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Inferring the age of breeders 
from easily measurable variables
Meritxell Genovart1,2*, Katarina Klementisová1, Daniel Oro1, Pol Fernández‑López1, 
Albert Bertolero3 & Frederic Bartumeus1,4,5

Age drives differences in fitness components typically due to lower performances of younger and 
senescent individuals, and changes in breeding age structure influence population dynamics and 
persistence. However, determining age and age structure is challenging in most species, where 
distinctive age features are lacking and available methods require substantial efforts or invasive 
procedures. Here we explore the potential to assess the age of breeders, or at least to identify young 
and senescent individuals, by measuring some breeding parameters partially driven by age (e.g. egg 
volume in birds). Taking advantage of a long-term population monitored seabird, we first assessed 
whether age influenced egg volume, and identified other factors driving this trait by using general 
linear models. Secondly, we developed and evaluated a machine learning algorithm to assess the 
age of breeders using measurable variables. We confirmed that both younger and older individuals 
performed worse (less and smaller eggs) than middle-aged individuals. Our ensemble training 
algorithm was only able to distinguish young individuals, but not senescent breeders. We propose to 
test the combined use of field monitoring, classic regression analysis and machine learning methods in 
other wild populations were measurable breeding parameters are partially driven by age, as a possible 
tool for assessing age structure in the wild.

Age is one of the most important factors affecting vital rates of individuals1–4. Age differences in traits influencing 
fitness, have been documented across a wide range of wild animals1; for instance, individuals typically improve 
their breeding performance over their first few breeding attempts and then it stabilizes before declining in old 
individuals due to senescence2,5. Age- or stage-specific vital rates are the fundamental components used to 
estimate population growth rates, understand population dynamics and assess the viability of populations6–8. 
Additionally, even if commonly neglected, age structure is usually variable in space and time, with important 
consequences on short term populations dynamics.

Variations in age structure may be due to disturbances or perturbations that are asymmetric across the life 
cycle or that affect the vital rates of the population9. Remarkably, these disturbances, and thus changes in age-
structure, may be even more common under the actual human-caused global environmental change10. The 
importance of taking into account age structure may be especially relevant in long-lived species, where perturba-
tions in the environment can alter age-structure for years before stable dynamics are recovered11,12. Estimation 
of age-structure may be also highly relevant in incipient populations or in invasive processes, where populations 
are likely far from equilibrium. Knowledge of age structure and its dynamics in populations is therefore crucial 
for a full understanding of the life history and ecological processes of organisms.

Despite its importance, recording the age of breeding individuals and assessing breeding age structure in 
wild animal populations is challenging due to the common lack of external features indicating age. Although 
a few species have quantifiable physical changes as they become older, in most cases, external physical differ-
ences only allow to differentiate immature individuals from adults. These challenges limit our understanding 
of the dynamics of many wild animal species. In field studies, marking individuals when they are born allows 
population ecologists to monitor the age of individuals when resighted or recaptured and estimate important 
demographic parameters such as survival, recruitment or dispersal13. However, this method does not necessar-
ily reflect the real breeding age structure, due to the variability in the proportion between marked /unmarked 
individuals each year and cohort effects, the difficulty to distinguishing between breeders and prospectors, and 
the potential for differential dispersal by age14,15. Numerous attempts have been carried out to reliably estimate 
the age of individuals in the wild, and molecular biomarkers have recently been the focus of an increasing number 
of studies16–19. Telomere length, DNA damage markers or DNA methylation (i.e. an epigenetic modification) 
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are tools that open new exciting avenues of research, and as technological advances, it is likely that, especially 
DNA methylation, will become widely used in estimating population age structures20. However, these techniques 
require obtaining a blood sample of a sufficient number of individuals in the study population, which may rep-
resent a big challenge in the field.

Maternal age is known to affect breeding performance in many species21–23 and this may offer us the oppor-
tunity to assess the age of breeders in many taxa and study systems. In birds, as in other oviparous species, the 
egg contents reflect the age and condition of the mother at the time of egg laying; because developing embryos 
are completely dependent on these resources, egg size is positively related to nearly all offspring traits during all 
stages in their life cycle24. Moreover, egg size is in many cases, an easy to measure breeding performance trait so 
is a good candidate to help determine the age of individuals.

