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ABSTRACT

Motivation: Inferring the taxonomic profile of a microbial community
from a large collection of anonymous DNA sequencing reads is a
challenging task in metagenomics. Because existing methods for
taxonomic profiling of metagenomes are all based on the assignment
of fragmentary sequences to phylogenetic categories, the accuracy
of results largely depends on fragment length. This dependence
complicates comparative analysis of data originating from different
sequencing platforms or resulting from different preprocessing
pipelines.
Results: We here introduce a new method for taxonomic profiling
based on mixture modeling of the overall oligonucleotide distribution
of a sample. Our results indicate that the mixture-based profiles
compare well with taxonomic profiles obtained with other methods.
However, in contrast to the existing methods, our approach shows
a nearly constant profiling accuracy across all kinds of read lengths
and it operates at an unrivaled speed.
Availability: A platform-independent implementation of the mixture
modeling approach is available in terms of a MATLAB/Octave
toolbox at http://gobics.de/peter/taxy. In addition, a prototypical
implementation within an easy-to-use interactive tool for Windows
can be downloaded.
Contact: pmeinic@gwdg.de; thomas@gobics.de
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Metagenomics provides a holistic approach to the analysis of
microbial communities that overcomes the necessity of isolating
single organisms for cultivation (Beja et al., 2000; Rondon
et al., 2000). Investigating a mixture of genetic material from
the whole spectrum of organisms, researchers can now obtain
comprehensive descriptions even of highly diverse communities.
Further, comparative metagenomics offers new possibilities for
studying the distinguishing characteristics of a wide range of
ecosystems, which are shaped by specific combinations of
microorganisms. In particular, research on the human microbiome
has begun to elucidate the community structures associated with
the human body. Important medical perspectives, for instance, arise
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from comparing gut microbiome profiles to differentiate between
healthy and diseased states (Turnbaugh et al., 2009).

To investigate the taxonomic composition of metagenomes, many
studies focus on sequencing the 16S rRNA gene (Hugenholtz,
2002), which currently provides the best resolution in terms of the
available number of operational taxonomic units in the reference
databases (Stach and Bull, 2005). Besides the selectivity of primers
(Hong et al., 2009), another difficulty for quantitative analysis arises
from the varying copy number of the 16S rRNA gene (Kunin
et al., 2008). A pure 16S analysis, however, completely neglects
the functional potential encoded in the metagenome. In contrast,
whole metagenome sequencing allows simultaneous taxonomic
and functional profiling, which provides a deeper insight into the
structure of a microbial community.

The taxonomic profiling of whole metagenome sequencing reads
is a challenging task, and several techniques have been developed to
extract the phylogenetic signal encoded in the sequenced material.
To date, all approaches rely on the classification of sequencing
reads. In most cases, a supervised binning of sequences according
to an assignment to predefined taxonomic categories is performed.
Although an unsupervised binning is possible for longer contigs
(Teeling et al., 2004), the comparison of metagenomes becomes
difficult with the inclusion of unlabeled bins. Methods for the
classification of sequencing reads have been based either on
homology using sequence similarity or on genomic signatures in
terms of oligonucleotide composition. Homology-based methods
include the taxonomic evaluation of BLAST hits (Huson et al., 2007;
Kosakovsky Pond et al., 2009; Meyer et al., 2008) and phylogenetic
analyses of particular marker genes (von Mering et al., 2007; Wu
and Eisen, 2008) or protein domains (Krause et al., 2008; Schreiber
et al., 2010). Signature-based approaches have been realized based
on the correlation of oligonucleotide frequencies (Teeling et al.,
2004), machine learning techniques (Diaz et al., 2009; McHardy
et al., 2007) and probabilistic models (Brady and Salzberg, 2009;
Rosen et al., 2008).

