whether it be disease, gene,

phenotype, or protein ID.
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interactions. It offers researchers an interactive visualization interface for exploring

biological pathways and interconnections, thereby facilitating the construction of

interaction pathways, in these cases the hub identifications [17, 18].

This software can read a comma-separated file (csv) with nodes and edges (connec-

tions between the nodes) defined and port them into topological network visualiza-

tion. Where a layout can be applied to provide a visual topological structure

(Hierarchic layout), we use the layout customized option from yWorks for Cyto-

scape. The Hierarchical layout algorithm portraits the precedence relation of directed

graphs and highlight the main direction or flow within a directed graph, the cyclic

dependencies of nodes will be automatically detected and removed. Nodes will be

placed in hierarchically arranged layers, the ordering of nodes within each layer is

chosen in such a way that the number of edge crossings is the smallest.

Once the data was imported into Cytoscape and the most appropriated network rep-

resentation was selected, we weight each one of the variables in tables to obtain a

coherent data relation and visualization of interrelations on the networks, like periph-

eral nodes (low node to node connectivity), hubs (nodes with higher node connec-

tivity) and superhubs (nodes that link hubs) was determined using the

NetworkAnalyzer plugin developed by Assenov et al. [5, 19, 20, 21].

The tables were converted into topological networks to show the presence or lack of

hubs. Multiple potential primary hub was identified, we describe one (PRPH2) as

example. This gene provides instructions for making a protein called peripherin 2.

It shows several interconnected nodes, suggesting this hub importance in multiple

pathways (Fig. 2).

Four networks were created from the database [1]: a disease and gene network con-

nected by common phenotypes [2], a disease and phenotype network connected by
on.2018.e00867
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Fig. 2. Comparison of (A) previously existing RPGeNet network to (B) newly created network to for

PRPH2 gene. There is a great difference in number of connections for the PRPH2 gene depending on

which network is used. This shows that this new network provides much more information that can

be considered for whatever the users specifically need. This is useful for extending retinal disease

research to broader areas.
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common genes [3], a disease and gene network with shared disease or gene as the

cause of an edge, and [4] a protein and disease network.

Those networks sustain as central player the disease-gen association and diverge

from those players to multiple branches (e.g. genes-phenotype association). For

that reason, the same player (e.g. PRPH2) can be tracked down to multiple pathways,

having different node interconnectivity.
2.3. Assesment protocol

To analyze the networks, first each one was selected and scrutinized for presence of

hubs, measuring the concentration of grouped nodes. Multiple configuration and

interrelation were analyzed thought the database by looking at different disease,

gene, phenotype, and protein frequency of occurrence.

After applying the network analyzer to sieve through each network, assuring the

presence of hubs, using graph theory (Grafos theory). A trace back analysis was per-

formed in areas were the model of node degrees with the power law reports a high r-

squared value near one, which means hubs were present.

The topological distribution of the networks was taken on consideration and defined

as disassortative or assortative networks. The disassortative networks are spread by

the repulsion of hubs (Fig. 3B and D), suggestive of a picture of modularity with

nodes organized around dispersed hubs. The assortative networks (Figs. 3A, C

and 4D), on the contrary, are integrated by fully connected hubs.
on.2018.e00867
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Fig. 3. Cytoscape view of retinal networks for (A) disease-gene with common phenotypes, (B) disease-

phenotype with common genes, (C) disease-gene, and (D) protein-disease. The sizes or shapes or the pres-

ence of hubs can be seen to vary between networks. Fig. 14A shows onemajor hub with everything extend-

ing from that. 14B shows twomain hubswith smaller hubs around those. 14C shows a nice variance of node

degree. 14D shows one major network with one somewhat separated hub with a network within itself.
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Those differences between topologies provides a graphical reference on the presence

of clustering nodes helping in hubs identification as shown in Fig. 3.

In the topological analysis of very large networks like this. The measurement of local

parameters (node vicinities) is significantly faster than the computation of global

(path-related) parameters like Betweenness and closeness centralities. This increase

in speed does not result on lack of power detection but needs other measurements to

determine the relationship between closer nodes. It is the when measurement like

Topological Coefficient overcome those limitations.

