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Abstract
Respiratory syncytial virus (RSV) is a common cause of upper respiratory tract
infection in children and adults. However, infection with this virus sometimes
leads to severe lower respiratory disease and is the major cause of infant
hospitalisations in the developed world. Several risk factors such as baby
prematurity and congenital heart disease are known to predispose towards
severe disease but previously healthy, full-term infants can also develop
bronchiolitis and viral pneumonia during RSV infection. The causes of severe
disease are not fully understood but may include dysregulation of the immune
response to the virus, resulting in excessive recruitment and activation of innate
and adaptive immune cells that can cause damage. This review highlights
recent discoveries on the balancing act of immune-mediated virus clearance
versus immunopathology during RSV infection.
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Introduction
Respiratory syncytial virus (RSV) is the most common trigger of 
bronchiolitis and viral pneumonia, especially in infants, and there 
are links between severe RSV disease and later development of 
asthma and wheeze1–3. There are at present no effective RSV anti-
virals or RSV vaccines in the clinic; therefore, infection with the 
virus remains a clinical problem worldwide, and avoiding the 
development of severe lower respiratory tract infection constitutes 
an unmet need. There are many known risk factors for severe RSV 
disease such as pre-term birth, lung underdevelopment, and con-
genital heart disease4,5. However, previously healthy babies lack-
ing any of the above risk factors are also admitted to hospital with 
severe lower respiratory tract RSV infection1–3,6. Possible param-
eters determining the severity of disease include genetic suscepti-
bility of the host, presence of co-infections with other pathogens, 
viral genotype, and viral load (Figure 14–6). However, other reasons 
relate to how immune responses to the virus are induced and reg-
ulated, an area about which we still know very little (Figure 1). 
Innate immune responses occur immediately upon infection and 
are important for the early containment of pathogens before adap-
tive immune responses (antibodies and T cells) can be mobilised. 
They also direct subsequent adaptive immune responses and dictate 
how strongly the host responds to the invading pathogen. Innate 
immune responses are difficult to investigate during natural RSV 
infection, especially in children, as they have generally waned by 
the time of hospital visit/admission. However, experimental models 
of RSV infection can be used to begin to understand how innate 
immunity to the virus is elicited and impacts disease progression. In 
this commentary, recent advances in understanding RSV infection 
are summarised, with a focus on new findings in the area of innate 
immunity to the virus.

RSV infection
RSV is a negative sense, single-stranded RNA virus of the Pneu-
moviridae family (previously classified in the Paramyxoviridae  
family7,8). It was first described in chimpanzees in 19559 and shortly 
thereafter detected in children with respiratory illness10. RSV 

is estimated to cause 34 million episodes of lower respiratory  
tract infections leading to 3.4 million hospitalisations and up 
to 199,000 deaths per year in children younger than 5 years of  
age11. Hospitalisation is most common in infants between 2 and  
6 months of age6.

RSV infects the respiratory tract by initially binding to molecules 
on the apical surface of epithelial cells or by non-specific uptake 
via macropinocytosis7,12. Which receptors are involved in binding 
the virus and facilitating infection is not fully elucidated, but sev-
eral cell surface molecules have been implicated in the process. For 
example, glycosaminoglycans expressed on cell surfaces can bind 
to the envelope glycoproteins of RSV, namely the G and F pro-
teins. RSV G is important for viral attachment to the host cells, 
while RSV F is involved in the fusion of the viral envelope with 
either the cell plasma membrane or the delimiting membrane of  
macropinosomes7,12. RSV F protein expressed on the surface of 
neighbouring infected cells also causes their fusion to form syn-
cytia, a characteristic feature of the infection that lends the virus 
its name7. RSV F protein also binds the cellular protein nucleolin 
and this increases infection13. In addition, CX3CR1 (the fractalkine 
receptor) was recently shown to be expressed on ciliated epithelial 
cells and can bind to RSV G14–16, since RSV G contains a CX3C 
motif17,18. Notably, mice lacking CX3CR1 are less susceptible to 
RSV infection15, underscoring the importance of this interaction 
in viral entry. Following attachment, and fusion, RSV enters the 
cytoplasm and the replication cycle ensues. Progeny viruses even-
tually assemble and bud off the plasma membrane after the forma-
tion of long protruding structures called filaments7. Released viral 
particles then infect neighbouring cells and propagate the infectious  
process.

