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Abstract

A complete understanding of biological processes requires synthesizing information
across heterogeneous modalities, such as age, disease status, or gene expression.
Technological advances in single-cell profiling have enabled researchers to assay
multiple modalities simultaneously. We present Schema, which uses a principled
metric learning strategy that identifies informative features in a modality to synthesize
disparate modalities into a single coherent interpretation. We use Schema to infer
cell types by integrating gene expression and chromatin accessibility data;
demonstrate informative data visualizations that synthesize multiple modalities;
perform differential gene expression analysis in the context of spatial variability; and
estimate evolutionary pressure on peptide sequences.

Introduction
High-throughput assays can now measure diverse cellular properties, including tran-

scriptomic [1–3], genomic [4, 5], epigenomic [6–8], proteomic [9], functional [5], and

spatial [10] data modalities. Excitingly, single-cell experiments increasingly profile mul-

tiple modalities simultaneously within the same experiment [5, 6, 9, 10], enabling re-

searchers to investigate covariation across modalities; for instance, researchers can

study epigenetic gene regulation by correlating gene expression and chromatin accessi-

bility across the same population of cells. Importantly, since the underlying experi-

ments provide us with multimodal readouts per cell, we do not need to integrate

modalities across different populations of cells [11–17].

Simultaneous multimodal experiments present a new analytic challenge of synthesiz-

ing agreement and disagreement across modalities. For example, how should one inter-

pret the data if two cells look similar transcriptionally but are different epigenetically?

Moreover, given the rapid biotechnological progress that continues to enable novel

measurement modalities and easier simultaneous multimodal profiling, a multimodal

analysis paradigm should scale to massive single-cell datasets, be robust to noise and

sparsity in the data, and be able to synthesize two or more arbitrary modalities in an
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interpretable way. Many existing methods, however, struggle with scalability, overfit-

ting, or are specialized to specific multimodal tasks (such as just spatial transcriptomics

[18–20] or only gene set estimation [21, 22]).

We therefore present Schema, a method that synthesizes multimodal data based on a

conceptual framework that accommodates any number of arbitrary modalities. Schema

draws from metric learning [23–26], the subfield of machine learning concerned with

computing an accurate measure of similarity (equivalently, distance) on a dataset. Our

critical insight is to interpret each modality as describing a measure of distance be-

tween the underlying cells; we can then newly formulate the synthesis problem as rec-

onciling the information implied by these different distance measures.

Schema achieves this multimodal synthesis through an interpretable and principled

quadratic programming formulation to compute the optimal reweighting of a modal-

ity’s features that maximizes its agreement with other modalities. Thus, a key advantage

of our approach is that it provides feature weights that enable a researcher to under-

stand where different modalities agree and where they do not. Our constrained

optimization approach also improves Schema’s robustness to outliers and to overfitting.

In this study, we demonstrate the generality and utility of Schema. We synthesize

RNA-seq and ATAC-seq modalities from multimodal data on 11,296 mouse kidney

cells to infer cell types, with Schema enabling an 11% increase in accuracy over previ-

ously described approaches. On a dataset of 62,468 spatially resolved transcriptomes in

the mouse cerebellum, we use Schema’s feature selection capabilities to identify genes

differentially expressed between sparsely and densely packed granule cell neurons. We

demonstrate how UMAP and t-SNE visualizations can be made more informative by

infusing additional information, like cellular age, into the visualizations. Going beyond

gene expression, we perform a feature selection analysis on a dataset of 62,858 T cells

to estimate the locations and residues in the T cell receptor’s complementarity-

determining region 3 (CDR3) important to its binding specificity. Schema is thus de-

signed to support the continually expanding breadth of single-cell technologies while

retaining the power, tunability, and interpretability required for effective exploratory

analysis.

Results
Multimodal synthesis as metric learning

Before the advent of multimodal single-cell experiments, computational analysis has fo-

cused on variation within a single modality. In contrast, analysis of simultaneous multi-

modal single-cell experiments (where two or more modalities are available per cell)

critically requires reasoning about information across modalities in a mutually consist-

ent way. Our key intuition is that each modality gives us information about the bio-

logical similarity among cells in the dataset, which we can mathematically interpret as a

modality-specific distance metric. For example, in RNA-seq data, cells are considered

biologically similar if their gene expression profiles are shared; this may be proxied as

the Euclidean distance between normalized expression vectors, with shorter distances

corresponding to greater similarity.

To synthesize these distance metrics, we draw inspiration from metric learning (Add-

itional file 1: Text S3). Given a reference modality, Schema transforms this modality
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such that its Euclidean distances agree with a set of supplementary distance metrics

from the other modalities, while also limiting the distortion of the original reference

modality. Analyses on the transformed data will thus incorporate information from all

modalities (Fig. 1). For instance, with RNA-seq data as the reference modality, Schema

can transform the data so that it incorporates information from other modalities but

limits the distortion from the original data so that the output remains amenable to

standard RNA-seq analyses (e.g., cell-type inference, trajectory analysis, and

visualization).

In our approach, the researcher starts by designating one of the modalities as the pri-

mary (i.e., reference) modality, consisting of observations that are mapped to points in

a multi-dimensional space. In the analyses presented here, we typically designate the

most informative or high-confidence modality as the primary or the reference modality,

with RNA-seq being a frequent choice (Discussion). The coordinates of points in the

primary modality are then transformed using information from secondary modalities.

Importantly, the transformation’s complexity is constrained by limiting the distortion

of the primary modality below a researcher-specified threshold. This acts as a

regularization, preventing Schema from overfitting to other modalities and ensuring

that the high-confidence information contained in the primary modality is preserved.

We found this constraint to be crucial to successful multimodal syntheses. Without it,

an unconstrained alignment of modalities using, for instance, canonical correlation ana-

lysis (CCA), a common approach in statistics for inferring information from cross-

covariance matrices, or autoencoders, a deep learning approach for mapping multiple

datasets to a shared latent space [27–30], is prone to overfitting to sample-specific

noise, as we show in our results.

Fig. 1 Integration of simultaneously assayed modalities using Schema. a Schema is designed for assays
where multiple modalities are simultaneously measured for each cell. The researcher designates one high-
confidence modality as the primary (i.e., reference) and one or more of the remaining modalities as
secondary. b Each modality’s observations are mapped to points in a multi-dimensional space, with an
associated distance metric that encapsulates modality-specific similarity between observations. Across the
three graphs, the dashed and dotted lines indicate distances between the same pairs of observations. c
Schema transforms the primary modality space by scaling each of its dimensions so that the distances in
the transformed space have a higher (or lower, as desired) correlation with corresponding distances in the
secondary modalities; arbitrary distance metrics are allowed for the latter. Importantly, the transformation is
provably guaranteed to limit the distortion of the original space, thus ensuring that information in the
primary modality is preserved. d The new point locations represent information synthesized from multiple
modalities into a coherent structure. To compute the transformation, Schema weights features in the
primary modality by their importance to its objective; we have found this feature selection aspect very
useful in biological interpretation of its results
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To see how Schema’s transformation synthesizes modalities, consider the case where

the primary dataset is gene expression data. While the points close in Euclidean space

are likely to be biologically similar cells with shared expression profiles, longer Euclid-

ean distances are less informative. Schema’s constrained optimization framework is de-

signed to preserve the information contained in short-range distances, while allowing

secondary modalities to enhance the informativity of longer distances by incorporating,

for example, cell-type metadata, differences in spatial density, or developmental rela-

tionships. To facilitate the representation of complex relationships between modalities,

arbitrary distance metrics and kernels are supported for secondary modalities.

