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ABSTRACT: Reproducibility has become a major concern in
biomedical research. In proteomics, bioinformatic workflows
can quickly consist of multiple software tools each with its
own set of parameters. Their usage involves the definition of
often hundreds of parameters as well as data operations to
ensure tool interoperability. Hence, a manuscript’s methods
section is often insufficient to completely describe and
reproduce a data analysis workflow. Here we present IsoProt:
A complete and reproducible bioinformatic workflow
deployed on a portable container environment to analyze
data from isobarically labeled, quantitative proteomics experi-
ments. The workflow uses only open source tools and
provides a user-friendly and interactive browser interface to configure and execute the different operations. Once the workflow
is executed, the results including the R code to perform statistical analyses can be downloaded as an HTML document
providing a complete record of the performed analyses. IsoProt therefore represents a reproducible bioinformatics workflow that
will yield identical results on any computer platform.
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■ INTRODUCTION

Lack of reproducibility in general, and in bioinformatics
workflows specifically, is a growing concern.1 Bioinformatic
workflows in proteomics experiments often consist of multiple
software tools, each with its own set of parameters. Seemingly
small changes to a workflow, such as using different
normalization method details, can have dramatic effects on
the final result. Due to the many steps and settings that make a
complex workflow, it is often impossible to fully document it in
a research paper’s methods section. Additionally, finding and
using the exact same software versions later on often represents
a major obstacle when replicating bioinformatic analyses.
Older versions may no longer be compatible with the available
operating system or are just altogether unavailable. Therefore,
fully reproducible workflows should not only record the exact
software versions and parameters, but also preserve specific
software versions and ensure that they will produce the same
results in different computing environments.
Several projects exist to create reproducible bioinformatic

workflows. Biocontainers2 provides Docker containers to make
bioinformatic tools available in a standardized way. Docker
containers are lightweight virtual machines that, in the case of
Biocontainers, ensure that a given software version performs
identically on any operating system supported by Docker.

Therefore, users do not have to install any software but only
download the respective container. Galaxy3 is a web-based
platform for biomedical research mainly focused on genomics.
It contains thousands of tools that can be joined together to
create workflows and also supports tools for proteomics
analyses. KNIME (http://www.knime.com, KNIME AG) is
another workflow software focused on data analysis in general.
All OpenMS4 nodes were recently integrated in KNIME,
making it possible to build complete proteomics workflows
with it. ProteomeDiscoverer (Thermo Fisher) is also a
workflow system but specifically targeting proteomics data
analysis. Several academic research groups4−6 are contributing
to ProteomeDiscoverer making it usable for a wide variety of
proteomics workflows. Finally, to a certain extent MaxQuant7

with Perseus8 allows the user to create a complete analysis
workflow in a single software.
Nevertheless, all of these existing solutions have short-

comings that prevent the creation of complete, reproducible
workflows. Biocontainers is a platform to supply bioinformatic
tools in a standardized fashion but has no functionality to
combine these tools into workflows. KNIME and Galaxy are
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very powerful analysis platforms that can be adapted to a wide
variety of data analysis problems. This functionality comes at
the cost of high complexity, and many nonexpert users will find
it difficult to adopt Galaxy and KNIME to their needs.
Additionally, both KNIME and Galaxy do not contain
methods to take a snapshot of the external tools used to
actually process the data. ProteomeDiscoverer also depends on
external nodes. Therefore, to fully replicate an existing
workflow the user again has to take care of locating and
installing the exact same versions of these nodes. Moreover,
new ProteomeDiscoverer versions generally come with
significant changes which requires nodes to be specifically
developed for a given version. Nodes developed for one
version of ProteomeDiscoverer are generally incompatible with
newer ones. Therefore, none of these existing solutions fulfill
all requirements of a completely reproducible workflow
environment.
Isobaric labeling has become one of the most common

methods for quantitative mass spectrometry based proteomics
experiments. A major advantage is that it allows researchers to
multiplex samples and thereby reduce instrument runtime and
eliminate variability caused by the mass spectrometer itself.
The two methods currently available for these experiments,
tandem mass tag (TMT9) and multiplexed isobaric tagging
technology for relative quantitation (iTRAQ10) basically only
differ in the reporter masses they generate but do not require
dedicated software tools.
Even though isobaric labeling has become a standard