Whether lower airway disease is caused by uncontrolled virus 
infection resulting in syncytial cell death and epithelial bar-
rier breakdown or whether it is due to tissue damage caused by 
a dysregulated immune response (immunopathology) is not fully 
understood. Importantly, the two are not independent variables. 
A high viral load has been associated with high release of pro- 
inflammatory immune mediators and more severe symptoms19–23. 
Thus, it is possible that the development of severe disease is due 
to an early lack of control of the virus, which leads to epithelial 
cell damage and a high release of pro-inflammatory mediators that 
recruit and activate leukocytes in the lung and induce an excessive  
immune response that results in immunopathology20,24–26. The 
risk groups for severe RSV disease are the young (less than one  
year of age) and the old (more than 65 years of age)27,28. Infants 
have an immature immune system, which renders them less able to 
mount an efficient anti-viral response28,29. In addition, it is likely that  
structural features including small airway calibre may make  
infants more prone to critical airway narrowing and resultant  
hypoxia in the face of lung inflammation28. The elderly  
have a senescing immune system and are therefore less able to 
induce appropriate responses to invading pathogens30,31. It is  
possible that the innate immune response in these two at-risk  
groups is suboptimal, which results in an unbalanced immune 
response and inefficient balance between viral control and  
immunopathology.

Figure 1. Possible determinants of severity of disease 
during respiratory syncytial virus (RSV) infection. Many host, 
environmental, or viral factors can determine the outcome and 
severity of RSV disease. Most likely an interplay of several factors 
will determine why some patients develop severe disease.
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Innate immune responses to RSV
RSV research has long been focused on adaptive immunity. 
Recently, the importance of innate immunity has been highlighted, 
especially from studies using animal models. There are many fac-
tors that can influence the development and severity of disease  
(Figure 1). The first lines of defence are mucus32, anti-microbial 
peptides33, and surfactants34,35. The local lung microbiota can also 
most likely influence RSV infection rate and the immune response 
to the virus, but this is an emerging concept for which, at present, 
there are limited supporting data. However, it has recently been 
suggested that the nasopharyngeal microbiota in young children 
can influence the spread of the infection to the lower airways and  
modulate the host immune response to RSV infection36,37. It remains 
to be elucidated if the composition of the microbiota is changed by 
the infection or if a specific composition of microbiota is determin-
ing the degree and spread of infection.

The next layer of defence the virus has to confront is the resident 
cells of the respiratory tract, mainly epithelial cells, alveolar mac-
rophages (AMs), dendritic cells (DCs), and innate lymphoid cells. 
Many cells express pattern recognition receptors (PRRs) that can 
bind to pathogen-associated molecular patterns (PAMPs) and sig-
nal to initiate the production of pro-inflammatory cytokines and 
chemokines that serve to orchestrate anti-viral immunity. Some of 
these have potent anti-viral effects themselves, such as the type I 
interferons (IFN-α/β)38,39. These cytokines are transiently produced 
and bind to the type I IFN receptor (IFNAR) expressed on all nucle-
ated cells to signal to induce the expression of a large number of 
proteins that help restrict viral replication. More recently, it has 
become apparent that type I IFNs also play a key role in inducing 
cytokines and chemokines that promote the recruitment and activa-
tion of immune cells24,25,38. As a counter-strategy, many viruses have 
evolved proteins that hinder type I IFN production or block IFNAR 
signalling. RSV has two non-structural proteins, NS1 and NS2, 
that inhibit type I IFN production and signalling in infected cells40 
as well as interfere with epithelial cell sloughing41. In addition, 
RSV N protein has been suggested to also be able to inhibit IFN-β  
induction42. Furthermore, viruses, including RSV, can subvert the 
cell-intrinsic anti-viral responses by manipulating microRNA gen-
eration and/or function43,44.

