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Objective: We previously demonstrated an inverse relationship between both dentate gyrus neurogenesis – a
form of neuroplasticity – and expression of the antiapoptotic gene marker, BCL-2 and adult macaque body
weight. We therefore explored whether a similar inverse correlation existed in humans between body mass
index (BMI) and hippocampal N-acetyl-aspartate (NAA), a marker of neuronal integrity and putatively,
neuroplasticity. We also studied the relationship of a potentially neurotoxic process, worry, to hippocampal
NAA in patients with generalized anxiety disorder (GAD) and control subjects (CS).
Methods: We combined two previously studied cohorts of GAD and control subjects. Using proton magnetic
resonance spectroscopy imaging (1H MRSI) in medication-free patients with GAD (n = 29) and a matched
healthy control group (n = 22), we determined hippocampal concentrations of (1) NAA (2) choline containing
compounds (CHO), and (3) Creatine + phosphocreatine (CR). Data were combined from 1.5 T and 3 T scans by
converting values fromeach cohort to z-scores. Overweight andGADdiagnosiswere used as categorical variables
while the Penn State Worry Questionnaire (PSWQ) and Anxiety Sensitivity Index (ASI) were used as dependent

variables.
Results: Overweight subjects (BMI ≥ 25) exhibited lower NAA levels in the hippocampus than normal-weight
subjects (BMI b 25) (partial Eta-squared = 0.14) controlling for age, sex and psychiatric diagnosis, and the effect
was significant for the right hippocampus in both GADpatients and control subjects. An inverse linear correlation
was noted in all subjects between right hippocampal NAA and BMI. High scores on the PSWQ predicted low
hippocampal NAA and CR. Both BMI and worry were independent inverse predictors of hippocampal NAA.
Conclusion: Overweight was associated with reduced NAA concentrations in the hippocampus with a strong
effect size. Future mechanistic studies are warranted.
© 2014 The Authors. The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Whereas the hippocampus is commonly associated with memory
and learning, a critical role in emotional control and mood and anxiety
disorders has also been noted (Apfel et al., 2011). An important
but less recognized role for the hippocampus is in the control of food
intake and energy balance. For instance, amnesic humans with brain
erms of the Creative Commons
which permits non-commercial
d the original author and source
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damage that includes the hippocampus have been reported to exhibit
insensitivity to signals of hunger and satiety (Hebben et al., 1985;
Rozin, 1998), an effect that has also been observed in rats with highly
selective lesions that are confined to the hippocampus (Davidson and
Jarrard, 1993). Also, obese and post-obese patients tasting a liquid
meal showed a decreased activity on positron emission tomography
in the posterior hippocampus compared to lean control subjects
(DelParigi et al., 2004). Collectively, these results suggest that hippo-
campal damage might interfere with appetite.

The hippocampusmay also play a critical role in the brain's ability to
regulate body weight through learning processes (Benoit et al., 2010).
Investigators (Davidson et al., 2007) hypothesize that “hippocampal-
dependent learning andmemorymechanisms translate neurohormonal
ticle under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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signals of energy balance into adaptive behavioral outcomes involved
with the inhibition of food intake”. Conversely, the samegroupproposes
the hypothesis “that excessive caloric intake and obesity may be pro-
duced by dietary and other factors that are known to alter hippocampal
functioning.” Reduced hippocampal function and plasticity is observed in
rats maintained on diets high in fat and sugar (Kanoski et al., 2007; Liu
et al., 2004; Molteni et al., 2002; Monteggia et al., 2004; Wu et al., 2003;
Yamada and Nabeshima, 2003). Impaired hippocampal neurogenesis
occurs in male rats fed on high-fat diet for 4 weeks (Lindqvist et al.,
2006). By contrast, Walker et al. demonstrated that both neonatal leptin
treatment and exposure to high-fat diet during the perinatal period in-
crease neurogenesis and neuronal survival in the hippocampal dentate
gyrus of young animals, an effect attributed to a reduction of apoptotic
processes (Walker et al., 2008).

More recently our own studies found an inverse relationship be-
tween body mass in non-obese male nonhuman primates and dentate
gyrus doublecortin (reflective of immature neurons) and dentate
gyrus expression of BCL-2, an anti-apoptotic gene product (Perera
et al., 2011). Ki-67, amarker for precursor proliferative cells, did not cor-
relate with body mass, suggesting that correlations with body mass
were maturational rather than proliferation related. Our non-diabetic
animalswere fed standardmonkey chowwith occasional fruit treats ex-
cluding the potential confound of a high lipid diet causing hippocampal
dysfunction. We found markedly high correlations between fasting
blood sugar and dentate gyrus BCL-2 (r = 0.99) and doublecortin
(r = 0.99), supporting the premise that one form of dentate gyrus
neuroplasticity was involved in metabolic control (Perera et al., 2011).

In light of the overweight/obesity epidemic in the United States
(King, 2013; Mitchell et al., 2011), we wished to extend our preclinical
studies into the clinical realm, using a non-invasive neuroimaging mo-
dality. Proton magnetic resonance spectroscopic imaging (1H MRSI)
is well-suited to examine regional alterations in tissue concentrations
of neurochemicals that are indicative of brain metabolism (Coplan
et al., 2006; Lyoo and Renshaw, 2002). We recently proposed that
N-acetylaspartate (NAA), an accepted marker of neuronal integrity,
serves as a putative marker of neuroplasticity in GAD (Abdallah et al.,
2013), positively tracking hippocampal volume alterations in response
to the antiglutamatergic agent, riluzole, in the treatment of GAD.