method in many laboratories, dedicated, easy-to-use software
solutions to analyze these data are still rare. This is particularly
problematic when dealing with more complex experimental
designs that include multiple runs on the mass spectrometer,
such as multiple instances of differently labeled multiplexed
samples. Existing dedicated software solutions, such as
iQuant,11 isobar,12 MilQuant,13 and IsobariQ14 all require
identification results from specific search engines and do not
support complex experimental designs with more than two
treatment groups or samples split across multiple iTRAQ/
TMT runs. Therefore, many research groups rely on

unpublished in-house scripts to process their experiments,
which greatly hampers reproducibility.
In an effort to simplify proteomics data analysis and provide

fully reproducible data analysis workflows, we launched the
ProtProtocols project (https://protprotocols.github.io) under
the umbrella of the European Bioinformatics Community
(EuBIC).15 On the basis of the Biocontainers project,2 the
protocols are shipped in containerized Docker images that
include all necessary software tools. Docker containers are
lightweight virtual machines that encapsulate all the software
required for the protocol to run. This ensures that the version
of all used software is linked to the protocol version and the
user does not have to worry about installing any separate tools.
Hence, 100% reproducibility can be achieved by using the
same protocol version on any computer with a Docker
environment.
Here, we present IsoProt which serves as a blueprint for the

ProtProtocol concept. IsoProt is designed for the analysis of
isobarically labeled experiments, which is one of the most
commonly used methods for high-throughput proteomics.
Next to a user-friendly web interface, IsoProt provides accurate
statistical analyses for a wide range of common experimental
designs.

■ EXPERIMENTAL PROCEDURES

Software Layout and Implementation

General Implementation. All software was installed in a
Docker image to ensure full reproducibility on each computer
system supported by Docker. To simplify the installation and
usage of our protocols, we created the free, open-source
“ProtProtocol docker-launcher” (https://github.com/
ProtProtocols/docker-launcher). It provides an easy-to-use
graphical user interface that can automatically install the
protocol (once Docker is installed) and launch the image. As it
is written in Java, it supports the major operating systems
Windows, Mac OSX, and Linux. Therefore, many technical
difficulties surrounding the use of Docker are hidden from the
user. Detailed instructions on how to install and use all tools,

Figure 1. (A) Scheme of the entire workflow including operations (ellipsoids) and data given by type and format (squares). The annotation form
and terms of the workflow follow to large extent the EDAM ontology.21 (B, C) Experimental designs and organization in folder structure for
analysis in IsoProt.
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as well as how to extend ProtProtocols, can be found at
https://protprotocols.github.io/documentation/.
The complete protocol is run through a Jupyter notebook

(http://jupyter.org) corresponding to one web page in the
browser. All relevant parameters can be set through common
graphical user elements created through Jupyter widgets.
Therefore, the user interface is highly similar to most available
search engines. The complete source code as well as additional
documentation of the protocol is freely available through
https://protprotocols.github.io.
Proteomics Software. IsoProt handles the entire analysis

pipeline from mass spectra given as peak lists to the set of
differentially regulated proteins (Figure 1A). We used
SearchGUI16 and PeptideShaker17 to perform peptide
identification and validation, with MS-GF+18 as a database
search engine. Proteins are summarized and quantified by R
scripts based on the MSnBase R library.19 R scripts
furthermore generate figures for quality control and perform
statistical tests (LIMMA library20) according to the exper-
imental design.

Input Files and Parameters

Input Files. The only files required for the analysis are mass
spectra as peak lists (MGF format) and a FASTA file
containing the protein sequences where we recommend the
UniProt version of the FASTA format. Databases can already
contain decoy sequences (following the SearchGUI instruc-
tions, http://compomics.github.io/projects/searchgui.html);
otherwise, the decoy database is created automatically. The
files can be copied into the Docker file structure or directly

mirrored onto the /data folder as automatically done by our
docker-launcher application.