All these methods are highly dependent on read length. For
homology-based approaches, the number of significant similarity
hits decreases considerably for shorter reads (Wommack et al.,
2008). Additionally, the estimation of genomic signatures in
sequencing reads becomes increasingly difficult for decreasing read
lengths. For sequence lengths below 1000 bp, earlier approaches
showed a sharp breakdown in accuracy (McHardy et al., 2007),
which has been improved with recent tools (Brady and Salzberg,
2009). All methods require a minimum read length in order to be
applicable. In many cases, this condition restricts the use of ultra-
short read techniques for metagenome profiling. As a consequence
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of the length-dependent classification performance, the varying
accuracy of taxonomic profiling methods particularly complicates
the comparison of metagenomes.

With a rapidly increasing number of sequenced samples,
comparative metagenomics faces the problem that many samples
are difficult to compare due to different sequencing platforms
with varying read lengths and platform-specific sequencing errors.
In particular, the read length is highly variable across different
platforms and generations of sequencing technologies. Another
source of sequence length variability arises from different stages
of assembly. Depending on the number of reads and the diversity of
the community, for many samples, a varying number of assembled
contigs exists. Although homology and signature-based methods
perform significantly better on longer contigs, the sample-specific
distribution of contig lengths introduces a bias towards more
abundant species, which complicates the comparability of samples.

We here present a novel method for taxonomic profiling of
metagenomes that is based on mixture modeling. Instead of a
classification of sequencing reads based on a read-specific estimate
of oligonucleotide frequencies, our method performs an analysis
of the total oligonucleotide composition of a sample. The discrete
distribution of oligonucleotides is modeled by a mixture of
organism-specific oligonucleotide distributions as obtained from
sequenced genomes. Taxonomic profiling then means to obtain
the organism weights of that mixture from an approximation of
the metagenomic distribution. We show that under a varying read
length this mixture approach provides a more stable estimation of
taxonomic composition than methods based on read classification. In
particular, this advantage implies a better comparability of samples
across different sequencing platforms. Another advantage of our
approach is the computational speed; it is the first profiling approach
that allows the analysis of large volumes of sequence data within a
few minutes on a single laptop.

2 METHODS
Genomic signatures in terms of oligonucleotide distributions have widely
been used for genome-based characterizations of microbial organisms
(Bohlin et al., 2009). We here propose the analysis of the oligonucleotide
distribution of a metagenome for the taxonomic characterization of the
corresponding microbial community.

2.1 Computation of compositional parameters
We model the oligonucleotide distribution of a metagenome by a linear
mixture of organism-specific genomic signatures from a reference database.
Given the N oligonucleotide probabilities of the metagenomic and genomic
signatures as N-dimensional vectors y and xi together with M positive
organism weights wi, the metagenomic signature y arises from a convex
combination of the database signature vectors xi:

y=
M∑

i=1

wi ·xi (1)

The organism weights are the free parameters of the model and provide the
basis for all kinds of taxonomic profiling tasks. To obtain a profile on a
particular taxonomic level, all the weights of organisms belonging to the
same category on that level are summed to yield the corresponding profile
value.

A key question is how to determine the unknown mixture weights if
only the metagenomic and genomic signatures are given. In general, it will
be impossible to exactly reconstruct the metagenomic signature by some

limited amount of genomic database signatures because a large fraction
of organisms in the underlying community will not be covered by the
available genomes. Therefore, the mixture weights have to be chosen to
yield a close approximation of the metagenomic distribution according
to some distance measure. The most common way would be to apply
the EM algorithm (Dempster et al., 1977) to minimize the Kullback–
Leibler divergence between the metagenomic distribution and the mixture
approximation. However, the EM algorithm requires an initial estimate of
the weights and only converges to a local optimum. Therefore, we here
consider a weighted L2-distance measure which gives rise to a convex
optimization problem. More specifically, in the N-dimensional space of
oligonucleotide probabilities we minimize the normalized squared Euclidean
distance between the metagenomic and model signatures. With xij and yj

denoting the probability of oligonucleotide j for database organism i and the
target (meta)genome, respectively, we use the following error function:

E(w) =
M∑

i=1

N∑

j=1

(wi ·xij −yj)2

σ2
j

(2)

s.t.
M∑

i=1

wi =1 (3)

with weight vector w containing positive weights wi ≥0. The standard
deviation σj of dimension j can be estimated from oligonucleotide
frequencies observed for the M database genomes. Minimization of the above
error gives rise to a convex quadratic programming problem (QP), which can
be solved by standard optimization tools. We used a corresponding function
from a MATLAB SVM toolbox (Canu et al., 2005).