Schema’s measure of inter-modality alignment is based on the Pearson correl-

ation of distances, which is optimized via a quadratic programming algorithm, for

which further details are provided in “Methods.” An important advantage of Sche-

ma’s algorithm is that it returns coefficients that weight features in the primary

dataset based on their agreement with the secondary modalities (for example,

weighting genes in a primary RNA-seq dataset that best agree with secondary de-

velopmental age information). These feature weights enable greater interpretability

into data transformations that is not immediately achievable by more complex,

nonlinear transformation approaches [27–33]. We demonstrate this interpretability

throughout our applications of Schema.

Inferring cell types by synthesizing gene expression and chromatin accessibility

We first sought to demonstrate the value of Schema by applying it to the increasingly

common and broadly interesting setting in which researchers simultaneously profile

the transcriptome and chromatin accessibility of single cells [6]. Focusing on cell type

inference, a key analytic step in many single-cell studies, we applied Schema on a data-

set of 11,296 mouse kidney cells with simultaneously assayed RNA-seq and ATAC-seq

modalities and found that synthesizing the two modalities produces more accurate re-

sults than using either modality in isolation (Fig. 2f; Additional file 1: Figure S3).

With RNA-seq as the primary (i.e., reference) dataset and ATAC-seq as the second-

ary, we applied Schema to compute a transformed dataset in which pairwise RNA-seq

distances among cells are better aligned with distances in the ATAC-seq peak counts

data while retaining a very high correlation with primary RNA-seq distances (≥ 99%,

“Methods”). We then clustered the cells by performing Leiden community detection

[34] on the transformed dataset and compared these clustering assignments to the Lei-

den clusters obtained without Schema transformation. We measured the agreement of

these fully automated clusterings with expertly defined ground truth cluster labels

(from Cao et al. [6]), quantifying this agreement with the adjusted Rand index (ARI),

which has a higher value if there is greater agreement between two sets of labels. Lei-

den clustering on Schema-transformed data better agrees with the ground truth anno-

tations of cell types (ARI of 0.46) than the corresponding Leiden cluster labels using

just RNA-seq or ATAC-seq datasets individually (ARIs of 0.40 and 0.04, respectively,

Fig. 2f). Here, Schema facilitated a biologically informative synthesis despite limitations

of data quality or sparsity in the ATAC-seq secondary modality. We observed that

using only ATAC-seq data to identify cell types leads to poor concordance with ground

truth labels (Additional file 1: Figure S3A), likely because of the sparsity of this
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modality (for example, only 0.28% of the peaks were reported to have non-zero counts,

on average); this sparsity was also noted by the original study authors.

To further analyze why combining modalities improves cell type clustering, we ob-

tained Leiden cluster labels using either the RNA-seq or the ATAC-seq modalities indi-

vidually. We then evaluated these cluster assignments by iterating over subsets of the

data, each set covering only a pair of ground truth cell types and used the ARI score to

quantify how well the cluster labels distinguished between the two cell types. While

RNA-seq clusters have higher ARI scores overall, indicating a greater ability to differen-

tiate cell types, ATAC-seq does display a relative strength in distinguishing proximal

tubular (PT) cells from other cell types (Fig. 2a). PT cells are crucial to kidney function,

with the specific PT cell sub-types playing distinct roles in, for instance, glucose re-

absorption [35]. They are also the most numerous cells in this dataset and many of the

misclassifications in the RNA-seq based clustering relate to these cells (Fig. 2b–d).

When the two modalities are synthesized with Schema, a significant number of these

PT cells are correctly assigned to their ground truth cell types (one-sided binomial test,

p = 6.7 × 10− 15), leading to an overall improvement in clustering quality (Fig. 2e). Fur-

thermore, upon analyzing Schema’s feature selection output, we found that the genes it

up-weighted in the primary RNA-seq modality were differentially expressed in PT cells

(one-sided t-test, FDR q < 0.01 for each of the three PT cell types), thus emphasizing

Fig. 2 Synthesis of RNA-seq and ATAC-seq information leads to more accurate cell type inference. a Leiden
clustering [34] of per-cell profiles results in greater agreement (measured as the adjusted Rand index, ARI)
with ground truth cell type labels when featurizing cells by RNA-seq profiles alone compared to featurizing
with ATAC-seq profiles alone. ATAC-seq does provide relatively more information when distinguishing PT
cells. b Ground truth labels from Cao et al. [6]. c–e To assess the ground truth accuracy of Leiden
clustering, we assigned each cluster to the cell type most frequently seen in the ground truth labels of its
members. Clusters where labels are more mixed will thus have lower accuracy. Clustering on RNA-seq
profiles alone (c,d) results in many PT cells assigned to such clusters. Schema synthesis of RNA- and ATAC-
seq features, followed by Leiden clustering (e), results in significantly greater concordance with ground
truth on PT cell types when compared to Leiden clustering on the RNA-seq features alone (one-sided
binomial test, p = 6.7 × 10− 15). f ARIs of clusters from Schema-synthesized data are higher, especially for PT
cells. Synthesizing the modalities using canonical correlation analysis (CCA), totalVI (an autoenconder-based
deep learning approach), or a “pseudocell” approach described in the original study (see Methods) results
in lower ARI scores
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the RNA-seq subspace where support from the secondary modality signal was stron-

gest. These genes (the top hits are Pnisr, Ankrd11, and Kmt2c) are enriched for regula-

tion of macromolecule metabolic process (GO:0060255, FDR q = 0.0103) and regulation

of nitrogen compound metabolic process (GO:0051171, FDR q = 0.0133).

Schema’s constrained data synthesis outperforms unconstrained approaches

In general, synthesis of multimodal data can also be done by statistical techniques like

canonical correlation analysis (CCA) or deep learning architectures that represent mul-

tiple modalities in a shared latent space [27–33]. A key conceptual advance of Schema

over these approaches is its emphasis on limiting the distortion of the high-confidence

reference modality, allowing it to extract signal from the lower-confidence secondary

modalities without overfitting to their noise and artifacts. Intuitively, the synthesis of

two modalities requires the identification of a subspace (or latent space) in each modal-

ity that aligns well with the other. Due to noise and artifacts, an unconstrained ap-

proach may overfit by identifying a pair of subspaces that align well but are biologically

uninformative. In contrast, Schema’s constrained optimization formulation, combined

with the use of a high-confidence modality as the primary, ensures that any possible

alignment will use only a biologically informative subspace of the primary modality and

thus guides the quadratic programming optimizer towards correspondingly informative

subspaces in the other modalities. To demonstrate the importance of this constrained

approach, we evaluated the performance of CCA and totalVI [30] in integrating the

RNA-seq and ATAC-seq modalities (Fig. 2f). We applied CCA to synthesize the two

modalities and performed Leiden clustering on the resulting dataset, finding its overlap

with the ground truth labels (ARI of 0.31) to be lower than that from Schema’s synthe-

sis (0.46). Indeed, this is a lower ARI than is achievable just with RNA-seq data (0.40),

indicating that the CCA-based synthesis may be overfitting to the sparse and noisy

ATAC-seq data.