Since we had observed that neurogenesis rates vary inversely with
body mass in nonhuman primates, and our recent studies suggest
that NAA may track neurotrophic processes in the hippocampus, we
hypothesized that, to the extent neurogenesis is representative of neu-
rotrophic processes in the hippocampus in general, relative elevations
in BMI would predict relative reductions in hippocampal NAA levels.
However, other possibilities besides the neurogenesis changes re-
stricted solely to the dentate gyrus may be relevant in determining
hippocampal NAA, such as synaptic changes, dendritic remodeling or
glial cell changes. Although prefrontal cortical volume had previously
been associated with reduction in glial cell number (Rajkowska,
2000), recent work by the same group (Cobb et al., 2013) did not
demonstrate reductions in glial cell number associated with reduced
hippocampal volume in major depressive disorder. Thus the neuropa-
thology associatedwith lowerNAAmay have causes other than reduced
neurogenesis, which remain to be determined.

We also focus on choline containing compounds (CHO), in part re-
flective of membrane turnover, which we have shown to be reduced
in the centrum semiovale (CSO) of patients with GAD versus healthy
volunteers (HV) (Coplan et al., 2006). We examine concentrations of
the metabolites of Creatine + phosphocreatine (CR), a potential index
of brain metabolism, which we have shown also to be reduced in the
CSO of patients with GAD versus HV (Coplan et al., 2006). One study
by Massana et al. reported reduced CR in the right medial temporal
lobe in patients with panic disorder (Massana et al., 2002). In this
study, we wished to examine in a substantial number of subjects com-
bining two cohorts, whether the findings of the Massana et al. study
were specific to panic disorder or would be evident in other anxiety
disorders.We also examined if parametric effectswere evident between
CR and measures of worry as measured by the PSWQ.

Thus, the primary aim of our study was to test the hypothesis
in humans that an inverse relationship existed between BMI and a
marker of hippocampal neuronal integrity, reflected by NAA, on proton
magnetic resonance spectroscopy. We might then detect a central
biomarker of overweight, facilitating understanding and treatment.
Secondarily, we sought to examine the influence, if any, of the diagnosis
of GAD, or if not, of worry itself, on the hypothesized relationship be-
tween BMI and NAA. Should a relationship between NAA and BMI be
observed, it may pave the way for improving our understanding of the
hippocampal contribution to the pathophysiology of overweight and
the metabolic syndrome.

2. Methods

2.1. Subjects

1H MRSI data were obtained from two previous studies (Mathew
et al., 2008, 2009) for a total of 51 subjects—32 women and 19 men,
19 in the former study and 32 in the latter study. 22 control subjects
(eight men, fourteen women; mean age ± SD, 33.7 years ± 10.4)
and 29 medication-free GAD patients (eleven men, eighteen women;
mean age ± SD, 35.1 years ± 11.9) were recruited by advertising or
clinician referral.

All patients met the DSM-IV-TR Criteria for GAD as established by
the Structured Clinical Interview for DSM-IV (SCID) (First et al., 1995).
None of the GAD patients had been taking any psychotropic medication
for at least 2 weeks before the MRSI scan. GAD patients had at least
moderate worry severity (mean baseline Penn State Worry Question-
naire [PSWQ] (Meyer et al., 1990) score: 64.9 ± 8.1) and severe anxiety
sensitivity (Keller, 2002) (mean baseline Anxiety Sensitivity Index [ASI]
score: 32.2 ± 11.5). Comorbid diagnoses, determined by SCID, included
panic disorder (n = 7), social anxiety disorder (n = 7), dysthymia
(n = 6), specific phobia (n = 4), depressive disorder not otherwise
specified (n = 2), adjustment disorder with mixed depressed and
anxious mood (n = 1), and Bipolar II disorder; most recent depressed
in partial remission (n = 1).

Exclusion Criteria for GAD patients included the following:
major depressive episode or substance abuse/dependence within
6 months of study entry; lifetime histories of psychosis, bipolar
disorder, obsessive–compulsive disorder (OCD), eating disorder, or
posttraumatic stress disorder (PTSD); or significant medical or neuro-
logic conditions requiring daily medication treatment. In addition, sub-
jects who were pregnant or who had any condition precluding clinical
magnetic resonance examination (e.g. pacemaker, metallic prosthesis)
were excluded.

Control subjects did not have any current medical conditions or any
lifetime history of Axis I psychiatric disorders, according to the SCID-NP
interview (Spitzer, 1996). All participants had unremarkable screening
laboratory evaluations, including urine toxicology. Written informed
consent was obtained and all study procedures were approved by the
Institutional Review Board.

2.2. 1H MRSI data acquisition protocol

Neuroimaging studies were conducted on a 1.5-T GE Horizon 5.x
Signa MR system in one study (Mathew et al., 2008), and on a 3.0 T
GE MRI system using a standard quadrature head coil, in the other
study (Mathew et al., 2009). Voxels that best covered the primary
regions of interest “ROIs” (right and left hippocampi) in each subject
were selected on the basis of their location on the matching high-
resolution MR localizer images.