In general, the solution is unique if the dimensionality of the
signature vectors exceeds the number of database organisms used for
the approximation. For uniqueness, the database signature vectors have
to be linearly independent such that no organism-specific oligonucleotide
signature can be perfectly (without error) reconstructed by a convex
combination of the other signature vectors. This kind of non-redundancy
condition geometrically means that all signature vectors have to be vertices
of their convex hull. In practice, however, a redundancy elimination of
signature vectors on the organism level is actually not necessary. For very
close signatures, the solution is not unique only for the associated weights of
the corresponding organisms. This ambiguity does not affect less specific
phylogenetic levels, since here the organism-specific weights of closely
related organisms are aggregated. In contrast to homology-based methods,
the use of many closely related organisms does not imply a profiling bias
toward these organisms.

2.2 FOU error and profile divergence
To map the value of the above approximation error E to an interpretable scale
between 0 and 1, we compute an additional error measure which we refer to
as the fraction of oligonucleotides unexplained (FOU). We define the FOU
as the total one-sided error of predictions in the oligonucleotide frequency
space

FOU= 1

2

N∑

j=1

|yj − ŷj| (4)

where yj is the relative frequency of oligonucleotide j from the observed
metagenomic signature and ŷj is the corresponding prediction resulting from
the estimated combination of genomic signatures. The FOU measures the
fraction of metagenomic DNA that cannot be explained by the mixture
of genomic signatures. It equals the sum of deviations resulting from
‘underpredicted’ relative frequencies that are lower than the corresponding
observed metagenomic frequencies. The same error is necessarily obtained
from the sum of deviations resulting from ‘overpredicted’ frequencies due
to the unit sum of all probabilities of a signature.

In general, the FOU error of the Taxy method cannot be used for
quantification of phylogenetic novelty because the divergence between the
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observed profile and the mixture model is forced to be minimized by the
approximation method. Only in cases where even on higher phylogenetic
levels no related organisms/signatures exist in the database, an increased
FOU may indicate novel organisms. Analogously to analyses based on
sequence similarity, this case will be hard to distinguish from a degradation of
sequence quality. On the other hand, the unusual case where all metagenomic
sequences refer to the known database organisms can easily be detected by
a vanishing FOU.

Because the FOU error is defined as a distance between discrete
distributions, also the divergence between two taxonomic profiles on the
same phylogenetic level can be measured in that way. In this case, the
absolute deviations in Equation (4) arise from the taxon-specific fractions
on a particular level. In order to be able to compare discrete distributions,
the corresponding categories have to be the same for all profiles and the
weights of a profile have to sum up to some unique constant. In particular,
when read classification methods are used, the comparison cannot include
unclassified reads, i.e. reads that have not been assigned to some taxonomic
category. In the following, we use the profile divergence to measure the
deviation of a predicted profile from a reference profile. Similar to the FOU
error, also the profile divergence can be interpreted in terms of a percental
deviation.

2.3 Genomic and metagenomic signatures
The oligonucleotide probabilities can be estimated by counting exact DNA
word matches of a certain length. For a word length k, the estimate
comprises 4k relative frequencies according to the number of different DNA
words. In the case of fragmented data, the estimate was established by
summing up the oligonucleotide counts of all individual reads, contigs or
chromosomes. To ensure that read orientation did not affect the taxonomic
prediction, oligonucleotide counts of the reverse complement were added
to every metagenomic and reference signature. This scheme implies a loss
of information, which approximately halves the number of distinguished
oligonucleotides. Finally, the oligonucleotide counts of each signature were
normalized to relative frequencies.