New quantitative methods are being developed for the analysis of ecological data. One example is random 
forests algorithms25,26, which are powerful statistical tools flexible enough to perform regression, classification, 
survival analysis, and unsupervised learning. Some key features make random forests suitable for ecological data 
analysis, such as high classification accuracy, the ability to model complex interactions among predictor variables, 
and the possibility to determine predictors’ importance and to incorporate missing values.

Here, we used random forest regression trees on data collected from a long-term monitoring (25-year) of 
colonial seabird in which egg characteristics are strongly affected by parental age27. Our aim was to develop 
and test a tool to estimate the age of breeding individuals, or at least to determine the proportion of young and 
senescent individuals in a population, by using easily measurable and observable variables in the field. We will 
also discuss the potential of using the same procedure to estimate the age of breeders and breeding age structure 
in other species and study populations.

Results
We analysed data collected across 25-years (1994–2017, N = 2100 nests; 2018, N = 95 nests). Population size and 
environmental conditions showed large variability over the study period (Fig. S1).

Factors driving mean and total egg volume.  The age of breeders ranged from 3 (age of sexual matu-
rity) to 28 years old (Fig. S2). Clutch size ranged from 1 to 5 eggs, and modal clutch size was 3 (60 % of the nests) 
(Fig. S3). Exploratory analyses of the data suggested that younger and older individuals performed worse (less 
and smaller eggs) (Figs. 1, S3, S4, S5).

When analysing data with a glm we observed that both mean and total egg volume in a clutch were best 
explained by the quadratic function of age (Tables S1–S2). When assessing other environmental factors explaining 
egg size variation, the best model showed that mean egg volume varied with clutch size, year and age in a quad-
ratic manner (Tables S3, S4). Mean egg volume significantly increased with food availability (Model “food +#” vs 
“#”, Table S3). When looking at the AIC of the more complex models, ANAO (annual NAO) or WNAO (winter) 
indices ranked almost equally, but simpler models seemed to perform slightly better when including WNAO 
index instead of including ANAO, with larger eggs when larger WNAO index values (Fig. 1) (Model “WNAO” 
vs “ANAO”, Table S3). Regarding total egg volume in a clutch, the best model showed that total egg volume also 
varied with year and age in a quadratic manner (Tables S5, S6). Total egg volume significantly increased with food 
availability (Model “food +#” vs “#”, Table S6) and younger and older individuals showed poorer performances 
(Table S6; Fig. 1). The analysis showed that WNAO has more influence than ANAO when explaining total egg 
volume variation (Model “WNAO” vs “ANAO” and Model “WNAO +#” vs “ANAO +#”, Table S6), with larger 
eggs when winter NAO showed higher positive values (Fig. 1).

Analytical tool to assess age from measurable variables.  The total variance explained by the best 
random forest regression model (M0) was very low (1.9%) (Table 1). Based on that, and on the previous results 
analysing egg volume with the linear models, we decided to focus our analysis on random forest classification 
models and assess age classes instead of age as a continuous variable. The decrease in number of age classes 
resulted in an increase of the overall accuracy of the models’ classification (Table 1). We selected the model 
with only 2 age classes (3–4 years old and 5+ years old) as the model with enough accuracy to be used in fur-
ther analyses (M4;71% accuracy). The four versions of the M4 algorithm taking different variables into account 
(M4.1–M4.4), showed similar accuracies (from 70 to 71%), but sensitivity and specificity seemed to slightly 
decrease and increase respectively when the year factor was considered (Tables 2, S7). All M4 model versions 
showed that total egg volume in a clutch is the most reliable predictor of age of breeders in the Audouin’s gull, 
followed by the mean egg volume per nest, except for version M4.3 where, once the climatic and environmental 
factors were excluded, year factor took more relevance (Fig. 2). Indeed, the factor ‘year’ was an important predic-
tor in all model versions, whereas population sizes, NAO indices, and food were weak predictors (Fig. 2). When 
exploring the percentage of error for each year, we observed that there was great variability, with years with a 
percentage of error lower than 5% (e.g. 2008 and 2012) and other years with an error higher than 35% (e.g. 2003 
or 2005) (Table S8). Also when exploring the percentage of error at different age classes we observed great vari-
ability, with really good accuracies at 3 and 4 years (6–8% of error) that sharply decrease with age (38% of error 
at 5 years old individuals) (Table S8).