Analysis Parameters. All parameters required for the data
analysis can be changed through a graphical user interface
integrated into the Jupyter notebook. In the first section, the
user has to set database search related parameters such as
precursor and fragment ion tolerance, the FASTA sequence
database to use, the labeling agent used, and the fixed and
variable modifications to consider.
On the basis of the selected labeling method and detected

folder structure, the interface to enter the experimental design
is generated. The protocol currently supports two setups: (1)
all MGF files are placed in the input directory and are part of
the same (fractionated) run (Figure 1B) or (2) MGF files from
different runs are organized by placing them in different
subdirectories (Figure 1C). Next, the experimental design user
interface allows the user to enter names for the sample groups
(for example “treatment” and “control”) and names for the
samples (one name per channel and subdirectory) and assign
each sample to one of the groups. Most importantly, the
protocol supports up to 20 sample groups and can thereby
model complex experimental designs.
Finally, the user is asked to enter parameters related to the

analysis of the quantitative data. Once all required information
is entered, the search and analysis are directly controlled
through buttons in the user interface.

Output Files and Quality Control

IsoProt provides figures and tables for the different steps of the
analysis including peptide identifications, quantitative values of
peptide-spectrum matches (PSMs), and proteins as well as a

Figure 2. Examples of the visualization and diagnostic plots created by IsoProt based on the shipped example data. (A) The mass accuracy of all
reporter ions is presented as a histogram. (B) Correlation of reporter intensities for all channels. (C) Distribution of estimated abundances on the
spectrum level for all channels. (D) Distribution of protein abundances for all samples. (E) Principal component analysis of all samples based on
the aggregated data highlighting the treatment groups. (F) Volcano plot for a quick visualization of quantitative data and statistical results.
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table for the statistical results from the significance analysis.
Visual measures for quality control were implemented as R
scripts and include total intensities of the reporter ion channels
for each sample, violin plots at different stages of the analysis,
principal component analysis, and volcano plots (Figure 2).

Test Data Sets

To evaluate the performance of our analysis workflow, we
processed the data from three publically available data sets
using the same search parameters as in the original studies. We
downloaded the respective RAW files from PRIDE Archive22

and converted them into the MGF file format using
ProteoWizard’s msconvert tool23 when no MGF peak list
files were available.
Benchmark Data Set. D’Angelo et al. recently published a

TMT benchmark data set containing an experiment where 12
human proteins were spiked into an Escherichia coli back-
ground24 using various concentrations (PRIDE Archive
identifier PXD005486). D’Angelo et al. used this data set to
assess the number of proteins that were incorrectly identified
as being regulated. As every protein was added using varying
concentrations among the samples, a standard statistical
analysis of the spiked-in proteins was not possible. Therefore,
our analysis focuses on the accuracy of the derived quantitative
estimates for the spiked proteins and the (unchanged)
background E. coli proteins.
The complete analysis was performed using IsoProt version

0.2. Spectra were identified using MSGF+18 through
SearchGUI version 3.3.3.16 The precursor tolerance was set
to 20 ppm and the fragment tolerance to 0.03 Da. One missed
cleavages was allowed. Carbamidomethylation and TMT 10-
plex of K,TMT 10-plex of peptide N-term were set as fixed
modifications. Oxidation of M was set as variable modification.
PSMs were filtered at a target false discovery rate (FDR) of
0.01 using the target-decoy approach. UniProt E. coli
sequences (version August 2018) and the spiked human
protein sequences, also from UniProt, were used for spectra
identification.
Quantitative analysis was done using the R Bioconductor

package MSnbase version 2.7.1.19 Protein summarization was
performed using the “medpolish” method as implemented by
MSnbase. Modified peptides were not used for quantitation.
Only proteins with at least two identified peptides were
accepted for further analysis. Differential expression was
assessed using the R Bioconductor package limma version
3.34.20

Cerebral Malaria Pathogenesis. The study uses TMT6
labeling to compare mouse blood with different stages of
cerebral malaria (d3, ECM) to noninfected mice (NI).25 Four
replicates of each of the three sample types were arranged in
two TMT6 sets and run separately, corresponding to a similar
case as in Figure 1C, now having three conditions being
distributed over two separate runs on the mass spectrometer.
Peak list data files (MGF file format) were downloaded from
PRIDE Archive (PXD003772).
The analysis was again performed using IsoProt version 0.2

