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A B S T R A C T

Rationale and objectives: To predict high-risk prostate cancer (PCa) by combining the habitat
features of biparametric magnetic resonance imaging (bp-MRI) with the omics features of
contrast-enhanced ultrasound (CEUS).
Materials and methods: This study retrospectively collected patients with PCa confirmed by his-
topathology from January 2020 to June 2023. All patients underwent bp-MRI and CEUS of the
prostate, followed by a targeted and transrectal systematic prostate biopsy. The cases were
divided into the intermediate-low-risk group (Gleason score ≤7, n = 59) and high-risk group
(Gleason score ≥8, n = 33). Radiomics prediction models, namely, MRI_habitat, CEUS_intra, and
MRI-CEUS models, were developed based on the habitat features of bp-MRI, the omics features of
CEUS, and a merge of features of the two, respectively. Predicted probabilities, called radscores,
were then obtained. Clinical-radiological indicators were screened to construct clinic models,
which generated clinic scores. The omics–clinic model was constructed by combining the radscore
of MRI-CEUS and the clinic score. The predictive performance of all the models was evaluated
using the receiver operating characteristic curve.
Results: The area under the curve (AUC) values of the MRI-CEUS model were 0.875 and 0.842 in
the training set and test set, respectively, which were higher than those of the MR_habitat
(training set: 0.846, test set: 0.813), CEUS_intra (training set: 0.801, test set: 0.743), and clinic
models (training set: 0.722, test set: 0.611). The omics–clinic model achieved a higher AUC (train
set: 0.986, test set: 0.898).

Abbreviations: PI-RADS, prostate imaging reporting and data system; PCa, prostate cancer; csPCa, clinically significant prostate cancer; bp-MRI,
biparametric magnetic resonance imaging; mpMRI, multiparameter MRI; T2WI, T2-weighted imaging; T2WI-FS, T2-weighted imaging fat satura-
tion; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; CEUS, contrast-enhanced ultrasound; TRUS, transrectal ultrasound;
ROI, region of interest; VOI, volume of interest; ICC, intraclass correlation coefficient; CH, Calinski-Harabasz; ROC, receiver operating characteristic;
AUC, area under the curve; DCA, decision curve analysis; LASSO, least absolute shrinkage and selection operator; MLP, multilayer perceptron; LR,
logistic regression; BMI, body mass index; T-PSA, total prostate-specific antigen; F-PSA, free prostate-specific antigen; PV, prostate volume; PSAD,
PSA density; ALP, alkaline phosphatase; ALB, albumin; LYM, lymphocyte; NEU, neutrophil; MONO, mononuclear; NLR, neutrophil-to-lymphocyte
count ratio; BM, bone metastasis; PI, peak intensity; TTP, time to peak; 95%CI, 95 % confidence interval; ACC, accuracy; SEN, sensibility; SPE,
specificity; PPV, positive predictive value; NPV, negative predictive value; PRE, precision; FOV, field of view; NXE, number of excitations; TR,
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Conclusions: The combination of the habitat features of bp-MRI and the omics features of CEUS
can help predict high-risk PCa.

1. Introduction

Prostate cancer (PCa) is the fifth highest cause of cancer death in men in 2020 [1]. In recent years, the incidence andmortality rates
of PCa have increased significantly in China [2]. PCa with different risk degrees has different treatments and prognoses [3]. Currently,
the gold standard for diagnosing PCa is ultrasound-guided prostate biopsy [4]. Recently, MRI-targeted biopsy, MRI-US fusion biopsy,
and cognitive biopsy have been developed to optimize prostate biopsy [5]. MRI targeted biopsy is guided by a real-time scanning T2WI
sequence. Although this technology can accurately locate the lesion, the process is too cumbersome and the equipment requirements
are too high to popularize it in clinical practice [6]. An MRI-US cognitive biopsy is carried out by the operator through a visual
comparison of pre-biopsy MRI images and real-time ultrasound images. Although this technology is easy to promote in clinical practice
because of its simplicity and low equipment requirements, it is limited by the operator’s knowledge and small suspect lesions [5,7].
MRI-US fusion biopsy is performed by software that superimposes suspicious lesions on the MRI onto real-time ultrasound images.
Although this technique can reduce operator errors in visual registration by adjusting biopsy trajectories in real time through jointly
displayed targets, there is a barrier presented by the cost of software [8]. Studies have shown that there is no significant difference in
the detection rate of clinically significant PCa among the above three technologies [9]. However, biopsy only obtains a small portion of
the tumor, which may ignore the heterogeneity of the tumor [10]. Therefore, a non-invasive method that can accurately describe the
heterogeneity of tumors and predict the risk of PCa will have high clinical application value for patients.