Additional testing on accuracy when predicting age.  When using our tool to predict the age 
of breeders in 2018 at Barcelona harbour (N = 95 nests), we matched 76% and 73% of our age class guesses, 
with model versions M4.2 and M4.4 respectively. Differences from the proportion of breeders estimated 
by rings resighting (21%) and from our random forest tool (28%) were not statistically different (Fig.  S6; 
χ̃
2
= 1.325, df = 1, p < 0.250 ). The proportion of young breeders in 2018 in the seven colonies analysed varied 
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from a maximum of 45% at the Salines Sant Antoni (SA) and a 43% at the Punta de la Banya (BN), to a non-
detectable proportion of young breeders in Torrevieja or a 5% at Valencia harbour (Fig. S6). These differences in 
the proportion of young breeders among colonies were statistically significant and the accuracy of our tool was 
able to detect them (Fig. S6; χ̃2

= 106.89, df = 6, p < 0.0001).
We showed that the mean accuracy reached over 65% with relatively small sample sizes of the training dataset 

(N approximately 100 for both model versions) (Fig. S7).

Discussion
We developed and evaluated a machine learning algorithm to assess the age of breeders by using measurable 
and easy-to-obtain variables. In our case study, Audouin’s gull populations, we confirmed that both younger and 
older individuals performed worse (less and smaller eggs) than middle-aged individuals. However, the developed 
analytical tool allowed us only to identify nests of young breeders, i.e, those individuals 3 and 4 years old, and 
was not able to identify reproductive senescence (i.e. lower breeding performance in the oldest individuals)1,28.

We showed that non-negligible differences in the proportion of young breeders may appear at the spatial 
scale between colonies of Audouin’s gull. Younger breeders in this species, as in many others, perform badly 
and have lower reproductive capacity, which is usually related to their lack of experience in acquiring sufficient 
quality and quantity of resources, such as food, mates, and territories27,29,30. Determining these young breeders 
proportions, and also those appearing at the temporal scale, may be highly relevant for understanding popula-
tion dynamics and for guiding conservation actions of the study species. The global accuracy obtained with our 
algorithm for this species is not huge (71%), but we showed that this accuracy had been enough to compare 
observed proportions of young breeders.

Our algorithm was very reliable for identifying young breeders, although it failed ca 30% of the time when it 
classified some old individuals as young. The lack of accuracy and the incapability to detect reproductive senes-
cence may be due, at least partially, to the small sample size of senescent individuals used to train the algorithm. 
This small sample size was probably due to both fewer senescent individuals marked in the population but also 
to fewer senescent breeders in years of hard environmental conditions27. Other factors limiting our tool, in this 
case misclassifying older than 4 years old as young, may be the existence of a strong individual heterogeneity 
in breeding capabilities not related to age, that are then translated in differences in egg-related metrics31,32. 
Individual variation is critical for the evolution of traits by the means of natural selection and exists within any 
population of living organisms33,34. However, we still have far to go before we reach a deep understanding of the 

Figure 1.   Density plots of the raw data depicting the effects of (a) age and winter climatic conditions (Winter 
NAO) on total egg volume, (b) age and winter climatic conditions (Winter NAO) on mean egg volume (c) age 
and food availability per capita on total egg volume and (d) age and food availability per capita on mean egg 
volume. Egg volume in cm3 . Young: 3–4 years old, middle-aged: 5–19 years old, and old individuals: > 20 years 
old.
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Figure 2.   Relative importance of predictor variables (Gini Index) for the 2-age class model (3–4 years old/5+ 
year old gulls) on the four random forest classification models (M4; see “Methods”). VT total egg volume per 
nest, VM mean egg volume per nest, Popsize total population size of breeding pairs of Audouin’s and Yellow-
legged gulls, La_Popsize population size of Audouin’s gull only, Food proxy of food availability, Foodpc proxy of 
per capita food availability, WNAO winter NAO Index, ANAO annual NAO Index. Values are aggregated from 
3000 loop bootstrap of subsampling dataset used due to unbalanced age classes. Sample size: 2100 nests. Values 
of Gini Index are relative and comparable only within each figure part (a, b, c or d).

Table 1.   Structure of the developed random forests models (M). We first developed a regression random 
forest algorithm, considering age as a continuous variable (M0), and subsequent random forests took age as a 
factor variable to set four age-classes divisions (M1–M4).