Genetic analyses of infants show an association of single nucle-
otide polymorphisms (SNPs) in genes encoding type I IFNs or pro-
teins involved in IFNAR signalling with severe RSV disease45,46. 
Also, a deficiency in type I IFN production by cells from infants47 
and from neonatal mice48,49 has been shown. In contrast, some stud-
ies show a higher level of IFN-α in nasopharyngeal wash in more 
severely sick infants compared to controls50. It is possible that the 
type I IFN response is not detectable by the time children are admit-
ted to hospital with lower respiratory tract RSV infection, since this 
is likely to happen several days after the initial infection, at which 
time the production of type I IFNs is declining and these cytokines 
are difficult to detect.

Cytosolic PRRs of the RIG-I-like receptor (RLR) family that  
signal via mitochondrial anti-viral signalling protein (MAVS) are 
crucial for the production of type I IFNs and other pro-inflamma-
tory cytokines during RSV infection24,26,51. UV-inactivated RSV 

does not elicit type I IFN responses24,52, but defective RSV genomes 
can in both mice and humans53. Interestingly, the major sources of 
type I IFNs in the lower airways of mice during experimental RSV  
infection are AMs24, and they use cytosolic MAVS-coupled sensors 
to induce this production24,52. However, these cells are not produc-
tively infected by RSV52.

Several Toll-like receptors (TLRs), such as TLR2, 3, 4, and 7, are 
also implicated in the recognition of RSV54,55. For example, RSV F 
can bind TLR456 and SNPs in the TLR4 gene correlate with severe 
RSV disease57–59. However, mouse models show variable depend-
ency on TLR4 for the development of disease56,60,61. TLR4 is best 
known as a receptor for lipopolysaccharide (LPS), a bacterial prod-
uct, and a recent study showed that an intersection of TLR4 gen-
otype with LPS content in the home environment determines the 
severity of RSV disease62. This indicates that the interplay between 
genetics and the environment, including the microbiota and co-
infections, will be part of the severity of disease caused by RSV 
(Figure 1). Interestingly, even mice genetically lacking the ability 
to signal via all TLRs and RLRs are able to control RSV infec-
tion and mount T cell responses to the virus63. This suggests that 
additional mechanisms for detecting RSV infection exist that can 
compensate for the lack of PRR signalling. Like PAMPs, damage-
associated molecular patterns (DAMPs) released by dead cells can 
trigger immunity64. One part of RSV disease manifestation is small 
airway obstruction caused by a mix of mucus, infiltrating cells, and 
dead or dying epithelial and inflammatory cells1,6. Many DAMPs 
will therefore at this stage be expected to be present freely in the 
lungs and might contribute to the initiation of immune responses to 
the virus. Recently, RSV infection was shown to trigger the release 
of DAMPs such as high mobility group box 1 (HMGB1)65 and 
S100A966.