Following sagittal scout images, a four-section T1-weighted axial/
oblique localizer imaging series, angulated parallel to the Sylvian fissure
(Fig. 1A),was acquired,with a slice thickness of 15 mmand an interslice
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Fig. 1. Voxel placement for hippocampus. (A)MRI depicting the location of the four oblique brain sections investigated; (B) coronal view from left and right grids of hippocampal voxels of
interest. (C) Example of an MR spectrum from a hippocampal voxel in the grid shown in (B). NAA, N-acetyl-aspartate; tCHO, total choline containing compounds; tCR, total
Creatine + phosphocreatine.
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gap of 3.5 mm,matching the subsequentmultislice 1HMRSI scan. Next,
the 1H MRSI scan was performed using the method of Duyn et al.
(1993), with TE/TR of 280/2300 ms, field of view of 240 mm, 32 × 32
circularly sampled k-space phase-encoding steps with one excitation
per phase-encoding step, and 256 time-domain points. The strong
pericranial lipid resonances from the skull, scalp, and calvarial marrow
were suppressed using octagonally tailored outer-volume suppression
pulses, and water was suppressed with a single chemical shift-selective
pulse followed by spoiler gradients. The entire neuroimaging protocol
required approximately 60 min to complete. The raw data were sepa-
rated into individual slices and then processed by the standard fast
Fourier transform algorithm, as previously described (Mathew et al.,
2004). The actual MRSI voxel, estimated from the integral of the
point-spread function (PSF) following spatial filtering with a Hamming
window and Fermi window and then Fourier transformation, was
1.13 cm3 or approximately 40% larger than the nominal voxel size
that would be derived from the acquisition parameters (Mathew
et al., 2008).

2.3. 1H MRSI data analysis and quantification

The raw MRSI data were processed and analyzed voxel by voxel
offline on a Sun Microsystems (Mountain View, CA) work station,
using the Interactive Data Language (IDL, ITT Visual Information Solu-
tions, Boulder, CO) software package developed in-house by two of
the investigators (XM, DCS). Voxels that best covered the primary
ROIs (right and left hippocampi) in each subject were selected on the
basis of their location on thematching high-resolution MR localizer im-
ages (Fig. 1B). Fig. 1C shows a representative spectrum and sample
spectral fit for a hippocampal MRSI voxel. Data analysis was performed
by a trained investigator blinded to diagnosis and scan number.
The mean of the peak areas for each metabolite within the ROIs
was computed from fitted spectral data. The a priori measure of
interest was the concentration of NAA. Concentrations of Creatine + -

phosphocreatine (CR) and choline-containing compounds (CHO, an
index of myelin turnover) were also obtained. Peak areas derived
from spectral fitting were converted to “absolute” (i.e., molar) metabo-
lite concentrations using the phantom replacement methodology
(Mathew et al., 2008; Soher et al., 1996).

2.4. Hippocampal volume determination

Data were only available on 17 subjects from the 1.5 T MRI study
(Mathew et al., 2008). MRI images were collected using a Sagittal
T1-gradient echo volumetric acquisition protocol (TE/TR = 2/9 ms,
voxel size = 0.9 × 0.9 × 1.5 mm, flip angel = 7°, FOV = 240 mm,
1.5-mm thickness with no gaps, totalizing 256 slices per slab, matrix
size 256 × 256, NEX = 1). Images were converted to ANALYZE format
using MRIcro. Hippocampal segmentation was performed with the
fully automated Freesurfer image analysis package (http://surfer.nmr.
mgh.harvard.edu/). This processing includes removal of non-brain
tissue using a hybrid watershed/surface deformation procedure, auto-
mated Talairach transformation, segmentation of the subcortical
white matter and deep gray matter volumetric structures (including
the hippocampus), intensity normalization, tessellation of the gray
matter–white matter boundary, automated topology correction,
and surface deformation following intensity gradients to optimally
place the gray/white and gray/cerebrospinal fluid borders at the
location where the greatest shift in intensity defines the transition
to the other tissue class (for additional details, please see Fischl and
Dale, 2000).

2.5. Statistical analysis

Statistical analyses were conducted using Statistica Version 10. NAA,
CR, and CHO regional concentrations in the hippocampi (from both
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studies) were separately z-scored for standardization. Independent
t-tests as well as chi-square tests were applied to compare age, body
mass index, sex distribution, PSWQ and ASI among the diagnostic
groups (GAD versus control subjects).