For the genomic reference signatures, we chose the KEGG organism
database (Kanehisa and Goto, 2000) as of March 2010, providing 1013
fully sequenced prokaryotic genomes. The NCBI taxonomy database was
used for taxonomic annotation of the genomic signatures. As outlined in
Section 2.1 , the high number of reference organisms suggests a minimum
word length of k =6 to provide a unique solution for the mixture weights.
In this case, the combination of two read orientations implies ∼2000 non-
redundant dimensions within a 4096-dimensional signature vector. For most
metagenomic datasets, also longer words may be considered. Because the
memory requirements for storing all reference signatures increase with k,
we limited the word length to a maximum value of k =8 to enable the
computation on most of the current notebook and desktop architectures. For
the experimental analyses in the following study, we used a medium word
length of k =7.

3 RESULTS

3.1 Profile comparison
First, we evaluated our method, which we refer to as ‘Taxy’ in
the following, on the Northern Schneeferner glacial ice sample
(Simon et al., 2009). This sample was used in Schreiber et al.
(2010) to compare the predictions of the Treephyler tool with
the results of CARMA (Krause et al., 2008), Phymm (Brady and
Salzberg, 2009) and a classical 16S analysis. For the comparison
with Taxy, we additionally used the homology-based web tool
Galaxy (Kosakovsky Pond et al., 2009) for taxonomic profiling
analysis. As suggested by the original study, we used an intermediate
level between phylum and class rank for comparison. The sequence

data from the glacier sample comprise 1 076 539 pyro-sequencing
reads with an average 200 bp read length.

The approximation error (FOU error, see Section 2) of Taxy
based on heptamer signatures was 0.021 and 0.02 for the QP
and EM method, respectively. These low values indicate a good
approximation of the metagenomic oligonucleotide distribution by
the reference signatures. As shown in Figure 1, the taxonomic
distribution predicted by Taxy was largely congruent with CARMA
and Treephyler. For Alphaproteobacteria, Taxy showed a clearly
lower level, which was closer to the 16S analysis. The profile
divergence of the Taxy-based abundances from the 16S profile was
32.7 percentage points (p.p.). CARMA, Treephyler, Phymm and
Galaxy diverged by 24.0, 25.3, 48.9 and 83.1 p.p., respectively, from
the 16S-based prediction. Here, Galaxy showed large peaks for the
Gammaproteobacteria and Firmicutes phyla, which can be explained
by the overrepresentation of associated organisms in nucleotide
databases. The maximum common difference between the tool-
based predictions and the 16S profile occurred in the Bacteroidetes
phylum. The Taxy prediction differed from the 16S result by 19.6
p.p. in this phylum, while CARMA, Treephyler, Phymm and Galaxy
differed by 17.5, 18.0, 26.9 and 30.8 p.p., respectively. In many
phyla, Taxy constituted a compromise between the Phymm and the
CARMA/Treephyler-based predictions. While Taxy was not as close
to the 16S profile as CARMA and Treephyler, it was closer to the
16S level than Phymm and Galaxy. However, the large Bacteroidetes
prediction divergence of all tools with respect to the 16S analysis
highlights the difficulty of establishing a gold standard for the
taxonomic profiling of metagenomic data. Note that the comparison
with a 16S analysis is not unquestionable due to the varying copy
number of the corresponding marker gene. An additional problem
arises from a possible bias of the 16S primers which has been
reported to favor the amplification of Bacteroidetes 16S rRNA in
human gut samples (Gill et al., 2006). Finally, marker gene counts
measure organism frequency rather than genomic DNA content,
which is measured by the above tools.

In addition, we used the ‘simHC’ dataset introduced in
Mavromatis et al. (2007) to measure the accuracy of taxonomic
profiling methods on a simulated high-complexity community
(see Supplementary Material). Besides the limited realism of
a simulated metagenome, another problem arises from possible
overlaps between reference or training organisms used by the
profiling tools and the database organisms which have been used
to construct the simulated metagenome sequences. To reduce this
overlap, we removed all reference/training organisms belonging
to genera which are present in the simHC data from the tools.
Because we were not able to fully exclude these organisms from
the CARMA and Treephyler prediction engines only Taxy, Phymm
and, in addition, homology-based results from the Galaxy server
(Kosakovsky Pond et al., 2009) were used in this evaluation. Besides
the removal of all genus-level overlaps with simHC, we chose the
remaining set of 654 reference organisms to be equal for all three
tools to ensure comparability of the corresponding methods.