PAMP or DAMP recognition often results in the production of  
pro-inflammatory cytokines and chemokines, many of which, 
including TNF, IL-6, and CCL2, have been associated with severe 
lower respiratory tract infection and recurrent wheeze6,67. For exam-
ple, recently the epithelial-derived cytokine IL-33 was shown to 
contribute to disease severity in neonates and was also found in 
nasal aspirates from infants after RSV infection68. Locally produced 
cytokines are important for lung cell proliferation, activation, and 
differentiation, and chemokines are important for orchestrating 
immune cell infiltration into the lungs. One of the first cell types to 
be recruited after lung infections is neutrophils. They infiltrate the 
lung in vast numbers during RSV infection25,69–71 and have multiple 
functions such as phagocytosis, production of reactive oxygen spe-
cies, and secretion of proteolytic enzymes72. Activated neutrophils 
can also form neutrophil extracellular traps (NETs), networks of 
DNA and microbicidal proteins, that can capture RSV73,74. How-
ever, whether neutrophils are beneficial for viral control or, rather, 
become a cause of lung injury/occlusion during RSV infection 
needs further investigation72. The next cell type to arrive in the 
lung is the monocytes. Type I IFNs are instrumental for recruiting 
inflammatory monocytes by inducing the production of monocyte 
chemoattractants such as CCL2. The monocytes are important for 
controlling the virus and have recently been shown to contribute 
to viral clearance/control of RSV in the lower airways of mice24.  
Interestingly, children with bronchiolitis display high levels of 
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CCL2 in nasopharyngeal wash50 and in bronchoalveolar lavage 
(BAL) fluid75,76. In the mouse model of RSV infection, lung mono-
cytes are anti-viral and contribute to host protection24, while in a 
model of influenza virus infection monocytes cause pathology77,78. 
It is interesting to speculate that increased/uncontrolled levels of 
type I IFNs could recruit high numbers of monocytes that are ini-
tially important for viral control but, in excess, become detrimental 
and contribute to lung immunopathology.

Natural killer (NK) cells and, subsequently, T cells infiltrate the 
lungs following neutrophils and monocytes. Both of these cell 
types have an anti-viral effect during RSV infection79–81. Each  
infiltrating cell type has a role in anti-viral defence, and its recruit-
ment is well orchestrated in order to clear the virus while limiting 
tissue damage, a particularly important issue in delicate tissues, 
such as the lung, which needs to preserve gas exchange function 
irrespective of ongoing infectious challenge. If lung recruitment 
of immune cell types is dysregulated, the balance of viral control 
versus tissue damage is lost, and pathology and severe disease can 
ensue. Thus, innate immune responses to RSV are crucial in exe-
cuting the initial control of the virus and in directing a balanced 
immune response.

Adaptive immune responses to RSV
DCs are key in the crosstalk between innate and adaptive  
immunity82. They are activated by PRR signalling and pro- 
inflammatory mediators in the lung to increase their antigen 
processing and presentation capability and migrate to regional 
lymph nodes where they convey viral antigens to naïve T and B 
cells83. It is interesting to note that there are fewer DCs in the lungs 
and lymph nodes of infants and they are also less functional after 
RSV infection compared to those from adult lungs49,84,85. Also, 
fewer and less functional plasmacytoid DCs are found in young 
children47,86. Flt3 ligand subcutaneous administration to neonatal 
mice mobilises more lung DCs and results in less lung inflamma-
tion after re-infection with RSV49. Altogether, these data suggest 
that a correct DC response is vital for a balanced immune response 
during RSV infection.

RSV-specific B and T cells are activated in the lymph nodes and 
proliferate, migrate, and start executing their respective functions 
a few days after the start of the RSV infection. The antibodies 
secreted by RSV-specific B cells are important to prevent viral 
spread and reinfection. Interestingly, RSV-specific antibodies have 
very short half-life and serum titres, and the number of IgA+ mem-
ory B cells decreases with time87–89. This is unlike other respiratory 
infections, such as with influenza virus, in which antibodies persist 
and confer lifelong protection against the original infecting strain. 
However, nasal anti-RSV IgA levels correlate with protection from 
experimental infection in adults89, while levels of nasal (maternally 
derived) anti-RSV IgG correlate with lower viral load in infants90. 
Furthermore, anti-RSV antibodies have been found in amniotic 
fluid91 and could potentially be protective to the lungs of new-
borns. Altogether, these data indicate a possible beneficial role for  
antibodies during RSV infection but raise the conundrum of why 
protective antibody-dependent responses fail to establish memory 
in adults, permitting re-infection with the same RSV strain.