MRI is considered an indispensable imaging technique for diagnosing PCa. Currently, studies have found that biparametric MRI
(bp-MRI) has comparable diagnostic efficacy of clinically significant PCa to multiparameter MRI (mpMRI) [11,12]. Contrast-enhanced
ultrasound (CEUS) can display real-time dynamic perfusion of the prostate and provide information about the tumor blood supply
[13]. However, current imaging methods in clinical practice find it difficult to evaluate heterogeneity within prostate tumors [14,15].

Radiomics can effectively characterize subtle changes in images that are not observable by the naked eye [16]. The combination of
radiomics features and advanced machine learning algorithms can quantitatively analyze the pathophysiological status of tumors,
greatly improving the efficiency and accuracy of clinical diagnosis [17]. However, radiomics which still analyzes the entire tumor
region, may ignore phenotypic variations in different regions, and may have bias in quantifying heterogeneity within the tumor [18].
To more effectively characterize intratumoral heterogeneity, habitat analysis was developed. This method generates different habitat
subregions clustered according to the similarity of voxel-imaging features in the image, with the same subregion sharing common
tumor biological pattern characteristics [19]. At the microscopic level, these subregions correspond to clusters of cells with similar
genotypes and biological phenotypes, which can reflect the distribution of tumor cells and their molecular properties and better
quantify intratumoral heterogeneity [20,21]. At present, few studies have combined the radiomics characteristics of MRI habitat

Fig. 1. Flowchart of the patient enrollment process.
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subregions and the omics characteristics of CEUS to predict high-risk PCa [22,23].
The purpose of this study was to identify tumor habitat subregions with similar biological characteristics from bp-MRI, develop

quantitative measurement methods for intratumoral heterogeneity through radiomics analysis, and combine clinical indicators and
CEUS omics characteristics to predict the preoperative value of high-risk PCa.

2. Materials and Methods

2.1. Patients

This retrospective study was approved by the Ethics Committee and waived the need for informed consent (Approval Number:
2023-E202-01). We retrospectively collected patients with PCa confirmed by histopathology from January 2020 to June 2023. A total
of 350 consecutive patients were analyzed in this study. The processes of the inclusion and exclusion of the study subjects are shown in
Fig. 1. Finally, 92 patients were enrolled and randomly divided into the training set and the test set, with a ratio of 7:3. The patients
were categorized into two groups based on pathological reports [24]: the intermediate-low-risk group (Gleason score ≤7) and the
high-risk group (Gleason score ≥8).

2.2. MRI examination

Bp-MRI was performed using Siemens MAGNETOM Viro 3.0T MRI imager and Siemens MAGNETOM Prisma 3.0T MRI imager
(Siemens, Munich, Germany). MR imaging protocols included T2WI/T2WI-FS and DWI imaging sequences. Detailed scanning pro-
tocols were shown in Supplement materials Table S1. The apparent diffusion coefficient (ADC) values were calculated from the mono-
exponential signal attenuation model of the DWI images, and the ADC maps were reconstructed through automatic post-processing of

Fig. 2. Schematic of the workflow of the high-risk PCa prediction method used in this study.
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the MR scanner. The bp-MRI imaging results of all subjects were interpreted by two experienced radiologists. When there were dif-
ferences in the conclusions, a consensus was reached through discussion.