In Figure 2, the estimated profiles at class level for all three
methods are shown together with the original profile according
to the known composition of the simulated metagenome. In
most taxonomic categories, the predictions agree well with the
original profile. An exceptional deviation can be observed for the
Galaxy predicted fraction of Alphaproteobacteria, which exceeds
the original fraction by 26.1 p.p. To investigate whether this peak
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Fig. 1. Phylum/class-level taxonomic profiles of the Norther Schneeferner metagenome as obtained from Taxy, CARMA, Galaxy, Phymm and Treephyler in
comparison with a 16S rRNA profile.

Fig. 2. Class-level taxonomic profiles of the simHC simulated metagenome as obtained from Taxy, Galaxy and Phymm in comparison with the original profile
according to the known fractions of taxa.

arises from the particular configuration of the homology search
step within Galaxy, we used different BLAST parameter settings
and repeated the analysis. However, the high deviation for the
Alphaproteobacteria class was observed for all configurations. In
contrast, the Taxy and Phymm predictions for Alphaproteobacteria
were close to the original. In total, the profile divergences of Taxy,
Phymm and Galaxy were 20.7, 22.5 and 33.84 p.p., respectively.
We also analyzed the more general phylum level, where the
corresponding values were 17.9, 18.3 and 17.2 p.p. The divergences
for Taxy, Phymm and Galaxy on the more specific order level were
57.6, 46.8 and 56.4 p.p., which indicates that an estimation of the

taxonomic distribution on this level is generally difficult within the
chosen simHC setup.

3.2 Read length dependence
For comparative metagenome analyses, it is highly desirable that
read length does not affect the estimation of taxonomic composition.
Therefore, we also investigated the variation of profiling results with
respect to a varying read length. For that purpose, we compared
the read length dependence of Taxy, Galaxy and Phymm on the
hypersaline microbial mat samples introduced in Kunin et al. (2008).
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Table 1. Profile divergence between results obtained from full and
fragmented reads of the hypersaline microbial mat samples

Method Read length (bp) Mean Max. Min.

350 0.21 0.29 0.18
Taxy 175 0.34 0.49 0.22

80 0.64 0.79 0.47

350 5.51 7.95 3.54
Galaxy 175 6.09 8.01 4.26

80 8.17 13.99 4.98

350 2.55 4.32 2.00
Phymm 175 6.30 10.91 5.04

80 10.32 19.32 5.29

Statistics in terms of the mean, maximum and minimum values over all 10 depth-specific
samples for the Taxy, Galaxy and Phymm results.

The dataset includes 129 147 unassembled Sanger sequencing reads
(∼700 bp read length) from 10 samples according to different depth
layers of the mat. For reasons of space, an analysis of the taxonomic
profiles of all depth layers as estimated by the three methods on
full-length reads can be found in the Supplementary Material.

We studied the effect of read length dependence by measuring
the divergence between profiles obtained from full length data and
different versions of fragmented data. We chose three different
fragment lengths (350, 175 and 80 bp) to reflect the range of
read lengths provided by current sequencing technologies. The
fragmentation was implemented through a simple read splitting,
which cut the original reads into fragments that approximately met
the desired read lengths (see Supplementary Material). Because
the fragments did not overlap, this scheme implied a loss of
oligonucleotide information around the fragment border. For a word
length of 7 bp and an average read length of 80 bp, about 10% of
the original heptamers in the full-length reads were lost.

The results in Table 1 indicate that, on average, the phylum level
divergence of the Taxy tool was at least one order of magnitude
lower than the corresponding Galaxy and Phymm results. Thereby,
the overall profile divergences of Galaxy and Phymm were rather
similar. All methods exhibited a correlation between the fragment
length and profile divergence. Both Galaxy and Phymm exhibited a
stronger than average divergence in the top three layers, while Taxy
did not diverge above average in these layers (see Supplementary
Table S1). The Taxy method showed a very even and predictable
small divergence due to the above-mentioned loss of oligonucleotide
information in the fragments. In contrast, the Galaxy and Phymm
profiles showed a large variation of the divergence with maximum
deviations of 14.0 p.p. (Galaxy) and 19.3 p.p. (Phymm) for the 80 bp
fragments in the first layer.