The topological coefficient (Tn) was calculated as described by Assenov (Centiserver
plugin). The Tn of a node (n) with (kn) neighbors is the number of neighbors shared

between a pair of nodes, n and m, plus one if there is a direct link between them,

divided by the number of neighbors of node. Jet (J) of (n,m) is defined for all nodes

m that share at least one neighbor with n. Therefore,Tn can be interpreted as the rela-
tivemeasure for the extent towhich a node shares neighbors with other nodes [22, 23].
on.2018.e00867
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Fig. 4. Topological Coefficients Scatterplot of Phenotype-Disease network. B) Avg. Clustering Coeffi-

cient Distribution C) Neighborhood Connectivity Distribution D) Graphical-Topological representation

of subset Phenotype-Disease network. The power law model appears to be an even more accurate model

showing a strong presence of hubs and a scale-free network.
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Tn ¼ AvgðJðn;mÞÞ
Kn

This simplistic interrelation between average (Avg) of local parameters and its

neighbors (k), allows efficient hubs detection (grouped nodes interconnection), since

nodes that have less than two neighbors are assigned a topological coefficient of

zero, and those nodes with multiple connections are easily observed as higher Tn.

Once the hubs were localized and topological mapped, each one of this was fit in the

power of law and the number of neighbors was also measured. Being marked as hubs

of interest, those were no previous relation to diseases were described, or hubs that

shown multiple connections to pathologies that were clinically dissimilar [7, 24, 25].
2.4. Using topological coefficient (Tn) for nodes discrimination in
conjunction with centrality measures

Once the Tn is calculated, to identify relevant nodes on the biological network, pro-

tocols of analysis integrating centralities measures like radiality will improve node

discrimination.

Radiality of a node (v) is defined as a centrality index and is calculated by computing

the shortest path between the node v and all other nodes in the graph. The radiality
on.2018.e00867
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value should be considered as an “average tendency to node concentration or isola-

tion”, not definitively informative on the centrality of the individual node, to deter-

mine the importance of radiality on the network, this measure should be combined

with other discrimination measure (e.g Tn, betweenness) [7, 24, 25].

CradðvÞ ¼
P

w˛NðDGþ 1� distðv;wÞÞ
n� 1

As described before, radiality can be combined with betweenness to discriminate the

presence of nodes, and the betweenness of a node n is calculated considering couples

of nodes (v1, v2) and counting the number of shortest paths that linked them passing

through a that node. Thus, a node can be traversed by only one path linking v1 and

v2, but if this path is the only connecting v1 and v2 the node n will score a higher

betweenness value. Therefore, a high betweenness score suggest that the node n is

crucial to maintain node connections for the paths that cross them [21, 23, 26].

CspbðvÞ ¼
XP

sstðvÞ
sst

For compute the centrality measures in conjunction with Tn, in addition to Centi-

Server plugin (Assenov), the use of CentiScaPe 2.2 plugin (Scardoni Group) for

calculating centrality measures was implemented. The differences between centrality

measures discrimination in relation to Topological Coefficient were studied by plot-

ting centralities (Radiality and betweenness) against Tn, and later confirming the

importance of nodes on a disaggregation experiment. The disaggregation experiment

consist on evaluate the importance of the highlighted node by the intersection plots

(eg. Tn-Radiality, Betweenness-Radiality) and evaluate the topology of the network

after subtracting the highlighted node n, the dispersion and the disaggregation of the

network, can be evaluated by graphical disassociation (loosing number of intercon-

nected nodes) and taking in consideration the diameter of the network (DG) and a

diminishing in the centroid value of the network. Since, the centroid value of a

network suggests that a specific node has a central position within a graph region

characterized by a high density of interacting nodes, when subtracting a node of bio-

logical importance the whole average centroid value of the network will diminish

[20, 25, 26, 27, 28]. Based on the new topology both extremes of the network

with Tn closer to 0 and 1 were selected to illustrate, the efficacy on node detection

in conjunction with radiality as primary discriminator.
3. Results

This work results in the first retinal database and relational network that includes dis-

eases, phenotypes, genes, and proteins was successfully created. The database

compiled contains 324 diseases, 803 genes, 463 phenotypes, and 2461 proteins.
on.2018.e00867
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Also, four relational trees including [1]: a disease and gene network connected by

common phenotypes [2], a disease and phenotype network connected by common

genes [3], a disease and gene network with shared disease or gene as the cause of

an edge, and [4] a protein and disease network. The four networks can be seen in

Fig. 3, and can be retrieved in Microsoft access format (.accdb), cytoscape (.cys)

and interactive cytoscape.js html (.zip) at https://github.com/megahitokiri/Gene-s-

hubs-in-Retinal-Diseases.