To evaluate an autoencoder-based synthesis of these modalities, we applied scVI [27]

and totalVI to compute per-modality and dual-modality latent space representations,

respectively (Methods). We performed Leiden clustering in the autoencoder latent

spaces and evaluated the clustering’s overlap with ground truth labels. We first verified

that the single-modality latent space representations did lead to Leiden clusters of com-

parable quality as had previously been observed from Leiden clustering on the raw data

(ARIs of 0.365 and 0.038 for scVI-generated representations of RNA-seq and ATAC-

seq data, respectively). However, the dual-modality shared-space representation from

totalVI produced a Leiden clustering (Additional file 1: Figure S3B) that had a low

overlap with the ground truth (ARI of 0.0043). We hypothesize that the sparsity and

low signal-to-noise ratio here in the ATAC-seq modality led totalVI to a latent space

representation that corresponds to low biological-information subspaces of the two

modalities, rather than their respective high information subspaces. We note that we

were able to achieve better performance with totalVI when applying the same proced-

ure to a synthetic, less-noisy secondary modality consisting of partially randomized

RNA-seq observations (Methods).

While these CCA and autoencoder results were likely due to overfitting, the Schema-

based synthesis constrains the ATAC-seq modality’s influence, enabling us to extract
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additional signal provided by ATAC-seq while preserving the rich information provided

by the transcriptomic modality. We believe that this regularization offered by Schema’s

constrained optimization formulation is a key advantage that will be crucial in multi-

modal single-cell data synthesis. We also note that Schema offers additional advantages:

unlike CCA, it can incorporate more than two modalities simultaneously and, unlike

totalVI, its synthesis is interpretable, revealing a more accurate characterization of PT

cells.

Schema highlights secondary patterns while preserving primary structure

Another powerful use of Schema is to infuse information from other modalities into

RNA-seq data while limiting the data’s distortion so that it remains amenable to a

range of standard RNA-seq analyses. Since widely used visualization methods such as

UMAP [36] do not allow a researcher to specify aspects of the underlying data that they

wish to highlight in the visualization, we sought to apply Schema to improve the infor-

mativity of single-cell visualizations. We leveraged Schema to highlight the age-related

structure in an RNA-seq dataset of Drosophila melanogaster neurons [3] profiled across

a full lifespan, while still preserving most of the original transcriptomic structure. We

chose RNA-seq as the primary modality and temporal metadata (cell age) as the sec-

ondary modality, configuring Schema to maximize the correlation between distances in

the two while constraining the distortions induced by the transformation (Methods).

We then visualized the transformed result in two dimensions with UMAP.

While some age-related structure does exist in the original data, Schema-based trans-

formation of the data more clearly displays a cellular trajectory consistent with bio-

logical age (Fig. 3). Importantly, revealing this age-related structure required only a

limited distortion of the data, corresponding to relatively high values (≥ 0.99) of the

minimum correlation constraint (Fig. 3c).

Analysis of Schema’s feature selection indicated an up-weighting of genes differen-

tially expressed at the start or end of the aging process (Fig. 3e), with genes implicated

in cell organization/biogenesis [37] (e.g., Rm62, CG5010 and IscU) active at the start

while ribosomal genes like Rpl22 and Rpl23A were active at the end. We also con-

firmed that there was a significant overlap between Schema’s highest-ranked genes and

those found by a standard differential expression test between timepoints (one-sided bi-

nomial test, FDR q < 10− 21 for the 1-, 30-, and 50-min subsets). To additionally verify

that Schema was infusing additional age-related structure into RNA-seq data, we per-

formed a diffusion pseudotime analysis of the original and transformed datasets and

found that the Spearman rank correlation between this pseudotime estimate and the

ground truth cell age increased from 0.365 in the original data to 0.405 and 0.436 in

the transformations corresponding to minimum correlation constraints of 0.999 and

0.99, respectively.

We note that the constrained optimization of Schema was again important to retain-

ing biological signal during the synthesis: in comparison, an unconstrained synthesis by

CCA led to a lower pseudotime correlation (0.059) than seen in the original RNA-seq

dataset; the corresponding CCA-based UMAP visualization was also less clear in con-

veying the cellular trajectory (Additional file 1: Figure S6). Schema thus enables visuali-

zations that synthesize biological metadata, while preserving much of the distance-
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related correlation structure of the original primary dataset. With Schema, researchers

can therefore investigate single-cell datasets that exhibit strong latent structure (e.g.,

due to metadata like age or spatial location), infusing this secondary information into

the primary RNA-seq modality. We recommend specifying a high minimum correlation

constraint (e.g., 0.99) during the synthesis (Discussion), having observed that only a

small transformation of the RNA-seq data is needed to make the latent structure

visible.

Spatial density-informed differential expression among cerebellar granule cells

In addition to cell type inference, another important single-cell analysis task that stands

to benefit from multimodal synthesis is the identification of differentially expressed

marker genes. To perform differential expression analysis with Schema, RNA-seq data

should be used as the primary modality, while the distance metrics of the secondary

modalities specify how cells should be differentiated from each other. We applied

Schema to spatial transcriptomics data, another increasingly important multimodal sce-

nario, here encompassing gene expression, cell-type labels, and spatial location.

We obtained Slide-seq data containing 62,468 transcriptomes that are spatially lo-

cated in the mouse cerebellum. In the original study, these transcriptomes were

assigned to putative cell types (noting that these transcriptomes are not guaranteed to

be single cell), and thus cell types are located throughout the tissue [10, 38]. Interest-

ingly, we observed spatial density variation for certain cell types; specifically, transcrip-

tomes corresponding to granule cell types are observed in regions of both high and low

spatial density (Fig. 4b in this paper; also Fig. 2b of Rodriques et al. [10]).

Schema’s feature selection capabilities could thus identify genes that are differentially

expressed in granule cells in high density areas versus granule cells in low density areas.

Schema is well suited to the constrained optimization setting of this problem: we

optimize for genes expressed specifically in granule cells and in dense regions, but not

all granule cells are in dense regions and not all cells in dense regions are granule cells.

We specified RNA-seq data as the primary modality and spatial location and cell-type

Fig. 3 Incorporating temporal metadata into UMAP visualizations of aging neurons captures developmental
changes. UMAP visualization of RNA-seq profiles of D. melanogaster neurons at 0, 1, 3, 6, 9, 15, 30, and 50
days after birth, representing the full range of a typical D. melanogaster lifespan. The transcriptomic data
(primary modality) was transformed to a limited extent using Schema by correlating it with the temporal
metadata (secondary modality) associated with each cell. a UMAP visualization of the original transcriptomic
data. b–d Visualizations of transformed data with increasing levels of distortion. As the value of the
minimum correlation constraint s approaches 1, the distortion of the original data is progressively limited.
Decreasing s results in a UMAP structure that increasingly reflects an age-related trajectory. e Feature
selection interpretation of Schema’s transformation. In synthesizing the two modalities, Schema up-weights
genes (top 15 shown here) that are differentially active at the start or end of the time-course. For clarity,
the set of genes has been reordered by the difference in their early and late-stage expression
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labels as the secondary modalities. In the spatial location modality, the distance metric

was defined such that two cells are similar if their spatial neighborhoods have similar

density (Methods).