Age variable Variable characteristics Variance explained

M0:Continuous 3–28 1.9%

– – Accuracy

M1: 14 age classes 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16+ 18%

M2: 6 age classes 3, 4, 5, 6, 7, 8–15, 16+ 31%

M3: 3 age classes 3–4, 5–15, 16+ 54%

M4: 2 age classes 3–4, 5+ 71%

Table 2.   Averaged outputs of 2 age classes random forest analyses for 4 different versions of predictor 
combinations. Accuracy, sensitivity and specificity are model evaluation values. Parameters included in each 
model are: (1) Model M4.1, mean egg volume per nest (VM), total egg volume per nest (VT), clutch size 
(Clutch), year, fish landings (Food), fish landings available per capita (Foodpc), population size of Audouin’s 
gulls breeding pairs (LaPopsize), total population size of breeding pairs (Audouin’s gulls plus Yellow-legged 
gulls) (Popsize), winter North Atlantic Oscillation index (WNAO) and annual North Atlantic Oscillation index 
(ANAO), (2) Model M4.2, same as M4.1 without year factor, (3) Model M4.3, mean egg volume per nest, total 
egg volume per nest, clutch size and year and (4) Model M4.4, same as M4.3 without year factor.

All predictors All predictors except Year Year and egg related predictors Only egg related predictors

(M4.1) (M4.2) (M4.3) (M4.4)

Accuracy (%) 71 71 70 70

Sensitivity (%) 74 74 69 76

Specificity (%) 69 67 71 64
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causes and consequences of individual heterogeneity33. In our case study, perhaps identifying and understanding 
some individual information or traits related to individual heterogeneity (e.g cohort effects or egg coloration) and 
including them in the algorithm in the future, may help us to improve its accuracy. However, given the criticality 
and difficulty of assessing age in Audouin’s gull populations, we consider that the current approach offers a good 
balance between effort and benefits.

Assessing age of breeding individuals in wild populations is critical, and several approaches have been devel-
oped to solve this issue. Marking individuals when born allows researchers to monitor the age of individuals 
when resighted or recaptured, and even estimate important demographic parameters13. However, due to a pos-
sible unequal marking effort between years or breeding sites, resighting of marked individuals is in most cases 
not useful to estimate and compare age structures. Additionally, to assess breeding age structure you should also 
not only see the marked individual but also confirm its breeding status i.e. excluding prospectors. As techno-
logical advances broaden the scope of genomic analyses, it is likely that DNA methylation based age estimators 
will become widely used in determining age in wild populations20,23. However, nowadays epigenetic clocks still 
need to be developed across most species and individuals need to be captured and blood or tissue be sampled.

Maternal age is known to affect offspring performance in many species, with important ecological and evo-
lutionary consequences21,22,35. This maternal age effect on breeding performance may offer us the opportunity to 
assess the age of breeders in many taxa and study systems through classification algorithms. The sole requirements 
for developing a classification algorithm for determining age are: (1) to have a monitored breeding population 
with some known aged individuals and (2) to identify measurable breeding parameters affected by maternal age. 
The way to determine the age of individuals and monitoring protocols could be very diverse and will depend on 
the species, the study system and the availability of human and logistic resources. This need for prior individual 
monitoring data of known age breeders for training the algorithm may be seen as a possible caveat of the useful-
ness of our approach. Even if individual monitoring it may be demanding in terms of resources, may generate 
scientific knowledge of high value in all major fields of biology36,37, and age-specific vital rates are the fundamental 
components used to estimate population growth rates and understand population dynamics. Therefore we advo-
cate, when possible, for a monitoring program when evaluating population dynamics, especially in prospective 
population modelling (see also38). Additionally, as we showed, even if ours was a very large dataset, it seems that 
relatively small sample sizes would be enough for training the algorithm. The second requirement is the need to 
identify and measure breeding parameters affected by maternal age. There are many measurable characteristics 
affected by maternal age that could be used across taxa; for example, egg size, weight at birth, litter and offspring 
size or breeding success (this study39–46). Several examples would fit the two mentioned requirements. As in our 
case study, most colonial seabirds offer great opportunities to develop and apply this analytical tool, as many spe-
cies allow marking many individuals at birth and monitor breeding performance. However, many other taxa can 
also meet these requirements, for example, birds and mammals breeding in nest boxes that can be manipulated 
with relative ease, or other species easy to capture and to monitor individually.