2.3. CEUS examination

CEUS examinations were performed using LOGIQ E9 ultrasound equipment (GE Healthcare, Milwaukee, WI, USA), transrectal
probe IC5-9-D, with a frequency of 3–9 MHz. The CEUS examination was performed by a senior sonographer with 10 years of CEUS
experience. During the examination, the patient was placed in the left lateral position with the legs flexed and the hands clasped
around the knees. Conventional transrectal ultrasound (TRUS) was performed to observe the shape, size, and whether there were
nodules or abnormal blood flow signals of the prostate. After real-time fusion of the MRI and ultrasound images, suspicious lesions of
the prostate indicated by the MRI were located, and CEUS was performed on this plane. A 2.4 mL ultrasound contrast agent (SonoVue,
Bracco Imaging, Milan, Italy) was rapidly injected through the median vein of the elbow, and 5 mL of physiological saline was used to
quickly flush the tube. The contrast-enhanced appearance of the prostate was observed for 3 min. The data were recorded and stored in
Digital Imaging and Communications in Medicine (DICOM) format.

2.4. Transrectal prostate biopsy and pathology

Bp-MRI data stored in DICOM format was uploaded in Volume Navigation (VNav, General Electric, USA), which is an image fusion
software installed on the ultrasound equipment (LOGIQ E9, GE). In the navigation mode, ultrasound images and MRI images were
manually adjusted by using the “surface-point” matching method. An 18 G automatic biopsy gun (CR Bard Inc., Tempe, AZ, USA) was
used to performMRI/TRUS fusion-targeted biopsy on suspicious lesions to get 1–3 cores, followed by systematic biopsy to get 12 cores.
The pathology results and prostate cancer Gleason score were reported by experienced pathologists.

2.5. MRI processing and delineation

We used the affine registration and rigid registration methods of ITK-SNAP software (version 4.0) to simultaneously register the
region of interest (ROI) of the same lesion on three sequence images: T2WI-FS, DWI (b= 1000 s/mm2), and ADC. To avoid the effect of
uneven signal intensity in the MR images caused by magnetic field changes in the subsequent analysis, we used the N4 bias correction
method to process all MR images [25]. To standardize the voxel spacing and minimize the differences in the radiomics features caused
by different voxel sizes, all MR images were resampled to 1 × 1 × 1 mm3 due to the resolution difference.

A senior radiologist delineated the ROI along the lesion on the MR images layer by layer and then obtained the volume of interest
(VOI) of the tumor. Due to the partial volume effect of the MRI [26], the radiologist carefully delineated the ROI slightly smaller than
the boundary of the lesion during the delineation process while avoiding structures such as the urethra, ejaculatory duct, and seminal
vesicle. If multiple lesions coexisted, the lesion with the highest Gleason score was selected for delineation. If the Gleason scores were
the same, the lesion with the largest diameter was selected for delineation. The delineation results were confirmed by another senior
radiologist. When differences were found, conclusions were reached through discussion. The delineation processes are shown in Fig. 2.

2.6. CEUS processing and delineation

The dynamic CEUS video was converted into static images, which were obtained every 5 s, starting from the infusion of the contrast
agent. A total of 979 contrast static images were obtained. A senior sonographer delineated the ROI of the tumor based on the peak
time of CEUS. The delineation results were confirmed by the other senior sonographer. When differences were found, conclusions were
reached through discussion. The obtained ROI was matched with the other static images of the same patient at different time points.
The delineation processes are shown in Fig. 2. The intraclass correlation coefficient (ICC) was calculated to evaluate the consistency
between the radiomics features extracted from the ROI. The radiomics features with ICC ≥0.75 were considered to have good
repeatability and stability and were retained for the subsequent feature selection procedure.

2.7. Spatial tumor habitats from the MRI

Habitat subregions were divided using a K-mean clustering algorithm based on the T2WI-FS, DWI, and ADC imaging sequences. The
Euclidean distance between voxel intensities was used as a similarity metric to optimize the clustering process. K values (2, 3, 4, or 5)
and the average Calinski-Harabasz (CH) scores for different k values were calculated to evaluate the clustering results (Supplement
materials Fig. 1). We chose k = 3 as the optimal number of clusters with reference to the CH score, which means that three habitat
subregions were generated. All processes of habitat analysis are illustrated in Fig. 2.

2.8. Features extraction

We extracted the radiomics features by PyRadiomics (version 3.0.1) package in Python (version 3.7) [27]. For the MRI, the
radiomics features were extracted from each habitat subregion of each imaging sequence. A total of 949 features were extracted from a
single habitat subregion of a single imaging sequence. At the individual level, the features of all habitat subregions of the same imaging
sequence were averaged. Then, 2847 features were extracted from each habitat subregion from the three imaging sequences. For the
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CEUS, the radiomics features of each patient were extracted from the ROIs of all the contrast moment images. Aside from the
abovementioned features, shape and first-order features were also extracted, totally of 1561 features. For the same patient, the average
of the features from all the contrast images was taken to represent this patient. We also combined the features derived from habitat
subregions of the MRI and those from CEUS to construct omics–clinic prediction models.