Relationship between diseases were stated by nodes comparison, as example in

Table 1, OMIM# 607236 and 234200 are completely unrelated disease that share

multiple genes and some diseases, OMIM# 264800 and 177850 are variant of the

same disease.

Each network was analyzed based on node degree distribution. The disease-gene

network power law model values adequate to y ¼ ax̂b with a ¼ 317.33, b ¼
�1.655, correlation ¼ 0.814, r-squared ¼ 0.810 (on logarithmic values), which

can be seen in Fig. 5A. The topological coefficient (TP) plot is shown in Fig. 5B

where the power of law fits into the distribution (shown in blue line), where only

one extreme value of the neighbors is over the 100 range, also visible in Fig. 5C.

For the protein-disease network statistical analysis shows the node degree distribu-

tion power law with y ¼ ax̂b and a ¼ 168.98, b ¼ �1.116, correlation ¼ 0.556, r-

squared ¼ 0.654. The model can be seen in Fig. 6A, the plot of nodes in the TP

shows a high dispersion and power of law does not fits (red line) Fig. 6B.

Node degree distributions for disease-gene with common phenotype the model re-

sults were y ¼ ax̂b with a ¼ 8.245, b ¼ �0.285, correlation ¼ 0.171, r-squared

¼ 0.193. Fig. 7A shows the node degree distribution. Despite the poor correlation

on node degree distribution, the TP model show the presence of clustered nodes

with Topological Coefficients that relays under the fitted curve (red line) Fig. 7B.

The distribution values for disease phenotype network (a subset of disease and

phenotype network filtered by genes, Fig. 4D) were y ¼ ax̂b with a ¼ 120.91, b

¼�1.312, correlation ¼ 0.990, r-squared¼ 0.788, showing a high fit in distribution

(blue line), with presence of highly concentrated nodes (Fig. 4A), and many of those
Table 1. List comparison of two sets of diseases in close network proximity.

Figure ID_disease Name Abbrev

A OMIM:607236 HYPOPREBETALIPOPROTEINEMIA HARP syndrome
OMIM:234200 NEURODEGENERATION WITH BRAIN

IRON ACCUMULATION 1
Hallervorden-Spatz syndrome

B OMIM:264800 PSEUDOXANTHOMA ELASTICUM PXE
OMIM:177850 PSEUDOXANTHOMA ELASTICUM,

FORME FRUSTRE

on.2018.e00867

ors. Published by Elsevier Ltd. This is an open access article under the CC BY license

censes/by/4.0/).

https://github.com/megahitokiri/Gene-s-hubs-in-Retinal-Diseases
https://github.com/megahitokiri/Gene-s-hubs-in-Retinal-Diseases
https://doi.org/10.1016/j.heliyon.2018.e00867
http://creativecommons.org/licenses/by/4.0/


Fig. 5. A) Node degree distribution of disease-gene network. B) Topological Coefficients scatterplot. C)

Avg. Clustering Coefficient Distribution.
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with a high number of neighbors, superior to ten (Fig. 4B). That distribution makes

imperative the analysis of average neighborhood per number of neighbors, showing

a correlation of 0.877 and a clustering between 10 to 51 neighbors with and average

inter connectivity of nodes to 14.429 (Fig. 4C).

After the analysis of phenotypes show a high presence of hubs, a table for the com-

mon phenotypic expressions found in was created (Table 2), it includes the number

of appearances, and the ontology phenotype id. Being Rod-cone dystrophy the most

prevalent phenotype in diseases.