In our case study, the algorithm has been able to determine the age of a very small fraction of the population 
(individuals 3 and 4 years old) and with an accuracy of about 70%. Accuracy of classification algorithms will 
depend on species life history strategies and will increase with the strength of the maternal age effect. Addition-
ally, caution should be taken when using trained algorithms based on other populations subject to particularly 
different natural selection pressures on life history traits. Another feature to take into account, is that this tool 
allows to assess age and age structure of the breeding population. In some cases, other complementary approxi-
mations will have to be carried out to obtain information about the non-breeding fraction of the population 
(i.e. immatures and individuals skipping reproduction). On the other side, forthcoming improved capacities for 
obtaining biometrics in the field, for example related with egg coloration or egg contents47–50, may be incorporated 
to improve power and accuracy of the algorithms.

Conclusions
Our analytical tool failed to assessed the breeding age in our study species and only provided a way to estimate 
the proportion of young individuals in the breeding population. However, having an analytical tool to assess 
breeders’ age in wild populations may be a big step towards the understanding of population dynamics and 
for guiding biodiversity management. Thus we consider timely and relevant to incorporate any new tools and 
approaches that may allow us to estimate this critical demographic parameter to understand short-term popula-
tion dynamics, and improve our long-term forecasting. The accuracy and usefulness of the approach will depend 
on the strength of the maternal age effect in the species and the ease with which monitoring can be carried out 
within the studied populations. Overall we propose the combined use of individual monitoring, classic regres-
sion analysis, and random forest methods, in other species to determine its utility to assess age and age structure 
in wild populations.

Methods
Study species.  The Audouin’s gull Larus audouinii is a long-lived colonial seabird. The species is monoga-
mous, exhibits age-related assortative mating, and is a bet-hedger, i.e. the species reduces the temporal variance 
in fitness at the expense of lowered arithmetic mean fitness27. Birds reach sexual maturity at 3 years old, annu-
ally lay one clutch with 1–5 eggs (modal value = 3), although few chicks survive to the fledgling age, except in 
good years when the strength of density-dependence is low27. Most recruitment to breeding population occurs 
when individuals reach sexual maturity or the year after, i.e. at 3–4 years old and it decreases sharply with age 
thereafter51. These 3–4 years old birds are young and inexperienced breeders, and would be named as “young” 
hereafters. Breeding colonies mostly occur in the western Mediterranean (80% of the total world population)51. 
Although individuals tend to show colony-site fidelity, dispersal between sites is common52,53, especially when 
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sites are perturbed15,54. The species has been going through some drastic changes during last 40 years; first 
declared endangered around the 1980s, then “Least concern” due to a dramatic exponential growth in the Punta 
de la Banya colony and now in regression and again in the conservation spotlight51.

Population monitoring.  The long-term individual monitoring started in 1988 in the Punta de la Banya 
colony (40◦ 33 ′  36.5′′ N 0 ◦ 39 ′  44.5′′ E, Spain) and has continued until present day in this colony and at recently 
colonized sites (i.e. Sant Carles de la Ràpita, Tarragona port, and Barcelona port). Each breeding season, we 
marked a proportion of fledglings using alphanumeric plastic rings, which can be later resighted from the dis-
tance using spotting telescopes. Since 1994 to 2018, we also monitored nests of marked individuals i.e. of known 
age, until the clutch was completed, and measured the eggs. Audouin’s gulls, like many bird species, show assor-
tative mating27,55,56, thus we assumed that the age of a non-marked partner was very close to that of the marked 
bird. We also measured eggs and calculated their volume in nests from which parental age was unknown. We 
calculated egg volume using the formula: Volume (cm3 ) = 0.000476*length*width257,58. Finally, we counted the 
annual number of total nests as a proxy of population density51, and we did the same for Yellow-legged gulls (L. 
michahellis), the main competitor for food (see below).