2.5.1. Categorical analyses
We implemented a general linear model (GLM) with hippo-

campal metabolite concentrations (NAA, CR, and CHO) as depen-
dent measures. Hippocampal metabolite concentrations (left and
right) were used as a repeated measure. Independent variables
included the categorical variables of diagnostic group (GAD or Con-
trol Subjects), BMI status [normal weight (BMI b 25) or overweight
(BMI ≥ 25)], the interaction term of diagnostic group ∗ BMI status
and sex. Age was included as a covariate. “Study Number” was not
included as a formal covariate because neurometabolites had
been standardized across studies. Nevertheless, all categorical analy-
ses were run with “Study Number” as a covariate after the formal
analysis. Significant results were unchanged and “Study Number”
was not a significant covariate in any of the analyses. All three
multivariate analyses (NAA, CR, and CHO) were followed by univariate
analyses focusing on each side of the hippocampus. Since nine of the
16 overweight (BMI ≥ 25) subjects were in fact obese (BMI ≥ 30), a
three group comparison (normal weight, overweight and obese) was
performed for NAA and tested with post-hoc Newman–Keuls testing.
In order to confirm the NAA findings, we computed means from the
raw data by combining the 1.5 T and 3.0 T MRSI studies and using
BMI status, study, diagnosis, the BMI status ∗ diagnosis interaction
and sex as factors in the analysis and age and sex as a continuous
variable.

2.5.2. Correlational analyses
Normality of distribution was validated using the Kolmogorov–

Smirnov test and the Lilliefors probability for non-standardized vari-
ables. Pearson's Product-Moment correlations were performed relating
BMI to each metabolite concentration for each side (N = 51). Hippo-
campal volume (HV) data from the Mathew et al. study (Mathew
et al., 2008) were correlated with NAA, CHO and CR and BMI
(N = 17) for GAD and CSwas combined. The HV correlational analyses
then examined GAD subjects alone and CS alone. Then PSWQ scores
were correlated to each metabolite concentration for each side
and BMI (N = 46 as 5 control subjects' values were missing) and
finally the same analysis was performed for the ASI. Scatterplots were
examined for outliers.

Additional exploratory analyses were permitted tomodel respective
contributions of variance of specific variables and the computation of
variance of overall models. Correction for multiple testing was not per-
formed as the primary hypotheses examined the relationship between
BMI and NAA, where NAA served as a marker of neuronal integrity
Table 1
Baseline characteristics of GAD patients and control subjects.

GAD patients
N = 29

Contro
N = 22

Age (years) 36 (Wu et al., 2003) 34 (Mo
Female 18* 14*
Body Mass Index 24.64 (6.04) 25.14 (
Height (cm) 170.31(9.05) 168.53
Weight (kg) 71.68(18.99) 71.87(1
PSWQ 64.41 (7.86) 30.11 (
ASI 32.89 (11.03) 9.21 (7

Therewas no age differences between theGAD and CS groups and the ratio of females tomales d
healthy controls. GAD subjects exhibitedmarkedly greater scores on the Penn StateWorry Ques
their symptomatic status.
Standard deviations are in parentheses. GAD = Generalized Anxiety Disorder; PSWQ = Penn

a Scores on five control subjects for the PSWQ and ASI were missing.
and putative neuroplasticity. Other findings were considered to be of a
secondary nature. All tests were two-tailed, with significance level set
at p ≤ 0.05.

3. Results

3.1. Diagnostic groups

Therewas no age difference between theGAD and CS groups and the
ratio of women to men did not differ between the diagnostic groups
(Table 1). BMI, height and body mass did not differ between GAD and
control subjects (Table 1). GAD subjects exhibited markedly greater
scores on the Penn State Worry Questionnaire (PSWQ) and the Anxiety
Sensitivity Index (ASI) in comparison to CS, confirming the former's
symptomatic status.

3.2. N-Acetylaspartate (NAA)

Employing a general linear model (GLM) using z-scores of absolute
NAA of bilateral hippocampus, subjects with a BMI ≥25 exhibited
reduced NAA in the hippocampus in comparison to subjects with
a BMI b25 [Overweight NAA z score = −0.61 (95% CI: −1.03 to
−0.19) (n = 16) versus normal weight NAA z score = 0.25 (95%
CI: −0.02 to 0.53) (N = 35): F(1,45) = 7.92; p = 0.007 (partial Eta-
squared = 0.14)]. Effects were not attributable to age, sex or diagnosis
nor was there an interactive between BMI status and diagnostic group-
ing. Women overall exhibited relative elevations of hippocampal
NAA concentration, compared to males [F(1;45) = 5.15; p = 0.028].
However we controlled for gender by including sex as a covariate in
the GLM. Univariate analyses indicated that the BMI effect was confined
to the right hippocampus [F(1,45) = 12.04; p = 0.001; partial Eta-
squared = 2.0] whereas the sex effect was confined to the left hippo-
campus [F(1,45) = 6.00; p = 0.018]. On the right side, z-score trans-
formed hippocampal NAA concentrations were significantly lower
(indicated by *) in overweight subjects in both the GAD group
(p = 0.036) and control subjects (p = 0.0032) using Newman–Keuls
post-hoc testing (Fig. 2). In contrast, there were no significant BMI dif-
ferences for diagnostic grouping on the left hand side.