(see above) with the precursor tolerance set to 10 ppm and the
fragment tolerance to 0.05 Da. One missed cleavage was
allowed. Carbamidomethylation and TMT 6-plex of K,TMT 6-
plex of peptide N-term were set as fixed modifications.
Oxidation of M was set as variable modification. PSMs were
filtered at a target FDR of 0.01 using the target-decoy
approach. SwissProt sequences from mouse (January 2018)

were used for spectra identification. Only proteins with at least
two identified peptides were accepted for further analysis.

Nonmuscle Invasive and Muscle-Invasive Bladder
Cancer. The study compares tumor tissue samples from
nonmuscle invasive and muscle-invasive bladder cancer.26

MGF files were downloaded from PRIDE Archive
(PXD002170).
The analysis was again performed using IsoProt version 0.2

(see above) with the precursor tolerance set to 10 ppm and the
fragment tolerance to 0.05 Da. One missed cleavage was
allowed. Carbamidomethylation and iTRAQ 8-plex of K,
iTRAQ 8-plex of Y, iTRAQ 8-plex of peptide N-term were set
as fixed modifications. Oxidation of M was set as variable
modification. PSMs were filtered at a target FDR of 0.01 using
the target-decoy approach. Sequences from SwissProt
sequences from human (January 2017) were used for spectra
identification. Only proteins with at least two identified
peptides were accepted for further analysis.

■ RESULTS
IsoProt allows users running the full data analysis of iTRAQ/
TMT experiments in a straightforward and reproducible way.
The protocol supports different experimental designs including
multiple runs on the mass spectrometer and differently labeled
multiple samples. Additionally, the open layout of the protocol
allows complex adjustments and modifications at all stages of
the workflow.
A Fully Reproducible Environment

The protocol can be run on any computer with a functional
Docker environment, by just downloading and running the
available Docker image. This is fully automated through our
“ProtProtocol docker-launcher” tool (https://github.com/
ProtProtocols/docker-launcher). Hence, the protocol avoids
all possible platform- and operating system-specific installation
issues and provides identical results independent of operating
system, its configuration, and computer hardware.
Every IsoProt release has a stable version number that points

to a specific docker image. Therefore, by citing the used
IsoProt version number, it will always be possible to exactly
restore the used analysis environment, including the versions of
all used software tools. Once the protocol has been executed, it
is possible to save it, including all generated figures, as a
standard HTML page. Therefore, the complete analysis
workflow can be easily made available, for example, at the
time of review, and be viewed with a standard web browser.
Additionally, all user-entered parameters are stored in text files
next to the analyses results which can easily be reused for
future projects (see https://protprotocols.github.io/
documentation/isoprot/save_analysis for details). For an
overview of the visualizations, see Figure 2.
Simple Example Workflow

IsoProt can be tested using an example data set that is small
enough to run in under 10 min on a standard computer. The
data set is part of the IsoProt Docker image, and necessary
parameters settings are preloaded when starting IsoProt. The
database search via SearchGUI and validation via Peptide-
Shaker result in a tab-delimited file containing detailed
information on all PSMs. Search and output parameters are
automatically saved for future reference. Additionally, a
“methods” section is generated that can be included in a
manuscript and describes all used settings. Each spectrum file
is processed separately to match and quantify PSMs that
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passed the identification FDR (default 0.01). The mass
distribution of all matched fragment ions allows control for
critical channels with inefficient labeling (Figure 2A). All PSM
quantifications are saved in a separate file (AllQuantPSMs.csv).
The output of all files of each run on the mass spectrometer

are merged, normalized, and visualized for quality control.
Violin plots of normalized PSM intensities compare the
intensity distributions (Figure 2C). Channels with different
distributions can identify problematic samples or changes
within the entire proteome. Six different histograms counting
PSM, peptide, protein, and protein group numbers allows
determining protein coverage and uniqueness by the available
mass spectra. Similarity between samples is assessed through
scatter plots comparing all quantified spectra from all ion
channels (Figure 2B).
Using the default parameters, the PSMs are summarized to