The densely packed granule cell genes identified by Schema are strongly enriched for

GO terms and REACTOME pathways [39] related to signal transmission, e.g., ion-

channel transport (REACTOME FDR q = 1.82 × 10− 3), ion transport (GO:0022853, FDR

q = 1.8 × 10− 17), and electron transfer (GO:009055, FDR q = 2.87 × 10− 11). This finding

suggests potentially greater neurotransmission activity within these cells (Additional file

1: Figures S9–S10, Text S6; Additional file 2: Table S2–S3).

Schema outperforms alternative methods for spatial transcriptomic analysis

We sought to benchmark our method by comparing the robustness of Schema’s results

with those based on canonical correlation analysis (CCA) and with two methods specif-

ically intended for spatial transcriptomics, namely SpatialDE [18] and Trendsceek [19].

An important point is that CCA, SpatialDE, and Trendsceek are less general than

Schema and therefore require non-trivial modifications to approximately match Sche-

ma’s capabilities. CCA is limited in that it can correlate only two datasets at a time,

Fig. 4 Schema identifies a gene set in granule neurons whose expression covaries with spatial cellular
density. a Rodriques et al. [10] simultaneously assayed spatial and transcriptomic modalities in mouse
cerebellum tissue (data from puck 180430_1 is shown here). In addition, they labeled beads (each
corresponding to a transcriptome) with a putative cell type by comparing gene expression profiles with
known cell-type markers. b Spatial distribution of the most common cell types in the tissue: granule cells,
Purkinje cells, interneurons, and oligodendrocytes. Note the variation in spatial density for granule cells. c
We quantified this spatial density variation by computing a two-dimensional Gaussian kernel density
estimate, with cells in dense regions assigned a higher score. d Schema is able to identify a set of genes
that are highly expressed only in densely packed granule cells. The four figures here show mutually disjoint
sets of cells: granule cells with high expression of the gene set, granule cells with low expression of the
gene set, other cells with high expression, and other cells with low expression. Here, a cell is said to have
high expression of the gene set if the cell’s loading on this gene set ranks in the top quartile. e Schema’s
results are robust across biological replicates. Across three replicates, we evaluated the consistency of gene
rankings computed by Schema, canonical correlation analysis (CCA), SpatialDE, and Trendsceek. The black
points indicate the Spearman rank correlation of gene scores across pairs of replicates. We needed to adapt
SpatialDE and Trendsceek for this task by first applying them separately on granule and non-granule cells
and then combining the results (Methods); here, the black and gray points indicate the cross-replicate
correlations of the final and intermediate gene rankings, respectively
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whereas here we seek to synthesize three modalities: gene expression, cell-type labels,

and spatial density. We adapted CCA by correlating two modalities at a time and com-

bining the sub-results (Methods). In the case of SpatialDE and Trendsceek, their un-

supervised formulation does not allow the researcher to specify the spatial features to

pick out (we focus on spatial density variation). To adapt these, we collated their results

from separate runs on granule and non-granule cells (Methods). Notably, the ad hoc

modifications required to extend existing methods beyond two modalities underscore

the benefit of Schema’s general analytic formulation that can be naturally extended to

incorporate any number of additional data modalities.

Reasoning that a robust computational approach should return consistent results

across biological replicates, we evaluated the stability and quality of each spatial tran-

scriptomic technique by comparing its results on three replicate samples of mouse

cerebellum tissue (coronal sections prepared on the same day [10]; pucks 180430_1,

180430_5, 180430_6) (Methods). While both Schema and CCA identify a gene set that

ostensibly corresponds to granule cells in dense regions (Fig. 4d; Additional file 1: Fig-

ure S4), the gene rankings computed by Schema are more consistently preserved be-

tween pairs of replicates than those computed by CCA, with the median Spearman

rank correlation between sample pairs being 0.68 (Schema) versus 0.46 (CCA). Like-

wise, with Schema, 69.1% of enriched GO biological-process terms are observed in all

three samples and 78% are in at least two samples. The corresponding numbers for

CCA were 35.7% and 59.5%, respectively (FDR q < 0.001 in all cases). We thus find that

Schema’s results are substantially more robust across the three replicates. Compared to

CCA’s unconstrained synthesis, Schema’s constrained formulation avoids overfitting to

sample-specific noise, enhancing its robustness (Methods; Fig. 4e; Additional file 1:

Figure S5).

When performing the same gene list robustness analysis with SpatialDE and Tren-

dsceek, while also looking at the stability of their gene rankings specific to the precur-

sor cell type (gray points in Fig. 4e), we found that SpatialDE produced slightly more

stable gene rankings than Trendsceek, with median sample-pair correlations of 0.089

and − 0.002, respectively, but these were still lower than those for Schema. We also ob-

served that SpatialDE and Trendsceek had substantially longer running times and we

performed our analysis of the two methods on subsets of the overall dataset (see

“Schema can scale to massive single-cell datasets” for precise runtime and memory

usage). These results demonstrate the robustness and efficiency of Schema’s supervised

approach.

Beyond gene expression: Schema reveals CDR3 segments crucial to T cell receptor

binding specificity

To further demonstrate the generality of Schema, we applied it to synthesize data mo-

dalities beyond gene expression. We integrated single-cell multimodal proteomic and

functional data with Schema to better understand how sequence diversity in the hyper-

variable CDR3 segments of T cell receptors (TCRs) relates to antigen binding specific-

ities [40]. De novo design of TCRs for an antigen of interest remains a pressing

biological and therapeutic goal [41, 42], making it valuable to identify the key sequence

locations and amino acids that govern the binding characteristics of a CDR3 segment.
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Towards this end, we analyzed a single-cell dataset that recorded clonotype data for 62,

858 T cells and their binding specificities against a panel of 44 ligands [5] and used

Schema’s feature selection capabilities to estimate the sequence locations and residues

in the CDR3 segments of α and β chains important to binding specificity.

To estimate location-specific selection pressure, we ran Schema with the CDR3 pep-

tide sequence data as the primary modality and the binding specificity information as

the secondary modality, performing separate runs for α and β chains. In the primary

modality, each feature corresponds to a CDR3 sequence location and we used the

Hamming distance metric between observations (i.e., the number of locations at which

two sequences differ, see Methods). Schema assigned relatively low feature weights to

the location segments 3–9 (in α chain CDR3) and 5–12 (in β chain CDR3), suggesting

those regions can tolerate greater sequence variability while preserving binding

specificity.

To evaluate these results, we compared them to estimates based on CDR3 sequence

motifs sourced from VDJdb [43], a curated database of TCRs with known antigen spec-

ificities. In VDJdb, TCR motifs are scored using an adaptation of the relative entropy al-

gorithm [44] by Murugan et al. that assigns a score for each location and amino acid in

the motif. We aggregated these scores into a per-location score (Methods), allowing a

comparison with Schema’s feature weights (Fig. 5). While the comparison at locations

11–20 is somewhat complicated by VDJdb having fewer long sequences (Methods),

there is agreement between Schema and VDJdb estimates on locations 1–10 where

both datasets have good coverage (Spearman rank correlations of 0.38 and 0.92 for the

α and β chains, respectively; Fig. 5c, d). We note that weight estimation using Schema

required only a single multimodal dataset; in contrast, extensive data collection, cur-

ation, and algorithmic efforts underlie the VDJdb annotations. The latter covers mul-

tiple experimental datasets, including the 10x Genomics dataset [5] we investigated

here; we saw similar results when comparing against an older version of VDJdb without

this dataset.