When including an obese group (N = 9), overweight group
(N = 7) and normal weight group (N = 35) in the identical
model, an overall group effect for NAA is noted [F(2;43) = 3.99;
p = 0.03]. Effects were again confined to right hippocampus
[F(2;43) = 6.23; p = 0.004]. However, Newman–Keuls post-hoc
testing indicated that although the normal weight group exhibited
significantly higher hippocampal NAA concentrations than the
overweight group (p = 0.02) and obese group (p = 0.038), there
was no difference between the overweight and obese groups for
NAA (p = 0.88).
l subjects t-Value p-Value

nteggia et al., 2004) −0.51 0.61
*Chi-squared (df = 1) = .01; p = 0.90

4.40) 0.32 0.74
(10.07) −0.66 0.51
6.60) 0.03 0.97
7.86)a −14.77 p ≤ 0.0001
.49)a −8.19 p ≤ 0.0001

id not differ between the groups. BMI, height or bodymass did not differ betweenGAD and
tionnaire (PSWQ) and the Anxiety Sensitivity Index (ASI) in comparison to CS, confirming

State Worry Questionnaire; ASI = Anxiety Sensitivity Index.
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Fig. 2.Comparison of BMI groups: Normalweight b25versusOverweight≥25 for left and right hippocampal NAAZ-scores in patientswithGADand control subjects. Using a general linear
model (GLM) using standardized z-scores of absolute NAA of bilateral hippocampus, subjects with a BMI ≥ 25 exhibited reduced NAA in hippocampus in comparison to subjects with
BMI b 25 [F(1,46) = 7.92; p = 0.0071]. Effects were not attributable to age, sex or diagnosis nor was there an interactive effect between BMI grouping and diagnostic grouping. On the
right side, z-score transformed hippocampal NAA concentrationswere significantly lower (indicated by *) in overweight subjects in both the GAD group (p = 0.036) and control subjects
(p = 0.0032) using Newman–Keuls post-hoc testing. In contrast, there were no significant BMI differences for diagnostic grouping on the left hand side. BMI = body mass index.
NAA = N-acetylaspartate.
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Using raw NAA concentration scores, overweight subjects exhibited
a mean NAA concentration of 20.16 [95% CI: 17.93 to 22.39; N = 16]
versus normal weight subjects mean NAA concentration = 24.21
[95% CI: 22.72 to 25.71; N = 35; F(1;44) = 9.14; p = 0.004]. Ac-
cording to the overall model, right hippocampal NAA concentrations
accounted inversely for 50% of the BMI group variance [F(6,44) = 9.25;
p = 0.000001] whereas left hippocampal NAA concentrations inverse-
ly accounted for 33% of the BMI group variance [F(6,44) = 5.19;
p = 0.0004]. Hippocampal NAA concentrations were significantly
greater in the 1.5 Tesla study in comparison to the 3.0 Tesla study
with a marked study effect [F(1;44) = 28.91; p = 0.000003] but this
difference was controlled for in the analysis.

3.3. Choline-containing compounds (CHO)

For hippocampal CHO concentrations (Fig. 3), there was a repeated
measure (left and right) by diagnostic status (GAD versus control
subjects) effect in the hippocampus [F(1,45) = 4.69; p = 0.036].In the
left hippocampus, GAD subjects – in comparison to controls – exhibited
lower CHO whereas in the right hippocampus, GAD subjects showed
higher CHO. Univariate analyses were not significant.

3.4. Creatine (CR)

In the general linear model, there was a sex effect [F(1,45) = 11.72;
p = 0.001; males b females] but no BMI group, diagnostic group or in-
teractive effects. Onunivariate analysis, therewas a reduction in CR con-
centration in GAD subjects versus controls in the left hippocampus
[GAD mean z score CR = −0.32 (95% CI: −0.60 to −0.04) (N = 29)
versus CS mean z score CR = 0.33 (95% CI: −0.14 to 0.80) (N = 22);
F(1,45) = 4.65; p = 0.036] (Fig. 4) as well as an age effect (older
subjects had lower CR) and a sex effect (males with lower CR). On
the other hand, subjects with BMI ≥25 exhibited lower CR than
subjects with BMI b25 in the right hippocampus [Overweight mean z
score CR = −0.48 (95% CI:−0.95 to −0.01) (N = 16) versus normal
weight mean z score CR = 0.16 (95% CI: −0.17 to 0.50) (N = 35);
F(1,45) = 4.90; p = 0.031].
3.5. Correlational analyses—BMI data

An inverse correlation was noted in all subjects between the right
hippocampal NAA and BMI (r = −0.41; N = 51; p = 0.0026) (Fig. 5)
although this effect was not significant on the left (r = −0.26;
N = 51; p = 0.066). Of note, BMI scores were normally distributed
(Kolmogorov–Smirnov d = 0.19, Lilliefors p ≤ 0.01). An additional
analysis was performed to evaluate the impact of the right hippocampal
NAA on BMI. Right hippocampal NAA accounted (adjusted multiple R2)
for 17.6% [F(3,47) = 3.36, p = 0.026] of the variance of BMI when con-
trolling for age and sex.
3.6. Hippocampal volume (HV) analyses

There were no significant correlations between right or left HV and
ipsilateral NAA, CHO or CR or between BMI and left or right HV when
combining GAD patients and CS [n = 17; Appendix Table 1]. Similar
negative results were encountered in patients with GAD (N = 11) but
a significant positive correlation was noted between right HV and
right CHO in CS (r = .86, n = 6, p = 0.02). We then used the data
generated from the 17 available subjects to determine the N required
to detect a two-tailed significant effect of p ≤ 0.05 with a power of 0.8
for a right hippocampal volume/BMI relationship or a right hippocam-
pal volume/right hippocampal NAA relationship (see Appendix B). The
power analysis did not support a type II error for the absence of either
correlations, indicating that an excess of 175 subjectswould be required
to detect the significant effects for both relationships, far in excess of the

image of Fig.�2
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in right hippocampus GAD subjects showed higher CHO. Univariate analyses were not significant. CHO = total choline compounds, GAD = generalized anxiety disorder, CS = control
subjects, R1 = repeated measure, “status” = diagnostic group.
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N of the subjects of the current study, assuming hippocampal volumet-
rics were available on all subjects.