proteins using median summarization after outlier removal
requiring a minimum of 1 PSM per protein. In addition, the
protocol supports iPQF,27 mean expression, median expression
(without outlier removal), and robust summarization as
methods. A violin plot of protein ratios versus mean of all
channels shows whether the analyzed samples exhibit similar
distributions on the protein level (Figure 2D).
Quantifications from different runs (only one in the

example) are merged and submitted to a principal component
analysis (Figure 2E). This places all samples in a two-
dimensional space and color codes different treatment groups.
Studies where the samples of the different types are not placed
as distinguishable groups are unlikely to provide differentially
regulated proteins. Additionally, potential systematic biases can
quickly be discovered using this plot.
The example set quantified a total of 221 protein groups.

LIMMA statistical tests did not find any regulated proteins
with FDR < 0.05, which is in agreement with the original
results. p-Values and false discovery rates (p-values corrected
for multiple testing) are visualized in histograms, volcano plots
(Figure 2F), and a figure counting the number of differentially
regulated proteins over a range of FDRs. The latter can be used
to identify a suitable combination of the confidence threshold
and the number of significant proteins. It is advised to keep
FDR < 0.1 as the number of false positives becomes critically
high otherwise.

Performance Tests by Reprocessing Public Data

Benchmark Data Set. D’Angelo et al. performed a
comparison of different approaches to analyze TMT data
sets.24 In their first data set, the authors spiked different
concentrations of 12 human proteins into an E. coli
background. They used this data set to assess the type-I
error as the number of false positive proteins. Similar to the
original study, we assigned the first five channels to one
treatment group, and the second five channels to the second
group. As expected, no proteins were identified as being
significantly regulated. The estimated log-fold changes of the E.
coli background proteins were all close to 0 (Figure 3A).
Proteins were spiked twice using the same concentration in

different channels and only once for the two highest
concentrations. Therefore, only a single, or two replicate
measurements at maximum are available when comparing two
concentrations. Since this setup prevents a standard statistical
evaluation, we focused on the accuracy of the estimated fold
changes using the same error measurements as in the original
manuscript. Similarly, we assessed the accuracy of our fold
change estimates using the bias and the root-mean-square error
(RMSE). Across most spiked fold-changes, we observed a
comparable bias and RMSE (Figure 3B).
For the highest spiked fold-change, we observed slightly

higher average error rates than D’Angelo et al. This is most
likely caused by the fact that D’Angelo et al. imputed missing
values by taking the lowest observed intensity of the given
PSM across all samples. Thereby, missing values were
automatically interpreted as very low expression. As expected,
the measured abundance of the lowest concentrations showed
larger variation with several missing values. In our approach,
these missing values were ignored thus leading to less stable
average fold-changes. Imputing missing values like D’Angelo et
al. did naturally reduced this variation leading to reduced error
rates. However, when we, for example, estimated the fold
change of the two highest protein concentrations (also a fold
change of 2), the bias is 0 with an RMSE of 0.2 improving the
error rates dramatically.
While D’Angelo et al.’s imputation approach is valid if values

can be expected to be missing not at random (i.e., because of a
concentration below the limit of detection), it is not valid for
values missing (completely) at random (i.e., because of
inefficient labeling).28 Therefore, for the spiked proteins
D’Angelo et al.’s approach should only have been applied to

Figure 3. (A) Log-fold changes of the E. coli background proteins. This represents the expression of background proteins based on a comparison of
the first five channels against the other five ones similar to the approach by D’Angelo et al. As expected, the estimated log-fold changes are all
closely centered around 0. (B) Observed bias and RMSE of estimated fold-changes of the D’Angelo et al. benchmark data set from our pipeline and
the best-performing pipeline published by the authors. (C) Variation of ground truth proteins at different spike-in levels. Imputation by lowest
value (green) leads to increased variation compared to no imputation (red), except of the lowest level.
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cases were the lowest amount of proteins were spiked. Since it
is generally unknown why a value is missing in actual
experiments, our pipeline is not using any imputation. Limma’s
model treats these values as “missing as random”, which we
feel is more appropriate for most biological studies.
To estimate the effect of these different approaches, we