Environmental data.  As in most age-related traits, egg volume and clutch size may also depend on envi-
ronmental conditions changing each breeding season. To incorporate this variability, we annually recorded envi-
ronmental data that may affect egg parameters in Audouin’s gulls. Fish trawling discards can represent over 
70% of biomass of the diet during the breeding season59. Based on previous studies, we used the statistics of 
fish landings in April from the closest and largest harbor as a proxy for food availability when laying. We also 
calculated a per capita index of food availability (i.e. considering food density-dependence) by dividing fish 
landings by the number of Audouin’s and Yellow-legged gulls breeding in the study area. Food per capita val-
ues were standardized using z-transformation. Large-scale climatic indexes, such as the NAO (North Atlantic 
Oscillation), account for major variations in weather and climate around the world60. In the case at hand, the 
NAO index, especially during December–March (WNAO) is a proxy of environmental conditions affecting egg 
volume (authors unpublished data).

Assessing factors driving egg volume.  We analysed egg data from individuals of known age from 1994 
to 2017. To develop a tool to infer parental age using egg volume in a clutch, we first assessed whether egg volume 
varied with the age of birds and identified the best age function or categorization explaining mean egg volume 
and total egg volume variation in a clutch. We tested age as a linear variable (Age) (to detect an improvement 
with age), age as a quadratic function (Age2) (to detect lower performance of young and old individuals) and 
the logarithmic function of age (LogAge) (to detect a lower performance only on young individuals); based on 
the graphical visualization of breeding parameters (Figs. S1–S5) we also used some age categorization; “Age14”, 
fourteen classes (ages from 3 to 15 were each treated as a separate class and all ages older than 16 were pooled in 
a single old class); “Age6”, six classes (ages from 3 to 6 were each treated as a separate class, ages from 7 to 15 were 
pooled a single Middle-aged class and ages older than 16 were pooled in a single Old class); “Age3”, three classes 
(ages 3 and 4 were pooled in a single Young class, ages from 5 to 15 were pooled in a Middle-aged class and ages 
older than 16 were pooled in an Old class); and “Age2”, two classes (ages 3 and 4 pooled as Young class and older 
than 5 pooled as Not Young). In each model we also included clutch size as a fixed factor, as it was previously 
showed to affect mean egg volume57,59. Then we used the best age function or structure to also identify the role of 
several environmental drivers. To this aim, we developed several general linear models, with mean egg volume as 
the dependent variable and several explanatory continuous covariates: annual North Atlantic Oscillation Index 
(ANAO), winter North Atlantic Oscillation index (WNAO), per capita food availability (Foodpc), as possible 
covariates, and year (Year) and clutch size (Clutch) as possible discrete fixed variables (i.e. factors). Clutch size 
was also included in each model. Only biologically meaningful models were tested, i.e. not all possible combina-
tions of variables and their interactions were considered. The interactions between age and the annually chang-
ing variables (Year, Food, ANAO or WNAO) were also tested to explore whether gulls of different age react to 
annual changes differently. As the best age function explaining egg variation was the quadratic function (see 
“Results”), we also developed some models with the age structure that showed best accuracy at determining age 
with the Random Forest analysis (see below and results). The analyses were performed in R software version 
4.1.261 and RStudio62 using glm function from the stats package. Model selection was performed using Akaike 
Information Criterion (AIC).