3.7. Correlational analyses—anxiety rating scales

For the Penn State Worry Questionnaire (PSWQ) scores (N = 46),
distribution of scores were normal (Kolmogorov–Smirnov d = 0.15,
Lilliefors p ≤ 0.01) despite being derived from two diagnostic groups
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(patients with GAD and CS). PSWQ scores were inversely correlated
with left (r = −0.31; p = 0.038) and right (r = −0.31; p = 0.037)
hippocampal NAA concentrations. A multiple regression analysis was
performed to examinewhether the variance contributed to right hippo-
campal NAA by BMI vis-à-vis PSWQ was an independent source of
variance. A significant Beta was noted for BMI [β = −0.38; F(1,43) =
8.26; p = 0.006] as was the case for PSWQ scores [β = −0.32;
F(1,43) = 5.63; p = 0.022]. The combination of Worry and BMI
HV
GAD

Right

pocampus

tes at their means)

 confidence intervals

res*Diagnosis

h GAD in comparison to control subjects. On univariate analysis, there was a reduction
= 0.036]. *Asterisk indicates significant effect. CR = Creatine and phosphocreatine,

” = diagnostic group.

image of Fig.�4
image of Fig.�3
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Fig. 5. Relationship between BMI and right hippocampal NAA z-score. An inverse correlation was noted in all subjects between right hippocampal NAA and BMI (r = −0.41; n = 51;
p = 0.0026) although this effect was not significant on the left (r = −0.26; n = 51; p = 0.066). BMI = body mass index. NAA = N-acetylaspartate.
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accounted for 21% of the adjusted variance of the overall model
[F(1,43) = 6.83; p = 0.0027]. PSWQ scoreswere also inversely correlat-
ed with left (r = −0.43; p = 0.003) and right (r = −0.33;
p = 0.024) hippocampal CR. These effects were not changed by con-
trolling for study. The only within-group effect that was noted was
for right hippocampal CR in GAD subjects (r = −0.41; N = 29;
p = 0.028). PSWQ was not correlated to BMI. No correlations were
noted between PSWQ scores and CHO.

Anxiety sensitivity index scores were not normally distributed.
Therefore they were log transformed (Log ASI, Kolmogorov–Smirnov
d = 0.24, Lilliefors p ≤ 0.01). The normalized ASI scores correlated
inversely with left hippocampal CR (r = −0.36; p = 0.015). No study
effects were noted and normalized ASI scores did not correlate
with BMI.

3.8. Neurometabolite correlations

The overall data suggest that high BMIwas associated with lowNAA
or reduced hippocampal neuronal viability which is associated with
altered hippocampal metabolism, as reflected by relatively low levels
of the metabolite CR. Thus, combining all subjects (N = 51) right
hippocampal NAA correlates positively with right hippocampal CR
(r = 0.57; p b 0.001) and left hippocampal NAA correlates positively
with left hippocampal CR (r = 0.63; p b 0.001). Thus, low NAA or
decreased neuronal viability is associated with low CR or altered hip-
pocampal metabolism.

4. Discussion

4.1. BMI findings

Our data are the first, to our knowledge, reporting that relatively
high BMI is associated with relatively low concentrations of a marker
of neuronal viability, NAA, in the human hippocampus, with right hip-
pocampal NAA accounting for 17.6% of the variance of BMI. We more-
over demonstrate a central correlate of overweight (BMI ≥ 25) as
reflected by low hippocampal NAA with a strong effect size. The effect
was independent of age, sex and psychiatric diagnosis. These findings
corroborate our group's earlier findings in non-obese adult bonnet
macaques demonstrating an inverse relationship between dentate
gyrus neurogenesis rates (reflected by the immature neuronal marker,
doublecortin) and expression of the anti-apoptotic gene factor, B-cell
lymphoma 2 “BCL-2” and metabolic parameters (body weight)
(Perera et al., 2011). Given a role for the hippocampus in appetite
(Davidson et al., 2007), the mechanism for the relationship between
low NAA and relatively high BMI remains to be determined. Interest-
ingly, obese subjects did not exhibit reduced NAA in comparison to
overweight subjects. It is of note that an inverse relationship between
hippocampal neuronal integrity and body mass index exists in a non-
lesioned, medically stable population. This view is supported by animal
studies demonstrating that a high lipid diet may impair hippocampal
neurogenesis (Lindqvist et al., 2006). Moreover, our recent data
(Abdallah et al., 2013) would suggest that not only does NAA reflect
neuronal integrity but also appears to positively mirror alterations
that occur in hippocampal volume during riluzole treatment of GAD
and thus may also serve, at least in part, as a putative marker of
neuroplasticity. These data taken together, both preclinical and clinical,
would suggest a significant role of hippocampal neuronal viability in
metabolic regulation and weight control.