calculated the variance of the spiked-in proteins as the sum of
the absolute difference between the duplicate measurements.
Independent of the used protein summarization method,
imputing missing values increased the variance of all but the
duplicates with zero concentration of the respective proteins
(Figure 3C). In our opinion, this highlights the downside of
using “blind” imputation for all missing values as this can result
in increased noise levels or bias in the data set. The complete
output of our pipeline can be found in Supplementary File 1.
Cerebral Malaria Pathogenesis. The authors inves-

tigated differences in the plasma proteome between healthy
and malaria-infected mice (two stages). The available two
TMT 6plex sets were considered to contain independent
samples. IsoProt quantified more protein groups (324 versus
289) when requiring a minimum of 2 unique PSMs and an
identification FDR < 1%. For the further comparison, we
restricted the IsoProt output to the uniquely identified 214
proteins (no peptides shared with other proteins).

In the original study, statistical testing was carried out
separately for the two TMT runs, yielding a total of 54 (more
precisely 43 as 11 were detected in both runs) proteins found
to be differentially regulated between Plasmodium berghei
ANKA (PbA)-infected (d8 postinfection, labeled ECM) and
noninfected (labeled NI) mice (Mann−Whitney U test, p ≤
0.001). Since the authors did not correct p-values for multiple
testing, these results cannot be considered significant. We
found a total of 41 differentially regulated proteins (FDR <
0.01) and an overlap of only 20 proteins with the original
study.
Given the different statistical procedures, we analyzed all

proteins that were found differentially regulated by either one
of the methods. All but four proteins found differentially
regulated in the original study were quantified by IsoProt and
showed similar abundances in both analyses (Figure 4A).
Proteins only deemed significant in the original study were not
found significant by IsoProt mostly due to low fold-changes
(Figure 4B).
We further investigated the two proteins that mostly differed

between the two types of analyses. Retinol-binding protein 4
(Q00724) was the protein with the lowest FDR within the
proteins found differentially regulated only by IsoProt. Figure
4C shows PSM measurements for the 2 TMT runs of this

Figure 4. A Comparison of fold-changes of proteins differentially regulated in the original study (A1) and IsoProt results (A2). Proteins found
differentially regulated in the original study were labeled red. (B) Abundance profiles of Retinol-binding protein 4 (Q00724) (B1) and disulfide-
isomerase (P09103) (B2).
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protein (scaled for better comparison). Summarized protein
abundances (thick lines) by median summarization with
outlier removal show that the PSMs of peptides with less
differential behavior were removed. By merging the observa-
tion of the two TMT runs, IsoProt increases its statistical
power and thus provides evidence for regulatory behavior of
this protein.
On the other hand, protein protein disulfide-isomerase

(P09103) was the protein with the highest FDR (least
significant) in IsoProt that was found significantly regulated
in the original study (TMT-1, Figure 4D). Given only high
abundances in one of the two ECM replicates in TMT-1,
manual interpretation would discard this protein from being
regulated (Figure 4D). The PSMs measured in the second
TMT-2 run confirm this observation. The complete output of
our pipeline can be found in Supplementary File 1.
Nonmuscle Invasive and Muscle-Invasive Bladder

Cancer. IsoProt quantified 1145 protein groups when
restricting to a minimum of 2 unique peptides and 1% FDR,
compared to 1092 in the original study (minimum of 2
peptides, Occam razor principle for peptide inference and 1%
FDR). Both analyses had an overlap of 662 proteins. Despite
only having different bioinformatics workflows, the mean log-
fold changes of proteins between the two cancer subtypes were
very different (Figure 5A, Pearson’s correlation of 0.78).
IsoProt found one differentially regulated protein (15-