Next, we used Schema to investigate the selection pressure on amino acids present in

the variability-prone locations identified above (Methods). We first selected a sequence

location (e.g., location 4 in α chain CDR3) and constructed a primary modality where

each cell was represented by a one-hot encoding of the amino acid at the location (i.e.,

a 20-dimensional Boolean vector). The secondary modality was binding specificity in-

formation, as before. We performed separate Schema runs for each such location of

interest on the two chains, computing the final score for each amino acid as the average

score across these runs. These scores are in good agreement with the corresponding

amino acid scores aggregated from the VDJdb database (Spearman rank correlation =

0.74, two-sided t-test p = 2 × 10− 4). The residue and location preferences estimated here

can directly be used in any algorithm for computational design of epitope-specific

CDR3 sequences to bias its search towards more functionally plausible candidate

sequences.

Schema’s ability to efficiently synthesize arbitrarily many modalities, with their rela-

tive importance at the researcher’s discretion, allows information that might otherwise

be set aside (e.g., metadata like batch information, cell line, or donor information) to be

effectively incorporated, enhancing the robustness and accuracy of an analysis. In

Methods, we exemplify this use-case on the TCR dataset by incorporating
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measurements of cell-surface markers as an additional secondary modality, hypothesiz-

ing that cell-surface protein levels should be unrelated to V(D)J recombination

variability.

Additional demonstrations

Applying Schema on a mouse gastrulation dataset [45] consisting of 16,152 epiblast

cells split over three developmental timepoints and with two replicates at each time-

point, we performed differential expression analysis while simultaneously accounting

Fig. 5 Schema reveals the locations and amino acids important in preserving binding specificity of T cell
receptor CDR3 regions (https://help.biorender.com/en/articles/3619405-how-do-i-cite-biorender). a We
analyzed a multimodal dataset from 10x Genomics [5] to understand how a T cell receptor’s binding
specificity relates to the sequence variability in the CDR3 regions of its α and β chains. The primary
modality consisted of CDR3 peptide sequence data which we correlated with the secondary modality, the
binding specificity of the cell against a panel of 44 epitopes. We optionally synthesized an additional
modality, proteomic measurements of 12 cell-surface marker proteins, as a use-case of incorporating
additional information (Methods). b We performed two Schema analyses: (B.1) To infer location-wise
selection pressure, each feature of the primary modality corresponded to a location in CDR3 sequence;
(B.2) To infer amino acid selection pressure, the primary modality was the Boolean vector of residues
observed at a specific sequence location; we aggregated over an ensemble of Schema runs across various
locations. c, d Schema identifies sequence locations 3–9 (α chain) and 5–12 (β chain) as regions where
sequences can vary with a comparatively modest impact on binding specificity. We compared Schema’s
scores to statistics computed from motifs in VDJdb. Here, we have inverted the orientation of Schema’s
weights to align them with the direction of VDJdb weights. e Schema and VDJdb agree on the relative
importance of amino acids in preserving binding specificity (Spearman rank correlation = 0.74, two-sided t-test
p = 2 × 10− 4). The low weight assigned to cysteine is likely due to its infrequent occurrence in the data
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for batch effects and developmental age, and evaluated its results alongside those from

MOFA+, a recently introduced single-cell multimodal analysis technique [22, 46] (Add-

itional file 1: Figure S1, Text S1). We also used Schema to study cell differentiation by

synthesizing spliced and unspliced mRNA counts in a dataset of 2930 mouse dentate

gyrus cells [47]. As in standard RNA velocity analyses, correlating spliced and unspliced

counts in a cell picks up on the time derivative of a cell’s expression state and thus illu-

minates the cell differentiation process. Schema’s results agree with those from the ded-

icated RNA velocity tool scVelo [48], and we also demonstrate how Schema can be

used to infuse velocity information into a t-SNE visualization (Additional file 1: Figure

S2, Text S2).

Schema can scale to massive single-cell datasets

We have designed Schema to process large single-cell datasets efficiently, with modest

memory requirements. On average, Schema processes data from a Slide-seq replicate

(three modalities, 20,823 transcriptomes × 17,607 genes) in 34min, requiring less than

5 GB of RAM in the process (Additional file 1: Table S1). The runtime includes the en-

tire set of Schema sub-runs performed over an ensemble of parameters, as well as the

time taken for the preprocessing transformation.

Schema’s efficiency stems from our novel mathematical formulation. Deviating from

standard metric learning approaches, we formulate the synthesis problem as a quadratic

program optimization, which can be solved much faster than the semidefinite program

formulations typically seen in these approaches (Additional file 1: Text S3). Addition-

ally, while the full Schema algorithm has quadratic scalability in the number of cells,

our formulation allows us to obtain good approximations with provably bounded error

using only a logarithmic subsample of the dataset (Additional file 1: Text S5), enabling

sublinear scalability in the number of cells that will be crucial as multimodal datasets

increase in size. These subsampling techniques can also leverage diversity-preserving

data sketching techniques [49, 50] that may empirically lead to greater representation

of rare cell types in the Schema analysis.

Discussion
We designed Schema to be a powerful approach to multimodal data analysis. Schema

is based on an elegant conceptual formulation in which each modality is defined using

a distance metric. A key conceptual advance of this work is to formulate the synthesis

task as a constrained optimization problem, allowing Schema to robustly accommodate

noisy and sparse modalities. The strength of this intuition enables analysis of an arbi-

trary number of modalities and applicability to any modality, so long as it is possible to

define an appropriate distance metric. Importantly, the synthesis is interpretable, with

Schema identifying the features of the primary (i.e., reference) modality that drive the

integration.

Our approach enables the researcher to supervise the synthesis by choosing which

modality to transform, the degree to which it can be distorted, and the desired level of

agreement between modalities. While existing methods like Seurat v3 [16] and LIGER

[17] are designed for unsupervised discovery of common patterns across experiments,

Schema’s supervised formulation facilitates a broader set of investigations, enabling us
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to not only infer cell types and identify gene sets but also, for instance, rank amino

acids by selection pressure.

When choosing a primary modality, we generally recommend selecting the most

high-confidence modality or the one for which feature selection will be most inform-

ative, though it can sometimes be productive to integrate insights across multiple invo-

cations of Schema with varying primary modality choices. In many of our

demonstrations, we chose RNA-seq as the primary modality since it is often the modal-

ity where preprocessing and normalization are best understood, boosting our confi-

dence in it; additionally, transformed RNA-seq data lends itself to a variety of

downstream analyses. Once a primary modality has been designated, Schema can

synthesize an arbitrary number of secondary modalities with it. In contrast, methods

designed around pairwise modality comparison need ad hoc adaptations to accommo-

date additional modalities. Schema’s approach is advantageous not only for datasets

with more than two modalities [5, 51] but also in cases where metadata (e.g., batch in-

formation and cell age) can be productively incorporated as additional modalities.

Intuitively, our correlation-based alignment approach has parallels to kernel canonical

correlation analysis (kernel CCA), a generalization of CCA where arbitrary distance

metrics can be specified when correlating two datasets. While Schema offers similar

flexibility for secondary modalities, it limits the primary modality to Euclidean dis-

tances. Introducing this restriction enhances scalability, interpretability, and robustness.