Although studies have examined the relationship between BMI
and NAA, they have not focused on the hippocampus (Gazdzinski
et al., 2010a). A cogent issue – the specificity of the BMI findings for
the hippocampus – is considered. To analyze the relationship of BMI
to NAA in all available regions of interest (ROIs) would be problematic
for a number of reasons. First: we have an a priori hypothesis for the
involvement of the hippocampus—we have only been able to locate
one other study describing an inverse relationship between BMI and
NAA in the anterior but not the posterior cingulate cortex in cogni-
tively normal elderly (Gazdzinski et al., 2010a). Another study relates
BMI inversely to frontal lobe NAA in alcohol-abusing subjects
(Gazdzinski et al., 2010b) although alcohol itself may confound deter-
mination of NAA and alcohol independently contributes to obesity.
Second: the large number of ROIs when using the Duyn et al. method
(Duyn et al., 1993), increases the risk of a type I error, i.e. finding a
spurious effect. Third: correcting for multiple testing might abrogate
our current primary finding, i.e. a type II error. Nevertheless, in the
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absence of testing the relationship of NAA and BMI in other ROIs, the
specificity of the effect for hippocampus has to be viewed with
caution.

A question arises as towhether theNAAfindings in the current study
are dependent on hippocampal volume reductions. An inverse relation-
ship has previously been established between BMI and hippocampal
volume (Ursache et al., 2012) specifically in obese subjects (Raji et al.,
2010), although another large MRI volumetric study failed to find a re-
lationship between hippocampal volume and BMI (Orsi et al., 2011).
Hippocampal volume data on a subset of subjects who participated
in the overall study were available. Although the N of subjects was
substantially less than the overall study, there was no indication
of any significant relationships between hippocampal volume and ipsi-
lateral NAA for either right or left hippocampus for patients with GAD
and control subjects combined, for patients with GAD or control sub-
jects observed alone. Moreover, we were not able to replicate the in-
verse BMI-hippocampal volume in the current study. Possible reasons
are that our study represented a relatively representative portion
of the population whereas the cited studies specifically examined
obese subjects. Another reason for the failure to replicate other studies
was that the small N available may have reduced the power to detect
BMI/right hippocampal volume effects and right hippocampal NAA/
right hippocampal volume effects. However, the possibility of a type II
error for these effects was not supported by a power analysis on the
17 available subjects (see Appendix B).

Regarding laterality effects, findings were generally significant for
the right hippocampus and only marginally less prominent on the
left. We controlled for potential hemispheric effects in the repeated
measures (with side as the repeated measure) component of the
general linear model analyses. We did not detect a single instance
of a side by independent variable interaction for NAA. Previously
we demonstrated hippocampal asymmetry of neurometabolites in
relation to body mass and metabolic syndrome markers in nonhuman
primates (Coplan et al., 2011) but were unable to replicate this
finding in humans. Moreover, cross-species comparison between our
human and nonhuman primate MRSI data is complicated by the use
of “ratios” in the latter whereas our human study utilized absolute
quantification.

4.2. GAD findings

Hippocampal NAA demonstrated little value as a biomarker of the
GAD diagnosis per se, which is consistent with other negative studies
(Hettema et al., 2012; Mathew et al., 2008). However, of note, we
were able to demonstrate a significant inverse relationship between
PSWQ scores and NAA in both hippocampi. This findingwas not specific
to either group but became evident when patients with GAD and CS
were combined. Interestingly, the distribution of PSWQ scores is normal
suggesting a continuum of worry despite strong group differences for
the measure. These data are consistent with one previous study in
healthy volunteers demonstrating an inverse relationship between
NAA and trait anxiety scores (Gallinat et al., 2005). We were able to
demonstrate that worry and BMI contribute inverse yet independent
sources of variance to right hippocampal NAA and the overall model
accounts for 21% of the NAA variance.

Our finding of reduced CR concentration in the left hippocampus of
GAD subjects might indicate an altered metabolic state as previously
reported in the CSO of patients with GAD (Coplan et al., 2006). The
finding is in accordance with an earlier report of significantly lower
CR concentration in the right medial temporal lobe region of panic
disorder patients compared to healthy subjects (Massana et al.,
2002). Of note, Hettema et al. recently conducted a twin imaging
study and demonstrated that lifetime GAD was associated with in-
creased creatine levels in the amygdalae and was associated with
smaller left hippocampal volume (Hettema et al., 2012). PSWQ scores
also inversely predicted CR bilaterally and ASI inversely predicted left
hippocampal CR. Of note, the inverse relationship between worry
and CR was evident in patients with GAD in the right hippocampus.
Thus, worry appears to trigger altered metabolism of the hippocampi
and a proportionate depletion of CR. The finding that our overweight
subjects exhibit reduced right hippocampal concentrations of both
NAA and CR and, increased BMI appears to be associated with a reduc-
tion in both hippocampal neuronal integrity and altered hippocampal
metabolism. This view is supported by the highly positive correlations
between NAA and CR in both hippocampi.