2.9. Omics features selection and model construction

First, to achieve a zero mean and unit variance, all the radiomics features were normalized using Z-score. The features with P< 0.05
were retained for preliminary screening using the independent samples t-test. Thereafter, the correlation between the features was
analyzed using the Pearson correlation coefficient. One out of two highly correlated features with a correlation coefficient >0.9 was
randomly retained. Finally, the features with non-zero coefficients were filtered out, which were using the least absolute shrinkage and
selection operator (LASSO) algorithm, and 10-fold cross-validation.

The filtered features were input into the multilayer perceptron (MLP) machine learning model. A 10-fold cross-validation was used
in the training set to obtain the best parameters for the model. Radiomics prediction models, namely, MRI_habitat, CEUS_intra, and
MRI-CEUS models, were developed based on the habitat features of bp-MRI, the omics features of CEUS, and a merge of features of the
two, respectively. Predicted probabilities, called radscores, were then obtained.

2.10. Clinical-radiological indicators selection and model construction

The clinical indicators [age, body mass index (BMI), total prostate-specific antigen (T-PSA), free-PSA (F-PSA), F-PSA/T-PSA (F/T),
prostate volume (PV), PSA density (PSAD), alkaline phosphatase (ALP), albumin (ALB), lymphocyte (LYM), neutrophil (NEU),
mononuclear (MONO), neutrophil to lymphocyte count ratio (NLR)] and radiological indicators [PI-RADS v2.0 score, peak intensity
(PI), time to peak (TTP), bone metastasis (BM)] were used as candidate variables. Univariate logistic regression analysis was used to
initially screen out the variables. Multivariate logistic regression analysis was used to determine the independent risk factors. A clinical
prediction model was constructed by inputting the independent risk factors into the logistic regression (LR) machine learning model to
obtain the predicted probabilities called the clinic score.

3. Omics–clinic model construction

The clinic score and the radscore of the MRI-CEUS model were inputted into AdaBoost machine learning to construct an
omics–clinic prediction model. A nomogram was plotted to visualize the omics–clinic prediction model [28]. The prediction perfor-
mance among the omics–clinic model, clinic model and MRI-CEUS model was compared respectively.

Table 1
Clinical-radiological indicators of the patients in different sets.

Indicators Total (n = 92) Training set (n = 64) Test set (n = 28) p value

Age 67.8 ± 7.7 69.0 ± 7.4 64.9 ± 8.0 0.018
BMI 23.9 (21.7–25.9) 23.9 (21.5–25.5) 23.6 (22.0–27.1) 0.530
T-PSA 21.0 (11.2–78.5) 20.7 (10.6–71.0) 21.5 (12.8–92.5) 0.859
F-PSA 2.6 (1.3–8.6) 2.6 (1.2–7.4) 2.6 (1.3–9.4) 0.993
F/T 0.1 (0.1–0.2) 0.1 (0.1–0.2) 0.1 (0.1–0.2) 0.980
PV 40.2 (31.3–52.6) 29.8 (331.3–52.4) 42.5 (30.3–55.8) 0.757
PSAD 0.6 (0.3–1.9) 0.6 (0.3–1.6) 0.7 (0.3–2.3) 0.722
ALP 84.5 (69.0–104.8) 86.5 (70.0–104.0) 74.0 (67.0–104.8) 0.366
ALB 41.3 (38.5–42.9) 41.5 (38.1–42.9) 41.0 (38.9–43.0） 0.690
LYM 1.6 (1.3–2.0) 1.6 (1.3–2.1) 1.6 (1.4–1.9) 0.865
NEU 3.7 (3.1–4.6) 3.9 (3.2–4.7) 3.7 (3.0–4.4) 0.564
MONO 0.5 (0.4–0.7) 0.5 (0.4–0.7) 0.5 (0.4–0.6) 0.608
NLR 1.8 (0.2–2.7) 1.9 (0.2–2.6) 1.7 (0.9–3.0) 0.835
PI 21.3 ± 4.9 20.98 ± 5.14 21.89 ± 4.18 0.413
TTP 10.6 (8.3–13.8) 11.1 (8.3–14.0) 10.2 (7.8–13.7) 0.789
PI-RADS v2.0 score ​ ​ ​ 0.715
2 2 (2.2 %) 2 (3.1 %) 0 ​
3 6 (6.5 %) 4 (6.3 %) 2 (7.1 %) ​
4 27 (29.3) 19 (29.7 %) 8 (28.6 %) ​
5 57 (62.0 %) 39 (60.9 %) 18 (64.3 %) ​
BM ​ ​ ​ 0.646
non-metastasis 66 (71.7 %) 45 (70.3 %) 21 (75.0 %) ​
metastasis 26 (28.3 %) 19 (29.7 %) 7 (25.0 %) ​