Unlike kernel CCA, the optimization in Schema operates on matrices whose size is in-

dependent of the dataset’s size, enabling it to scale sub-linearly to massive single-cell

datasets. Also, the optimal solution is a scaling transform that can be naturally inter-

preted as a feature-weight vector. Perhaps most importantly, Schema differs from ker-

nel CCA in performing a constrained optimization, thus reducing the distortion of the

primary dataset and ensuring that sparse and low-confidence secondary datasets do not

drown out the primary signal.

The constrained optimization in Schema acts as regularization, helping ensure that

the computed transformation and feature selection remain biologically meaningful. By

choosing a high-confidence modality as the primary modality and bounding its distor-

tion when incorporating the secondary modalities, Schema enables information synthe-

sis while retaining high-confidence insights. This bound on the distortion is an

important parameter, directly controlling how much the secondary modalities inform

the primary dataset; values approaching 1 will increasingly limit the influence of the

secondary modalities. Therefore, we recommend that studies using Schema for feature

selection should aggregate the results over a range of values of this parameter while

analyses that utilize only a single parameter should keep it high (≥ 0.9, the default set-

ting in our implementation is 0.99) to preserve fidelity with the original dataset

(Methods). If sufficient data is available, cross-validation can also be used to tune this

parameter. We strongly recommend that studies with a single parameter should report

the value of this parameter alongside their results.

Interesting future methodological work could explore alternative formulations of the

Schema objective, potentially including more complex nonlinearities than our quadratic

program formulation. Schema can also be used in conjunction with data-integration

methods [16, 17] designed for cases where each modality was assayed on different cells:

after a cross-modality cell-to-cell correspondence has been computed, Schema can be
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applied to interpret the integrated data. It can also guide further biological experiments

that profile only the highly weighted features based on other data modalities, enabling

efficient, targeted follow-up analysis.

Given the current pace of biotechnological development, we anticipate that high-

throughput experiments, and their conclusions, will increasingly rely on more than one

data modality, underscoring the importance of Schema and its conceptual framework.

Schema is publicly available for use at http://schema.csail.mit.edu and as the Python

package schema_learn.

Methods
Correlation-based alignment and quadratic programming optimization

Underlying our definition of the alignment of metrics is the intuitive notion that met-

rics are similar if the ordering of pairwise distances between the two metrics are close.

A proxy for measuring this alignment is the Pearson correlation coefficient. For

Schema, the goal is thus that pairwise distances in the transformed space be highly cor-

related with pairwise distances under each metric.

One of the advantages of the Pearson correlation coefficient is that it is amenable to

optimization via quadratic programming (QP). QP is a generalization of linear pro-

gramming, allowing a quadratic objective function. We learn a scaling transformation u

(Additional file 1: Text S3) on the primary dataset X such that the pairwise distances of

the transformation u ∗ xi (where ∗ denotes coordinate-wise multiplication, for each xi ∈

X) are highly correlated with the pairwise distances in the secondary modalities. We co-

dify our intuition of the importance of the primary dataset by requiring that the correl-

ation of transformed pairwise distances with the original dataset be higher than some

researcher-specified threshold. The scaling transformation has the appealing property

of being interpretable as a feature selection: the higher the coordinate ui, the more im-

portant that coordinate is for alignment. Thus, by selecting the top coordinates by their

weights, we can access the genes most important for aligning the modalities.

Mathematical formulation

Suppose we have N observations across r datasets Dj, j= 1, 2, …, r, where Dj ¼ fxð jÞi : i ¼ 1;

2;…;Ng contains data (categorical or continuous) for each observation. We will refer to D1

as the primary dataset and the rest as secondary. Each dataset’s dimensionality and domain

may vary. In particular, we assume D1 is k-dimensional. Each dataset Dj should also have

some notion of distance between observations attached to it, which we will denote

ρj, so ρ jðxð jÞn ; xð jÞm Þ is the distance between observations n and m in Dj. Since our

entire framework below deals in squared distances, for notational convenience we will let

ρj be the squared distances between points in Dj; also, we drop the superscript in xð1Þj
when referring to the primary dataset D1 and its data.

The goal is to find a transformation Ω with Ω(D) generating a dataset D∗ such that

the Euclidean metric ρ∗ on D∗ aligns the various metrics ρj, each informed by its re-

spective modality. Non-Euclidean primary distance metrics ρ1 are allowed if they can

be computed as a sum of k terms, one for each feature (e.g., Hamming distance). We

emphasize that none of the secondary ρj need to be Euclidean. This setup is quite

general, and we now specify the form of the transformation Ω and the criteria for
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balancing information from the various metrics. Here, we limit Ω to a scaling trans-

form. That is, Ω(D) = {diag(u)x : x ∈D} for some u ∈ Rk and diag(u) is a k × k diagonal

matrix with u as its diagonal entries. Then, the squared distance between points under

the transformation is given by

ρ� xn; xmð Þ ¼ diag uð Þxn− diag uð Þxmk k2 ¼ diag wð Þ xn−xmk k2

where w is the element-wise square of u, i.e., wi ¼ u2i . The scaling transform u acts as

a feature-weighting mechanism: it chooses the features of D1 that align the datasets

best (i.e., ui being large means that the ith coordinate of D1 is important). We note here

that a natural extension would be allowing general linear transformations for Ω; how-

ever, in that context, the fast framework of quadratic programming would need to be

substituted for the much slower framework of semidefinite programming.

Here, our approach to integration between the metrics ρj is to learn a metric ρ∗ that

aligns well with all of them. Our measure of the alignment between ρ∗ and ρj is given

by the Pearson correlation between pairwise squared distances under two metrics. In-

tuitively, maximizing the correlation coefficient encourages distances under ρ∗ to be

large when the corresponding ρj distances are large and vice versa. This can be seen

from the expression

Corr ρ�; ρ j

� �
¼

Cov ρ�; ρ j

� �

Var ρ�ð Þ Var ρ j

� �� �1=2
ð1Þ

To deal with multiple modalities, we try to maximize the correlation between ρ∗ and

the distances on each of the metrics, allowing the user to specify how much each mo-

dality should be weighted. We also allow a hard constraint, whereby the correlation be-

tween the pairwise distances in the transformed data and in the primary dataset is

lower-bounded. Our goal is thus to find

Xr

j¼2
γ jCorr ρ� wð Þ; ρ j

� �n o
subject to

Corr ρ� wð Þ; ρ1ð Þ≥s
ð2Þ

where γj and s are hyperparameters that determine the importance of the various met-

rics. We have also highlighted that ρ∗ is a function of w and is determined entirely by

the solution to (2). In the rest of our discussion, we will abuse notation and primarily

use w, rather than ρ∗, to refer to the optimal metric. The machinery of quadratic

programming makes this optimization feasible.

Setting up the quadratic program

As motivated above, quadratic programming (QP) is a framework for constrained con-

vex optimization problems that allows a quadratic term in the objective function and

linear constraints. The general form is

vTQvþ qTv
subject to
Gv≼h
Av ¼ b

ð3Þ
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for given Q, q, G, h, A, and b, where Q is a positive semidefinite (psd) matrix and the

notation ≼ means the inequality is true for each coordinate (i.e., y ≼ z means yi ≤ zi for

all i).