After examining individual results of Topological coefficient, it was calculated Ra-

diality and Betweenness to discern importance of the hubs in the network on topo-

logical representation. Three graphs were generated: Tn vs Radiality (Fig. 8), Tn vs

Betweenness (Fig. 9), and Radiality vs Betweenness (Fig. 10), to exemplify how us-

ing only the topological structure as primary parameter Tn is a more suitable mea-

sure to find relevant nodes (hubs) in a complex network. Once the networks were

analyzed reconstructed and weighted for Tn and centralities, the top ten markers us-

ing radiality as order factor were selected from Genes Network and Protein Network

obtaining ranges of Tn and Betweenness from 0 to 1 spectrum (Table 3). In both net-

works a total of 6 genes were repeated amongst the top ten, two of them (ABCC6 and

PRPH2) were selected (Highest and lowest Tn) to demonstrate differences between

both measures on detection (Fig. 10). When comparing Tn and Betweenness on

Gene ABCC6 (Fig. 11A and B) ABCC6 shows a clearer signal on Tn graph, that
on.2018.e00867
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Fig. 6. A) Node degree distribution of protein-disease network. B) Topological Coefficients Scatterplot.

The power law model appears to be a moderately accurate model showing a presence of hubs. This lower

correlation is most likely thrown off by outliers.
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is difficult to pick up using the centrality measure, for gene PRPH2 (Fig. 11C and D),

the signal is clear enough on both datasets to be discriminated by any measure.

The disaggregation network analysis was performed with the next highest Tn gene

on the list (CLN3) and shows that this gene can be map as an independent
on.2018.e00867

ors. Published by Elsevier Ltd. This is an open access article under the CC BY license

censes/by/4.0/).
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Fig. 7. A) Node degree distribution of disease-gene by phenotype network. B) Topological Coefficients

Scatterplot. The power law model does not have a high correlation showing a lack of scale-free

networking. However, there are one or two hubs shown with the data points with high node degrees.
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subnetwork of main network holding 9 vertex connection, and this new subnetwork

is ligated to another two genes inside the list (CLN7 and TREX1) Fig. 12.

The same disaggregation experiment was performed with the lowest gene on the list

(RHO), the primary analysis shows that this gene was centrally positioned and share
on.2018.e00867

ors. Published by Elsevier Ltd. This is an open access article under the CC BY license

censes/by/4.0/).
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Table 2. Ten most common phenotypes ocurring in diseases.

No. Phenotype id Name of phenotype # Occurrences

1 HP:0000510 ROD-CONE DYSTROPHY 99

2 HP:0000662 NYCTALOPIA 54

3 HP:0000505 VISUAL IMPAIRMENT 48

4 HP:0000548 CONE/CONE-ROD DYSTROPHY 30

5 HP:0000613 PHOTOPHOBIA 28

6 HP:0000543 OPTIC DISC PALLOR 24

7 HP:0001133 CONSTRICTION OF PERIPHERAL
VISUAL FIELD

23

8 HP:0007843 ATTENUATION OF RETINAL BLOOD
VESSELS

21

9 HP:0007663 REDUCED VISUAL ACUITY 21

10 HP:0000639 NYSTAGMUS 20

Fig. 8. Topological Coefficient (Tn) vs Radiality. Exemplification of Tn as a more suitable measurement

for hubs detection using radiality as discrimination point. Since nodes that reaches the closest values to

0 or 1, can be discriminated to latelily bee correlated to its specific interpretation.
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the same topology characteristics with genes RP5 (not on the list), appearing as two

individual nodes but so ligated between them that subtracting one cause the subtrac-

tion of the other one (Fig. 13A). After subtraction from network of RHO gene

connection network (Fig. 13B), the original Disease Genes Network that contains

786 nodes and 1461 edges previously connected, diminish to 578 nodes and 930

edges and multiple isolated nodes (Fig. 13C).
on.2018.e00867
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Fig. 9. Topological Coefficient (Tn) vs Betweenness Centrality. Using Betweenness as discriminator

central measurement, we can observe that nodes then to cluster at origin and disperse over the vertical

axis, making more difficult a correct discrimination of hubs.

Fig. 10. Radiality vs Betweenness Centrality. In this case clustering between two central tendency mea-

surements is denser, this shows that Tn is a better fit to perform a comprehensive node search, allowing a

more disperse distribution.
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Table 3. Comparison between topological coefficient (Tn) and betwennes

(Centrality measure), using Radiality as discriminator factor.