95% confidence interval (95%CI), bodymass index (BMI), total prostate-specific antigen (T-PSA), free prostate-specific antigen (F-PSA), F/T, prostate
volume (PV), PSA density (PSAD), alkaline phosphatase (ALP), albumin (ALB), lymphocyte (LYM), neutrophil (NEU), mononuclear (MONO),
neutrophil-to-lymphocyte count ratio (NLR), prostate imaging reporting and data system v2.0 score (PI-RADS v2.0 score), peak intensity (PI), time to
peak (TTP), and bone metastasis (BM).
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3.1. Model performance evaluation

To assess the performance of all prediction models, we plotted the receiver operating characteristic (ROC) curve and calculated the
AUC, accuracy, precision, sensitivity, specificity, positive predictive value, negative predictive value, recall, and F1 score. The Hos-
mer–Lemeshow test was used to evaluate the concurrence among the anticipated results of the models and the histopathological
results. The calibration curves were drawn to visualize the predictive accuracy of the models [29]. Decision curve analysis (DCA) was
used to quantify the net benefit, which can assess the clinical practicability of the models across different threshold probabilities [30].

3.2. Statistical analysis

The Kolmogorov–Smirnov test was used to test the normality of data. The Student’s t-test was used for continuous variables with a
normal distribution, which was expressed as mean± standard deviation. Abnormal distributed continuous variables were expressed as
the median (interquartile range), which was using Mann Whitney U test. The categorical variables were expressed as frequencies or
percentages, which was using chi-square test or Fisher’s exact test.

The DeLong test was used to compare the differences in the AUC between different models. P < 0.05 was considered statistically
significant. Data processing, model construction, statistical analysis, and model evaluation were conducted using Python (version 3.7),
R software (version 4.2.2), and SPSS (version 27.0.1).

Fig. 3. ROC curves in the training set (A) and test set (B).
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4. Results

4.1. Patient population

A total of 92 patients (mean age: 67.8 ± 7.7 years; range: 47–83 years) were included in the study. Among these patients, 59 had a
Gleason score≤7 (mean age: 66.8± 7.9 years; range: 47–82 years), and 33 had a Gleason score≥8 (mean age: 69.4± 7.3 years; range
55–83 years). There were 64 patients in the training set and 28 patients in the test set. The clinical-radiological indicators of the
patients in the training set and test set are presented in Table 1.

4.2. Performance of models

In distinguishing intermediate-low-risk PCa from high-risk PCa, the ROC curves are shown in Fig. 3. The results of the univariate
and multivariate logistic regression analyses in the training set are presented in Table 2. The performance of the diagnosis of the
models are shown in Table 3 and Supplement materials Fig. 2. The nomogram used to visualize the omics–clinic model is illustrated in
Fig. 4. According to the calibration curves (Fig. 5), the deviation curves of the training and test sets of the omics–clinic model were
close to the ideal curves. Fig. 6 shows the DCA of the omics–clinic model. The net benefit was measured by the y-axis. The DCA curve
showed that implementing the omics–clinic models was more beneficial than either treating all patients (assuming all lesions were
high risk) or providing no treatment (assuming all lesions were low risk). In addition, the threshold probability range of the
omics–clinic model for obtaining the highest net benefit was the largest.