To put our optimization (2) in a QP formulation, we expand the covariance and vari-

ance terms in the definition of correlation in (1) and show that the covariance is linear

in the transformation and variance is quadratic:

Covðw; ρlÞ ¼
�

1
jPj al−

1

jPj2 bl
�T

w and VarðwÞ ¼ wT

�
1
jPj S−

1

jPj2 T
�
w ð4Þ

where al and bl are k-dimensional vectors that depend only on D1 and Dl; and S and T

are N × k matrices that depend only on D1; and P is the set of pairs of observations,

where |∙| denotes set cardinality. It is also not hard to show that 1
jPj S−

1
jPj2 T is psd, as

required. For details of the derivation, see the Additional file 1: Text S4.

There is one more difficulty to address. The correlation is the quotient of the covari-

ance and the standard deviation, and the QP framework cannot handle quotients or

square roots. However, maximizing a quotient can be reframed as maximizing the

numerator (the covariance), minimizing the denominator (the variance), or both.

We now have the ingredients for the QP and can frame the optimization problem as

Xr

j¼2

γ j Cov w; ρ j

� �
−α Var ρ�ð Þ−λ w−1k k2

subject to :
Cov w; ρ1ð Þ≥β

w≽0

ð5Þ

where 0 and 1 are the all-zeros and all-ones vectors (of the appropriate length) respect-

ively. Here, λ is the hyperparameter for regularization of w, which we want to penalize

for being too far away from the all-ones vector (i.e., equal weighting of all the features).

One could also regularize the l2 norm of w alone (i.e., incorporate the term −λ‖w‖2),

which would encourage w to be small; we have found that empirically the choices yield

similar results.

This program can be solved by standard QP solvers (see Additional file 1: Text S4,

for the full details of how to put the above program in canonical form for a solver), and

the solution w∗ can be used to transform unseen input data, using u∗ ∈ Rk, where

u�i ¼
ffiffiffiffiffiffi
w�
i

p
.

Hyperparameters

A well-known challenge for machine learning algorithms is interpretability of hyper-

parameters. Here, the QP solver needs values for λ, α, and β, and specifying these in a

principled way is a challenge for users. Our approach is thus to allow the user to spe-

cify more natural parameters. Specifically, we allow the user to specify minimum corre-

lations between the pairwise distances in D∗ and the primary dataset D1. Formally, the

user can specify s such that

Corr ρ�; ρ1ð Þ≥s

and q such that
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max wf gP
wij j ¼ wk k∞

wk k1
≤
q
k
:

The quantity q thus controls the maximum weight that any one feature can take.

While these quantities are not directly optimizable in our QP formulation (5), we can

access them by varying the hyperparameters λ, α, and β.

Intuitively, we note that the choice of λ controls whether w satisfies q and that α and

β control whether the correlation constraint s is satisfied. To satisfy these constraints,

we simply grid search across feasible values of {λ, α, β}: we solve the QP for fixed values

of λ, α, and β, keeping only the solutions for which the {s, q} constraints are satisfied.

Of these, we choose the most optimal. The efficiency of quadratic programming means

that such a grid search is feasible, which gives users the benefit of more easily interpret-

able and natural hyperparameters.

Recommendations for setting s and q

We recommend that only s (minimum correlation) and not q (maximum feature

weight) be used to control Schema’s optimization. The default value of q in our imple-

mentation is set to be very high (103) so that it is not a binding constraint in most

cases. We recommend not changing it and in future versions of Schema we may refor-

mulate the QP so that q is entirely removed. To limit the distortions in the primary

modality, we recommend that s be set close to 1: the default setting of s is 0.99 and we

recommend values ≥ 0.9. When Schema is used for feature selection, we recommend

aggregating results across an ensemble of runs over a range of s values (a wide range is

recommended here) to increase the robustness of the results.

Preprocessing transforms

Standard linear decompositions, like PCA or NMF, are useful as preprocessing steps

for Schema. PCA is a good choice in this regard because it decomposes along directions

of high variance; NMF is slower but has the advantage that it is designed for data that

is non-negative (e.g., transcript counts). Since the transform u that we generate can be

interpreted as a feature-weighting mechanism, we can identify the directions (in PCA)

or factors (in NMF) most relevant to aligning the datasets. Here the user can employ

arbitrary feature sets including, for instance, a union of features from two standard

methods (e.g., set-union of PCA and CCA features) or those generated by another

single-cell analysis method, like MOFA+ 21.

Motivating the choice of correlation as an objective

As a measure of the alignment between our transformation and a dataset, correlation

of pairwise distances is a flexible and robust measure. Given a pair of datasets, the con-

nection between their pairwise-distance Spearman rank correlation and the neighbor-

hood structure similarity is deep: if the correlation is greater than 1 − ϵ, the fraction of

misaligned neighborhood relationships will be less than Oð ffiffiffi
ϵ

p Þ. There is a manifold in-

terpretation that is also compelling: assuming the high-dimensional data lies on a low-

dimensional manifold, small Euclidean distances are more accurate than large dis-

tances, so the local neighborhood structure is worth preserving. We can show intui-

tively that optimizing the correlation aims to preserve local neighborhood structure.
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Using correlation in the objective also affords the flexibility to broaden Corr(w, ρj) in

(2) to any function fj of the metric, i.e., Corr(w, fj ∘ ρj); this allows us to invert the direc-

tion of alignment or more heavily weigh local distances. As RNA-seq dataset sizes

reach millions of cells, even calculating the O(N2) pairwise distances becomes infeasible.

In this case, we sample a subset of the pairwise distances. As an estimator, sample cor-

relation is a robust measure, allowing Schema to perform well even with relatively small

subsets; in fact, we only need a sample size logarithmic in our desired confidence level

to generate high-confidence results (Additional file 1: Text S5). This enables Schema to

continue scaling to more massive RNA-seq datasets.

Inference of cell types by synthesizing gene expression and chromatin accessibility

Applying the TruncatedSVD function in the Python library scikit-learn [52] (version

0.23.1), we reduced the dimensionality of the primary (RNA-seq) and secondary

(ATAC-seq) datasets to their top 100 and 50 components, respectively, and specified

these as the inputs to Schema. We chose to perform SVD instead of PCA since only

the former can work with sparse matrices (in particular, the ATAC-seq matrix had 11,

296 rows and 247,293 columns). The minimum correlation threshold in Schema was

set to 0.99 and Leiden clustering was performed with the Python package leidenalg [53]

(version 0.8.1) with partitioning of the neighbor graph based on the modularity

measure.

We performed canonical correlation analysis (CCA) on the same dimensionality-

reduced primary and secondary datasets as supplied to Schema and computed 30 CCA

factors, performing Leiden clustering using these.

We performed scVI and totalVI analysis using the Python package scvi-tools (version

0.8.1). To accommodate ATAC-seq data as an input to scVI and totalVI, we reduced

the data’s dimensionality from 247,293 to 2629 by first excluding peaks with non-zero

counts in fewer than 10 cells and then aggregating the count data of ATAC-seq peaks

within 1Mb genomic windows. To investigate if totalVI’s performance suffered because

of the noise and sparsity in the ATAC-seq data, we evaluated it also on a synthetic,

less-noisy dataset constructed by reusing and partially randomizing RNA-seq observa-

tions, our goal being to design a secondary modality that is not identical to the primary

RNA-seq modality but nevertheless agrees well with it. We constructed each column of

this dataset as the sum of the RNA-seq counts of 5 randomly chosen genes, with 10%

of the final counts randomly set to zero. We found that totalVI did achieve stronger re-

sults when synthesizing this dataset with the RNA-seq modality (ARI of 0.088), sub-

stantially higher than what was achieved with using ATAC-seq as the secondary

modality.