Analytical tool to assess age from measurable variables.  We used random forests to predict the age 
of breeding birds using easily measurable and/or obtainable variables. We analysed egg data from individuals 
of known age from 1994 to 2017. As random forests can handle correlations among variables, we included all 
the parameters that could be playing a role: total egg volume per nest (sum of all egg volumes in a clutch) (VT), 
mean egg volume per nest (VM), ANAO index, WNAO index, population size of Audouin’s gulls (La_Popsize), 
total population size of gulls (Popsize), food availability (Food) and food availability per capita (Foodpc) as 
covariates, and clutch size (5 classes) and year (24 classes) as discrete explanatory variables (i.e. factors). We first 
used a random forest regression algorithm, considering age as a continuous variable25 (Table 1, see model M0). 
Based on observed differences (Figs. S3–S5) and given that the best age function explaining egg variability was 
the quadratic function (see “Results”), subsequent random forests took age as a factor variable (random forest 
classification models), and tried to differentiate groups with lower performance (young and old) from mid-
dle-aged individuals. As in the previous analyses, we established four different age class divisions or groupings 
(Table 1, models M1–M4). The different age structured models are defined as follows, M1 (“Age14”): fourteen 
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classes—ages from 3 to 15 were each treated as a separate class and all ages of 16+ were pooled in a single class 
‘Old’; M2 (“Age6”): six classes—ages from 3 to 6 were each treated as a separate class, ages from 7 to 15 were 
pooled a single class ‘Middle-aged’ and ages 16+ were pooled in a single class ‘Old’; M3 (“Age3”): three classes—
ages 3 and 4 were pooled in a single class ‘Young’, ages from 5 to 15 were pooled in a class ‘Middle-aged’ and ages 
of 16+ were pooled in a class ‘Old’; and M4 (“Age2”): two classes—ages 3 and 4 pooled as class ‘Young’ and 5+ 
pooled as class ‘Others’. To avoid biases caused by different sample sizes of age classes (Fig.  S2), subsets of data 
were sampled from the given class to create a balanced dataset for testing. A bootstrap (3000 iterations) was then 
applied to this subset to ensure the usage of all data available, as well as avoiding creation of biased subsets. Final 
results were attained by aggregating the results of all bootstraps. The best age structured model (M4, see Table 1 
and results below) was then further expanded into four model versions including different variables: M4.1) all 
the variable predictors VT, VM, ANAO, WNAO, LaPopsize, Popsize, Food and Foodpc as covariates, and clutch 
and year factors; M4.2) as M4.1 but factor year omitted from the model; M4.3) factor year and egg measurement 
predictors (VT, VM and clutch) included; and M4.4) only egg measurement predictors included (VT, VM and 
clutch). These model versions were tested for assessing their accuracies and the applicability of the approach in 
case no environmental data was available (M4.3), when we had no information of the year in the training data 
set (M4.2) or only had data on egg characteristics (M4.4). Accuracy, sensitivity and specificity percentages were 
calculated for each different model. Accuracy was obtained by converting the out-of-bag error rate (OOB63 into 
an accuracy percentage (i.e., 100 * (1 − OOB)). Sensitivity measures the proportion (converted into percent-
ages in our case) of positives correctly classified, and specificity measures the proportion of negatives correctly 
classified; positive and negative make reference here to the condition of belonging to a given age class. The Gini 
Index63 values for each of the predictors for each model were also obtained. These values are not comparable 
between different versions of the model, but within each version and they show the relative importance of each 
predictor. We further explored the performance of our algorithm by inspecting the data of misjudged nests. 
We evaluated the misclassified individuals according to model M4 (all predictors accounted). The model was 
trained several times in a bootstrap loop (3000 iterations) with different training sets. In each of these iterations, 
the resulting version of the model was used to predict the age class of each individual in the original dataset. In 
order to check which individuals were consistently misclassified across different training sets, we selected the 
individuals mismatched in at least half (i.e. 1500) of these models. We then estimate the percentage of error for 
each year and age class. Random Forest analysis was performed in R software61 version 4.1.2 (R Core Team 2017) 
in RStudio62 and using the randomForest package v.4.7-1.164, the dplyr package v.1.0.965 and caret package v.6.0-
9266. R code script can be found in the Appendix in the Supporting information file.

Additional testing on tool’s accuracy and applicability.  To further evaluate the accuracy and appli-
cability of this analytical tool, we used the trained random forest models to predict the age of breeders in one 
near colony, Barcelona’s harbour in 2018, a year that was not included to train the algorithm, and then used the 
results to compare spatial differences in age structure among colonies that year. To this purpose, we used model 
versions (M4.2) and (M4.4). We first compared the predicted proportion of young breeders estimated with our 
random forest tool with the one estimated from ring resightings of individuals of known age. We also estimated 
the proportion of young breeders at other colonies in 2018 based on ring resightings (Punta de la Banya, Castelló 
harbour, Salines Sant Antoni, Tarragona harbour, Torrevieja and Valencia harbour). For all colonies, we only 
considered resightings of those individuals showing breeding behaviour (i.e. alarm calls, incubating or observed 
with chicks) to avoid including prospectors or individuals non breeding. We then tested if there were differences 
among proportion of young breeders among colonies and if our accuracy was good enough for detecting these 
differences among colonies. Differences were tested with Chi square tests.

Our algorithm was based on a rich long-term monitoring database. To further assess the future applicability 
of the developed tool we also analysed changes in accuracy depending on the sample size of the training dataset. 
For this assessment we also used model versions (M4.2) and (M4.4).

Data availability
The datasets used and analysed during the current study are available from the corresponding author on reason-
able request.
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