hydroxyprostaglandin dehydrogenase, FDR < 0.01) after

correction for multiple testing, which was not carried out in
the original study. In order to allow a comparison of both
results, we therefore also used uncorrected p-values for the
following analysis. This is not recommended as it is prone to
greatly overestimate the number of regulated proteins. When
comparing these uncorrected p-values, the majority of
“significant” proteins were different between the two studies
(Figure 5B,C, colored points indicate p < 0.05 in the other
respective study).
This striking difference in the statistical results is due to

different normalization approaches used. Their effect can be
seen in the distribution of protein abundances (Figure 5D,E).
The authors of the original study normalized the ratios
between cancer subtypes after protein summarization and
averaging of replicates. The more common and in our opinion
correct approach is to normalize the different channels (i.e.,
individual samples) on the (measured) PSM or (aggregated)
peptide level prior to the aggregated analysis of these
measurements on the protein level and, most importantly,
prior to merging any independent (i.e., replicate) measure-
ments. Strong deviations of individual channels which are
visible on the peptide level were thus discarded in the original
study. The complete output of our pipeline can be found in
Supplementary File 1.

Figure 5. (A) Comparison of log-ratios between IsoProt output and original study. Pearson’s correlation between both quantification: 0.79. (B−C)
Volcano plots for results from statistical testing in the original study (B) and in IsoProt (C). Colored points correspond to proteins with a
(uncorrected) p-value below 5% in the other study, respectively. (D−E) Distribution of relative protein abundances in original study (D) and
IsoProt (E).
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■ DISCUSSION

IsoProt shows how the ProtProtocols framework can be used
to create user-friendly, reproducible bioinformatic workflows.
IsoProt makes it simple to include the complete bioinformatic
data processing workflow as a supplementary file. Thereby,
reviewers and other researchers can easily assess the used
methods.
Encapsulating protocols into docker containers preserves the

complete setup including all software versions which can be
referenced through a single protocol version number. This
allows anyone to replicate the results at any later stage without
having to worry that older software might no longer work.
Once a given version of the protocol is downloaded, users can
be sure that it will behave in exactly the same way on all
supported platforms.
The use of docker makes the protocol highly portable.

Docker currently supports Windows, Linux, and Mac OS
making our protocol truly multiplatform. The fact that the
protocol can be installed through a single command makes it
trivial to move the setup from one machine to another. With
our “ProtProtocol docker-launcher” tool, the protocol can even
be installed with the click of a single button. This should
greatly reduce the effort in setting up a complex proteomics
analysis environment. Unfortunately, Docker support for
Windows is not yet fully stable. Therefore, several Windows
users experienced issues when installing Docker which
prevented them from using IsoProt. Even though this currently
reduces the ease-of-use of ProtProtocols on Windows
machines, we believe that this will quickly be improved since
Microsoft recently became an official partner of Docker.29

IsoProt’s performance was tested on three publicly available
data sets. The results highlight that subtle differences in the
data analysis can lead to considerable differences in the final
results. Such differences can only be identified by reproducing
the complete environment of the analysis workflow, something
that is very difficult to realize when only relying on information
from a scientific paper. Thus, more complete and easily
readable information on the used workflow and its parameters,
or even the entire computational environment, will consid-
erably improve paper reviews as well as reproducing and
discussing results from already published studies. Such
workflows will further increase quality and credibility of both
scientific studies and the presenting journals. IsoProt enables
users to easily provide such complete information on their
analysis. Our approach facilitates comparison with other data
analysis pipelines or testing of robustness to parameter changes
with minimal efforts requiring only peak list files, their relation
to the experimental design and main parameters for
identification and quantification.
All of these developments are available as free and open-

source software. Thereby, we encourage other researchers to
use the ProtProtocol infrastructure as starting point to develop
their own analysis workflows and make them available to the
community. All our tools are modularized and prepared to
support and simplify such external developments. Since
Docker has become an industry standard for containerized
applications long-term support seems to be guaranteed for
these developments.
In summary, we developed a user-friendly environment for

fully reproducible data analysis and exemplified its use through
a complete workflow for the analysis of data from isobarically
labeled mass spectrometry experiments.
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The Galaxy Platform for Accessible, Reproducible and Collaborative
Biomedical Analyses: 2018 Update. Nucleic Acids Res. 2018, 46 (W1),
W537−W544.
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