Network Gene/Protein Tn Radiality Betweennes

Disease to Genes Network PGK1 0,0000 1,0000 0,0000
CLN7 0,6667 0,8750 0,2222
MFSD8 0,6667 0,8750 0,2222
TREX1 0,5000 0,8500 0,6000
PRPH2 0,0647 0,8272 0,1018
CMT6 0,5000 0,8182 0,5091
RPGR 0,0953 0,8085 0,0652
RHO 0,0882 0,8050 0,0812
ABCC6 1,0000 0,7500 0,0556
CLN3 1,0000 0,7083 0,0222

Disease to Proteins Network P00558 0,0000 1,0000 0,0000
A0A076V826 0,0781 0,8532 0,1297
P08100 0,0781 0,8532 0,1297
P23942 0,0664 0,8061 0,0416
A0A087WTS9 0,1907 0,7941 0,0041
H7C4H4 0,1144 0,7926 0,0098
Q9NZN9 0,3333 0,7888 0,0018
B1ALA7 1,0000 0,7500 0,0500
A0A0G2JMG3 1,0000 0,7000 0,0250
A8JYI8 1,0000 0,6942 0,0000

Repetead Genes on Top of Both Networks

6 PGK1 PRPH2 RPGR

RHO ABCC6 CLN3
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4. Discussion

One remarkable finding is the increased coverage provided by this network, relative

to previously available databases information, as seen in the gene symbol PRPH2. In

this specific scenario, PRPH2 has 21 diseases linked to one hub (Fig. 2). When

searching for the same gene in the RPGeNet database, the result has a node degree

of only two as shown in Fig. 2. This is one example showing the differences in the

recently created RetinalDiseaseNetwork from the previously existing RPGeNet.

Another result from this work is the observation that proximity within the network

can be attributed to a multigenic diseases or that diseases share the same genotypical

pathway as shown in Table 1, where the similarity corresponds to a Forte form of the

same disease, but this scenario is not necessarily true fall all related cases. As shown

in the comparison of two sets of diseases (OMIM# 607236 to 234200 and 264800 to

177850) where unrelated diseases are equally proximal to each other (Fig. 14A).

compared to related diseases that share the same genetic background (Fig. 14B)

[12]. This is interesting because Fig. 14A relates diseases that may have not been

related previously, but now it is shown an association between two very different

diseases.
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Fig. 11. A). ABCC6 Gene in Radiality vs Betweenness plot. B) ABCC6 Gene in Tn vs Radiality plot C)

PRPH2 Gene in Radiality vs Betweenness plot. D) PRPH2 Gene in Tn vs Radiality plot. Here we can

observe two genes in direct comparison, between Tn and central measurements. PRPH2 can be identified

in Tn and betweenness plots. However, ABCC6 gene (Hub), could not be identified using Betweenness

based on high clustering, showing efficacy of Tn for hub.

Fig. 12. CLN3-CLN7 subnetwork. This subnetwork is formed when performing a disaggregation exper-

iment over CLN3. The CLN3 subnetwork is related to TREX1 subnetworks through CRV gene.
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Fig. 13. Disaggregation of RHO gene inside Disease to Genes Network A). Selection of RHO gene in-

side network. B) Expanding selection of RHO-RP5 genes complex to its closest neighbors C) Subtracting

all nodes related to RHO gene from the network. This 3-step process shows the importance of RHO gene

inside the network, since once RHO gene is selected RP5 gene automatically is selected with it, suggest-

ing and not previously noted relationship. When the RPO-RP5 complex is subtracted a great portion of

the network is disassembled, suggesting his importance as a biological hub.

Fig. 14. Network view comparison of two sets of diseases in close network proximity. Diseases of

OMIM# 607236 to 234200 in Fig. 2A and 264800 to 177850 in Fig. 2B are equidistant in the network.
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The disease-gene network had the most accurate power law model with a correlation

¼ 0.814, r-squared¼ 0.810, that power law correlation means the strong presence of

hubs. However, the disease phenotype network with correlation ¼ 0.990, r-squared

¼ 0.788, despite a lower r-squared proves to have the best fit into hubs clustering as

shown by Fig. 4A.
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For the protein-disease network there appeared to be at least some of hubs present,

based on the correlation¼ 0.556, r-squared¼ 0.654, and a good linear fit in Fig. 6A,

but when the TP was analyzed (Fig. 6B), it shows a high dispersion of nodes and

clustering bellows the fit, stating an unlike possibility of the presence of hubs of bio-

logical significance in this network.