Pseudocells

We also evaluated a heuristic approach described in the original study [6]: group cells

into small clusters (“pseudocells”) by RNA-seq similarity and compute an average

ATAC-seq profile per pseudocell, using these profiles for the final clustering. This ap-

proach also underperformed Schema (ARI of 0.20). To implement the heuristic ap-

proach described by Cao et al. [6], we grouped the 11,296 cells into k = 300 clusters by

k-means clustering of RNA-seq data; results were robust to the choice of k. Each
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cluster (“pseudocell”) was represented by the average ATAC-seq profile of its member

cells, with these aggregated profiles forming the input to the Leiden clustering

algorithm.

Schema highlights secondary patterns while preserving primary structure

We chose gene expression as the primary modality, reducing it with non-negative

matrix factorization (NMF) to the top 50 components, and used temporal metadata as

the secondary modality. We estimated differential pseudotime using the implementa-

tion in Scanpy [54] of Haghverdi et al.’s [55] algorithm.

Spatially informed differential expression on mouse brain Slide-seq

We used gene expression as the primary modality, while spatial density and cell type la-

bels were the secondary modalities. We first computed spatial density information for

each cell by learning a two-dimensional Gaussian-kernel density function on cell loca-

tions; it assigns higher scores to regions with denser cell packing (Fig. 4c). We then ran

Schema using the gene expression matrix as the primary dataset, with the secondary

datasets consisting of the numeric kernel density scores, as well as the categorical labels

corresponding to the four most common non-granule cell types. We aimed to find a

transformation of the primary data that maximized correlation with cell spatial density

while preserving a high correlation with granule cell type labels. Additionally, differ-

ences in cell-type distribution between dense and sparse regions are a confounding fac-

tor when seeking to identify a gene set specific to the granule cell type. To mitigate

this, we assigned a small negative weight to correlation with non-granule cell type la-

bels in Schema’s objective function. The primary dataset was preprocessed with a non-

negative matrix factorization (NMF) transformation, limiting it to the top 100 NMF

factors. Each Schema run consisted of multiple sub-runs over an ensemble of param-

eter settings, with the results averaged across these. The gene scores from each sub-run

were a weighted average of the features with each feature’s weight as ew, w being the

Schema-computed weights; cell loadings were computed similarly. This softmax ap-

proach is parameter-free and ensures that gene rankings are informed primarily by the

features with the highest Schema weight.

To adapt CCA for a three-way modality synthesis, we tested two approaches: (1)

combining spatial density and cell-type information into a composite measure that was

then correlated to gene expression, or (2) performing two separate CCA analyses (cor-

relating gene expression against either spatial density or cell type) and combining them.

In the first CCA-based approach, we combined spatial density and cell-type labels by

learning a Gaussian kernel density function only on cells labeled as granule cells and

then inferring its value for other cells. This score was then used in CCA. In the second

CCA-based approach, where we integrated results from two preliminary CCA runs, the

combined cell loadings were computed as the average of the normalized cell loadings

from the two CCAs, with the final gene scores then computed by a matching pursuit

technique [56, 57]: the final CCA score of a gene was the dot product of the CCA cell

loadings and the gene’s expression vector. In our evaluations, the first CCA-based ap-

proach performed comparably or worse than the second, and the results for only the

latter are presented in this paper.

Singh et al. Genome Biology          (2021) 22:131 Page 20 of 24



We also needed to adapt SpatialDE and Trendsceek, both of which have unsupervised

formulations, to select for genes whose expression shows spatial variation in granule

cell types but not in non-granule cell types. To do so, we ran them separately on gran-

ule and non-granule cells and then ranked genes based on the difference of gene ranks

between the two runs.

Schema reveals CDR3 segments crucial to T cell receptor binding specificity

When estimating location-specific selection pressure (Fig. 5c, d), we truncated CDR3

sequences to the first 20 residues (sequences longer than that constituted less than

0.2% of our dataset). The ith element of the primary modality feature vector was the 1-

letter code of the amino acid at the ith sequence position or a null value if the sequence

length was shorter than i. We defined the distance between two sequences as the num-

ber of elements that disagreed. In the original space, this corresponds to the Hamming

distance; in the transformed space, it is a location-weighted version of the Hamming

distance. The secondary modality corresponding to binding specificity against the 44 li-

gands was represented as a 44-dimensional Boolean vector, with the Euclidean distance

metric. Each Schema run was an ensemble of sub-runs, with varying parameter choices

of minimum correlation between the original and transformed datasets and the max-

imum allowed feature weights. Feature weights produced in each sub-run were normal-

ized by linearly mapping the lowest weight to 0 and the highest to 1.

We then averaged these normalized feature weights across sub-runs. To compute a

location’s score using VDJdb, we extracted the VDJdb-provided relative entropy score

(I.norm) for the location in each TCR motif and averaged it across all motifs in the

database. Here, Schema and VDJdb scores have opposite orientations: for a location

that demonstrates low variability, the associated Schema weight will be high while the

VDJdb score will be low. Therefore, when comparing the Schema and VDJdb scores,

we inverted the orientation of Schema scores by subtracting them from 1 (Fig. 5c, d).

The comparison of per-location scores between Schema and VDJdb is complicated

by length differences between motifs in VDJdb and sequences in our dataset: the

former contains shorter sequences, with the average sequence length of α and β chain

motifs in VDJdb being 11.9 and 12.5, respectively; the corresponding averages in our

dataset are 13.5 and 14.5. However, both datasets have good coverage of locations 1–10

and the per-location scores are in broad agreement there (Fig. 5c, d).

To compute the selection pressure on amino acids, we focused on segments 3–7 in

TCR α chains and 5–11 in TCR β chains, choosing these locations for their high se-

quence variability as estimated by Schema and VDJdb above. To compute Schema

scores, an ensemble of sub-runs was performed, and as described above, Schema scores

were normalized. VDJdb scores for an amino acid were computed as the average

frequency-weighted relative entropy scores (height.I.norm) across the selected locations

in all TCR motifs in the database.

To exemplify how Schema can synthesize additional modalities, we also incorporated

proteomic measurements of 12 cell-surface markers. Hypothesizing that cell-surface

protein levels should be unrelated to the V(D)J recombination variability, we added a

low weight term to Schema’s objective function that penalized correlation between dis-

tances in the CDR3-sequence space and distances in proteomic-measurement space.
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Across subsets of the dataset split by donors (4 subsets) or by epitopes (10 randomly

divided subsets), we compared the baseline two-modality setup against the new three-

modality setup and found that the latter produced slightly more stable results than the

former, with smaller standard deviations of Schema-computed weights across the sub-

sets of data (0.094 vs 0.101 for the donor split, and 0.164 vs 0.166 for the epitope split).

In general, we recommend the use of cross-validation or an independent metric to cali-

brate the relative weights of secondary modalities in such use-cases.
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