Regarding justification of the anxiety ratings scales used: in gener-
alized anxiety disorder worry is the cardinal symptom and is effective-
ly scored using the Penn State Worry Questionnaire (PSWQ) (Keller,
2002). Patients with generalized anxiety disorder in comparison to
high worry controls are more prone to “more negative beliefs about
worry, a greater range of worry topics, and more frequent and severe
negative thought intrusions” (Hirsch et al., 2013). The anxiety sensi-
tivity index was devised to assess the fear of physical symptoms,
fear of publicly observable anxious symptoms, and fear of cognitive
“dyscontrol” (Reiss et al., 1986). The ASI-fear of cognitive dyscontrol
dimension has been shown to be strongly associated with GAD
(Rector et al., 2007). We chose not to use the Hamilton Anxiety Rating
Scale (Hamilton, 1967) because the scale was primarily developed for
depression.

4.3. Study limitations

Limitations of the study include the combination of two studies of
GAD and CS. One study was performed on a 1.5 T and the second, as
our capabilities and technology improved, on a 3 Tmachine. To counter
this limitation all neurometabolites' absolute values of each study were
converted to z-scores and then combined. Other factors that potentially
could differ between studies such as BMI were used as raw values with-
out covariation, as BMI is a consistent measure from study to study. On
the other hand, the combining of the two studies rendered one of the
largest 1H MRSI studies that we are aware of in GAD. Although the
field strength differed for the two studies, the in-house analytic soft-
ware used was identical across scanners, as was the data analyst, and
all neuroimaging procedures. The greater signal to noise ratio of the
3 T MR compared to 1.5 T does not negate the use of z-score analysis.
Moreover, we are able to obtain similarly significant results when
using raw NAA concentration values while controlling for study as a
factor.

Interpretation of NAA as a marker of neuronal integrity is compli-
cated by the view that it also reflects neuronal metabolism. 13C MRS
studies have shown a strong correlation between NAA levels and
neuronal glucose oxidative metabolism (Boumezbeur et al., 2010; Lin
et al., 2003). These findings are further supported by in-vitro studies
showing an association between NAA synthesis, energy production,
and oxygen consumption (Bates et al., 1996); as well as by animal
and human studies associating NAA with neuronal activity and metab-
olism (Benarroch, 2008; De Stefano et al., 1999; Moffett et al., 2007).
Thus, the complexity of NAA as a marker of neuronal viability should
be acknowledged.

Extensive debate exists on what the best measure of overweight
is, and what indicators are most sensitive to society’s looming meta-
bolic syndrome. Thus, our study could have been strengthened by
measures such as abdominal circumference and sagittal abdominal
diameter, and measures of insulin sensitivity and blood lipids as we
have used in our nonhuman primate metabolic studies, a goal for
future studies.

Thus, one hypothesis is that frank ablation of the hippocampus
is not required for alterations in satiety signaling and weight control.
Further studies may shed light on the directionality of the relationship
between BMI and hippocampal NAA. Our nonhuman primate data sug-
gest that dentate gyrus neurogenesis itself is associated with metabolic
control.
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Appendix A
Appendix Table 1
Tables of relationship between hippocampal volume to neurometabolites and BMI in patients with GAD and control subjects (Analyses bolded are p ≤ 0.05).

Variable Left NAA Left CR Left CHO Right NAA Right CR Right CHO BMI

All subjects combined (N = 17):
Left hippocampus −.20 −.26 .32 −.06

p = .43 p = .32 p = .19 p = .81
Right hippocampus −.07 .15 −.16 −.08

p = .77 p = .55 p = .53 p = .73

In patients with GAD only (N = 11)
Left hippocampus −.12 −.05 .28 .05

p = .71 p = .86 p = .39 p = .86
Right Hippocampus −.09 .00 −.20 .01

p = .77 p = .98 p = .55 p = .96

In control subjects only (N = 6)
Left hippocampus −.61 −.62 .63 −.38

p = .19 p = .18 p = .17 p = .44
Right hippocampus −.02 .69 .87 −.31

p = .96 p = .12 p = .02 p = .53
Appendix B. Power analysis of the relationship between right
hippocampal volume and BMI and right hippocampal volume
and right hippocampal NAA

We sought to clarify further the speculation that no relationship
between right hippocampal volume and BMI and right hippocampal
volume and right hippocampal NAA was evident because of the low
number of subjectswith volumetric data.We conductedpower analyses
on the data generated from the 17 available subjects to determine the
N required to detect a two-tailed significant effect of p ≤ 0.05 with a
power of 0.8 for the aforementioned relationships.

Using the data for the relationship between BMI and right hippo-
campal volume (the side on which significant BMI/NAA correlations
had been observed) for all subjects [r = − .08] it is evident in the
graph below that for a rho less than 0.2, an N of over 175 subjects
would be required to achieve statistical significance, far in excess of
the N of the subjects of the current study, assuming hippocampal volu-
metrics were available on all subjects.

We thenuseddata generated from the17 available subjects to deter-
mine the N required to detect a two-tailed significant effect of p ≤ 0.05
with a power of 0.8 between right hippocampal volume and right hip-
pocampal NAA [r = − .07]. The graph is identical to that depicted
above and again it is evident that for a rho less than 0.2, an N of over
175 subjects would be required to achieve statistical significance, far
in excess of the N of subjects of the current study.
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