T cells arrive in the lungs from the lymph nodes a few days after 
the start of RSV infection. They are important for viral clearance 
during primary infection92, and protective responses to RSV infec-
tion are characterised by a T helper 1 (Th1)-dominated response 
with T cells that produce IFN-γ (CD4+ and CD8+ T cells) and kill 
infected cells with perforin and granzyme B (CD8+ T cells)93.  
In contrast, if the T cell responses are skewed towards a Th2 type, 
they can contribute to immunopathology62,93–95. Although, more 
recently, some of these observations have also been attributed to 
Th17 induction96.

After a first infection with RSV, memory T cells are generated 
and can be mobilised when the host re-encounters RSV at a later 
stage. There are different types of memory T cells: central memory, 
effector memory, and tissue-resident memory (T

RM
) T cells. RSV-

specific T
RM

 cells localise to the lungs and can exert an innate-like 
function when reinfection occurs97,98. T

RM
 cells have been found in 

mouse99 and human100 lungs after RSV infection has cleared. Even 
though memory T cell responses develop during RSV infection, 
their longevity has been debated, as re-infections with the same 
virus strain occur throughout life. Also, the type of memory T cells 
(Th1, Th2, or Th17) is important for the outcome of the reinfection, 
with an increased Th2 or Th17 response correlating with enhanced 
disease93. Increasing evidence suggests that T

RM
 cells are crucial for 

protection from re-infection with various pathogens and therefore 
an important consideration for vaccine development (see below). 
Future research will inform a more precise role of T

RM
 cells during 

RSV infection.

A strong or dysregulated T cell response to RSV will be detrimental 
to lung tissue integrity. CD8+ and CD4+ T cells start to upregulate 
IL-10 production during RSV infection101–104 most likely in order 
to dampen the ongoing immune response, as IL-10 can have anti-
inflammatory effects105. Also, T regulatory cells (Tregs) are impor-
tant for keeping the T-cell-driven inflammation in check, especially 
the Th17 and Th2 types, during RSV infection96,106–112. Thus, adap-
tive immune responses to RSV are important for the final viral 
clearance and for a rapid memory response in case of a re-infection, 
but this response also has to be under tight control in order to limit 
immunopathology.

Potential vaccines
To date, the treatment of RSV disease is mainly supportive and 
no specific anti-virals or vaccines are currently licenced1,113. It has 
proven difficult to achieve viral control without causing immunopa-
thology. In the 1960s, a trial using formalin-inactivated RSV failed 
to induce protection in vaccinated children but instead enhanced 
disease after natural infection with RSV114. An issue for vaccine 
development is the lack of correlates of protection coupled to the 
difficulties of lung sampling, which is crucial as protective immune 
responses to RSV will not necessarily be evident in the blood99,100. 
Despite these issues, several vaccines (subunit, live-attenuated, 
and vector vaccines) and routes of vaccination are currently  
being developed and tested113,115,116. In addition, the adjuvants used 
for triggering the innate immune responses during vaccination  
are an important avenue of ongoing research to find an effec-
tive vaccine. Passive immunisation has also proven useful, and  
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Palivizumab, a monoclonal antibody against RSV F protein, is 
given to high-risk infants to prevent infection and the development 
of severe disease117. Recently, an anti-RSV G monoclonal antibody 
was shown to be more effective than anti-F in preventing RSV  
disease in animal models118, but this has yet to be tested in humans. 
Finally, maternal vaccination against RSV is an interesting future 
avenue for generating protection in the first month of life in  
newborns via placental or breast milk transfer of maternal RSV-
specific antibodies to the infant119.

Conclusions
The understanding of the causes and mechanisms of RSV disease 
has increased tremendously over the last few years. However, 
many unknown factors are yet to be discovered. The influence of 
the microbiota and environment on the severity of disease as well 
as the understanding of the specific roles of individual lung and 
immune cells during the infection are still waiting to be unveiled. 
The knowledge of basic mechanisms will be instrumental for the 
understanding of disease progression, outcome, and severity and 
will more efficiently guide vaccine and therapy development in the 
future.
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