Node degree distributions for disease-gene with common phenotype and disease-

phenotype with common gene are not as strongly correlated to the power law model

(Fig. 7A). Regardless of this poor correlation the TP fit, shows the presence of clus-

tering areas but with several neighbor inferior to 10, making worth it a posterior anal-

ysis on this area to determinate if clustering is related to multiple variant forms of the

same disease.

In all the node degree distributions there are some outliers that are affecting the fitted

line and correlation valued. To highlight the effect, this leads to review the disease-

gene network. This node degree distribution had a high correlation, with only one

outlier. With the removal of the one outlier, OMIM:268000, when revisit the

node degree distribution in Fig. 4. It is seen that the r-squared value goes from

0.810 to 0.895 with the removal of just one outlier.

After the analysis of those multiple networks, the TP distribution and correlations

allows to find many hubs, that must be individualized and studied according its clin-

ical and biological significance.

For this reason, was necessary to conduct a second layer of experiments to evaluate

the importance of the detected hubs on the four networks. As described in the

methods section Radiality, Betweenness and Topological Coefficient was deter-

mined for the four main networks, however only two provide a clean layer of infor-

mation that can be mapped to genes and therefore performed a disaggregation

experiment. As shown on Table 3, the Radiality measure in conjunction with Tn

can be used to discern in a proper way node (hubs of biological importance). Being

values of Tn closer to 1 index of subnetworks inside the primary networks and

values closer to 0, will indicate the presence of clustering nodes (hubs) that holds

primary functions ass holders of network integrity, in biological terms nodes that

are necessary to aim, and perform functional analysis.

Even though the whole gamma of experiments were conducted, and multiple central

nodes were detected, the network analysis did not show any superhub, that could

have been an inflection point for pursuing a clinically important connection between

genes and related diseases. This could be due to the limitations of this study, that

includes the number of diseases present. in big data mining and network informatics

the bigger the dataset the more powerful the interrelationships that can be found, so

increasing the number of ontologies will improve the nodes detection system.
on.2018.e00867
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Another limitation found in this study is the difficulty of compare the results with

other dataset beyond specific examples, since those datasets do not incorporate

disease-phenotypic information (except OMIM) and uses global (path-related ¼
shortest-pathway) algorithms (e.g PRGeNet), that when analyzed against the use

of Tn distributions could not be properly compared.

Finally, this new database can be used to find a variety of information besides hubs,

using this approach; we were able to find the ten most common phenotypes occur-

ring in diseases and get number of occurrences for those phenotypes and also find

more than 10 genes (Table 3) that can be targeted for posterior biological analysis

[1, 12].

This shown the efficacy of a comprehensive biological database on retinal diseases,

that sets the bases for posterior works on the networks provided. Where the evi-

denced hubs should be studied in greater depth, and the genes proposed by this paper

can be used for a targeted sequencing posterior analysis on a prospective cohort of

patients.
5. Conclusions

The presence of hubs in this kind of networks reflects the existence of common path-

ways in gene expression in different and unrelated diseases; however, sharing the

same gene could not involve sharing the same phenotypic results or evolution on

the disease.

This database could be used to find the most common phenotypes related to geno-

types, allowing to explain complicated paths on how co-expression on multiples

genes lead to a specific phenotype.

Hubs with scale-free networking were identified to be present strongly in the disease-

gene network, and somewhat strong in the protein-disease network. Where found

unexpected actors such the gene PRPH2 that appears in at least 21 diseases con-

nected by at least one node of distance, and in other multiple diseases at two or

more nodes, or subnetworks as represented by gene CLN3 interacting with TREX1.

It is difficult to explain the complexity of all nodes, their connections and interac-

tions. However, currently this tool could provide a bunch of grouped targets, for per-

forming a gene hunt that can unveil relationships between actors (diseases,

phenotypes, genes, proteins, etc.) that cannot be perceived other way.

In this work we only explored four networks with interconnection across multiple

genes, phenotypes and proteins that are expressed in multiple diseases. Nevertheless,

adding more layers of complexity (e.g methylation patterns, pharmacogenomics) to

this networks, based on the analysis of free-scale nodes, could reveal the existence of
on.2018.e00867
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more hubs (nodes) over all networks (genes, diseases, proteins) that serves as point

of interest to expand the understanding on how diseases that are consider one entity,

could be related in a closer way or could be more distant apart that the current un-

derstanding of network interactions shows.
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