5. Discussion

In our study, we constructed multiple predictive models to identify high-risk PCa from intermediate-low-risk PCa. Through hor-
izontal comparisons, the habitat subregion-based radiomics model was found to exhibit stronger predictive performance than the
models relying on CEUS intratumoral radiomics features and clinical-radiological indicators. In addition, integrating the habitat
subregion-based radiomics of the MRI with the intratumoral region-based radiomics of CEUS and clinical-radiological indicators
facilitated further improvement in predictive ability.

Previous research focusing on prostate MRI has predominantly conducted radiomics analysis of the entire lesion. Jin et al. [31]
developed an omics–clinic model to predict the occurrence of clinically significant PCa, with a mean AUC of 0.803. In contrast to
previous studies, our study divided the entire tumor into distinct habitat subregions based on the similarities and differences in the
prostate MRI voxel features and constructed a prediction model utilizing the radiomics features from those subregions. The AUCs of the
MRI_habitat model in predicting the risk of PCa in the training set and test set were 0.846 and 0.813, respectively.

PCa is characterized by massive angiogenesis and infiltration, resulting in a complex vascular distribution, leading to different
blood supply statuses in various regions of the tumor. Alterations in blood flow can drive changes in the surrounding microenvi-
ronment, such as hypoxia, acidosis, and necrosis [32]. Moreover, the progression of PCa is frequently accompanied by the infiltration
of immune cells, which can secrete cytokines and chemokines that affect tumor growth [33]. Due to the presence of multiple factors,

Table 2
Results of the univariate and multivariate logistic regression analysis in the training set.

Indicators
Univariate logistic regression Multivariate logistic regression

OR (95%CI) p value OR (95%CI) p value

Age 1.042 (0.970–1.120) 0.262 ​ ​
BMI 0.896 (0.744–1.078) 0.244 ​ ​
T-PSA 1.007 (0.999–1.014) 0.078 ​ ​
F-PSA 1.076 (1.019–1.137) 0.009 1.054 (0.978–1.136) 0.167
F/T 0.000 (0.000–0.338) 0.029 0.000 (0.000–3.630) 0.081
PV 1.008 (0.980–1.037) 0.575 ​ ​
PSAD 1.257 (0.987–1.601) 0.064 ​ ​
ALP 1.000 (0.998–1.001) 0.596 ​ ​
ALB 0.885 (0.784–0.999) 0.048 1.014 (0.857–1.200) 0.872
LYM 0.643 (0.300–1.381) 0.258 ​ ​
NEU 0.837 (0.524–1.337) 0.457 ​ ​
MONO 0.479 (0.033–6.900) 0.589 ​ ​
NLR 0.899 (0.648–1.246) 0.522 ​ ​
PI 1.105 (0.987–1.237) 0.082 ​ ​
TTP 0.989 (0.889–1.101) 0.845 ​ ​
PI-RADS v2.0 score 6.876 (1.872–25.250) 0.004 4.365 (1.080–17.640) 0.039
BM 2.460 (0.819–7.389) 0.109 ​ ​

95% confidence interval (95%CI), bodymass index (BMI), total prostate-specific antigen (T-PSA), free prostate-specific antigen (F-PSA), F/T, prostate
volume (PV), PSA density (PSAD), alkaline phosphatase (ALP), albumin (ALB), lymphocyte (LYM), neutrophil (NEU), mononuclear (MONO),
neutrophil-to-lymphocyte count ratio (NLR), prostate imaging reporting and data system v2.0 score (PI-RADS v2.0 score), peak intensity (PI), time to
peak (TTP), and bone metastasis (BM).
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the heterogeneous pattern of prostate cancer is often not uniformly distributed [18]. Habitat analysis can capture the aforementioned
subtle changes in the tumor, combine the tumor cells with the microenvironment in which they proliferate, reflect the pathophysi-
ological changes throughout tumor growth, and more appropriately characterize the spatial heterogeneity within the tumor. Our
results suggest that narrowing the focus from the entire tumor region to the habitat subregions can provide more valuable information
for the grading and prognostic analyses of PCa.

Previous studies have demonstrated the diagnostic value of CEUS in identifying benign and malignant prostate lesions [34,35]. In
contrast to studies using quantitative measures of CEUS or using only the radiomics features from CEUS images at specific moments, we
innovatively extracted and fused the radiomics features from CEUS images at multiple moments to assess the value of CEUS for
predicting the risk of PCa. The AUCs of the CEUS_intra model in the training set and test set were 0.801 and 0.743, respectively.

To further evaluate the predictive value of the habitat subregions combined with CEUS, we incorporated the radiomics features of
the habitat subregions of MRI and those of the intratumoral regions of CEUS to construct the MRI-CEUSmodel. The results in our study
showed that the AUCs of the bpMRI-CEUS model were elevated compared with those of the individual models in the training and test
sets. These results indicate that the radiomics features of the habitat subregions and CEUS have the potential to complement each
other. Although both CEUS and DCE-MRI can provide information about tumor blood supply, DCE-MRI reflects signal intensity versus
time rather than visualizing changes in the contrast concentration over time [14]. In this regard, CEUS has an advantage.

Xiang et al. [36] developed a clinic model to differentiate PCa with an AUC of 0.748. In this study, the AUC of the clinic model was
0.722. There is a risk of overdiagnosis and overtreatment of PCa by relying only on clinical indicators for diagnosis and assessment [37,
38]. Therefore, we integrated the radiomics features of the habitat subregions of the MRI, the intratumoral regions of CEUS and the
clinical-radiological indicators to construct an omics–clinic model. The AUCs of the omics–clinic model were 0.986 and 0.898 in the
training set and test set, respectively, showing that this model may be a powerful tool to assist clinicians in assessing the risk of PCa.

Our study has some limitations. First, this retrospective study was a single center. Therefore, the sample population was small, with
potential population selectivity bias. In the future, we need to work with other institutions to incorporate more samples and conduct
multicenter studies. Second, the habitat subregions generated by clustering were not confirmed by rigorous pathology. Third, the
delineation of habitat subregions using voxels from multiple imaging sequences requires the spatial registration of all imaging se-
quences. However, there may be resolution differences and distortions between the different imaging sequences, which may affect the
results of the registration.

6. Conclusion

The habitat radiomics analysis strategy we developed in this study based on bp-MRI may be a valuable tool for identifying high-risk

Table 3
The performance comparison of different models.

Models Set AUC (95%CI) ACC SEN SPE PPV NPV PRE Recall F1 score

MRI_habitat training 0.846 (0.753–0.938) 0.797 0.750 0.875 0.909 0.677 0.909 0.750 0.822
​ test 0.813 (0.619–1.000) 0.786 0.737 0.889 0.933 0.615 0.933 0.737 0.824
CEUS_intra training 0.801 (0.695–0.907) 0.766 0.775 0.750 0.838 0.667 0.838 0.775 0.805
​ test 0.743 (0.538–0.947) 0.821 0.895 0.667 0.850 0.750 0.850 0.895 0.872
Clinic training 0.722 (0.623–0.821) 0.672 0.550 0.875 0.880 0.538 0.880 0.550 0.677
​ test 0.611 (0.434–0.788) 0.536 0.421 0.778 0.800 0.389 0.800 0.421 0.552
MRI-CEUS training 0.875 (0.794–0.956) 0.750 0.600 1.000 1.000 0.600 1.000 0.600 0.750
​ test 0.842 (0.654–1.000) 0.893 1.000 0.667 0.864 1.000 0.864 1.000 0.927
Omics-clinic training 0.986 (0.967–1.000) 0.953 0.975 0.917 0.951 0.957 0.951 0.975 0.963
​ test 0.898 (0.766–1.000) 0.893 0.947 0.778 0.900 0.875 0.900 0.947 0.923

Area under the curve (AUC), 95 % confidence interval (95%CI), accuracy (ACC), sensibility (SEN), specificity (SPE), positive predictive value (PPV),
negative predictive value (NPV), precision (PRE).

Fig. 4. A radiomics nomogram was developed using the clinic score and the MRI-CEUS radscore for the prediction of high-risk PCa in the
training set.
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PCa. The model integrating the radiomics features of the habitat subregions of the MRI and the intratumoral regions of CEUS and the
clinical-radiological indicators showed a favorable identifying capability.
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Fig. 5. Calibration curves of the MRI-CEUS model in the training set (A) and test set (B).

Fig. 6. Decision curve analysis of the MRI-CEUS model in the test set.
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