The length dependence of fragment classification methods in
particular can be problematic if partially assembled data have to be
analyzed. With today’s high-throughput sequencing technologies,
even microbial communities with a medium complexity allow to
assemble a large fraction of the original reads into longer contigs.
On the one hand, the classification of longer contigs is more reliable
than assigning the original short reads to taxonomic categories.
On the other hand, a significant bias may arise from the fact that
the probability that two reads can be assembled increases with
the abundance of the corresponding organism. We analyzed the
profile divergence between partly assembled data and simulated

short read data for a human gut sample (Kurokawa et al., 2007)
where we compared Taxy with WebCARMA (Gerlach et al., 2009)
and the NBC web server tool (Rosen et al., 2011) on phylum
level (see Supplementary Material). Because of the widely varying
sequence length, for all methods, we compared the amount of DNA
(bp) attributed to phylum level categories and not the number of
sequences assigned to these categories. While WebCARMA and
NBC showed a large deviation for the most abundant phyla, reaching
12.9 and 21.8 p.p. in the Bacteroidetes phylum, the deviations of our
mixture approach were below 0.15 p.p. in all categories.

3.3 Run time
The Taxy runtime for the analysis of the 239.7 MB Northern
Schneeferner dataset on a single core of an AMD Opteron (2.4 GHz)
processor was 7.5 s. The single core run times for Treephyler,
Phymm and CARMA were 12 h, 30 h and extrapolated 696 h,
respectively. Considering the computational cost for analysis of the
hypersaline microbial mat data, the Taxy run time on a single core of
a 2.66 GHz Intel processor for the analysis of all 10 sets (84.35 MB)
was 9 s, while Phymm and the Galaxy analyses required about 69 h
(CPU time) and 95 min, respectively. The hardware requirements for
a Taxy analysis are exceptionally low: we were able to process the
complete 1.7 GB sequence file from the Sargasso Sea sample (Venter
et al., 2004) on a notebook with a single core 1.4 GHz Pentium (M)
CPU and 760 MB RAM under Octave 3.2.4 in 95 s.

3.4 Implementation
The taxonomic profiling algorithm described above was
implemented using the MATLAB programming language.
A MATLAB toolbox containing the computational routines,
precomputed oligonucleotide signatures for 1013 reference
organisms and documentation can be downloaded from http://
gobics.de/peter/taxy. The toolbox allows the profiling of a given
metagenome sample (in multiple FASTA format) on different
taxonomic levels (phylum, class, order, family, genus). The output
comprises histogram bar plots of the sample-specific taxonomic
composition as well as comma-separated value (CSV) files for
detailed analysis of the profiles with spreadsheet software such as
Microsoft Excel. The toolbox code is also executable with recent
versions of Octave (3.0 and above, http://www.gnu.org/software/
octave/)), a freely available MATLAB-like software environment.
The toolbox was tested under Microsoft Windows and Linux and
can easily be used on other platforms.

In addition, we provide an implementation of the proposed
method as part of the freely available Taxy tool for Windows. The
Taxy tool prototype includes the precomputed taxonomic profiles
of 256 metagenomes based on sequence data obtained from the
CAMERA web site (Seshadri et al., 2007). Here, the 256 samples
with the corresponding profiles can also be used for comparative
analysis. Furthermore, the graphical user interface of the Taxy tool
allows the user to inspect the sample metadata and the taxonomic
profile as estimated by the mixture modeling method (see also
Supplementary Material).

4 DISCUSSION
As do all other methods for taxonomic profiling of whole
metagenome sequences, our method crucially depends on the range
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of microbial reference genomes available in current databases. The
phylogenetic coverage of these genomes directly determines the
limits for the achievable taxonomic resolution. Because genome
databases still suffer from a significant bias toward certain culturable
organisms, an important impact on profiling performance is expected
from recent efforts to broaden the range of sequenced organisms (Wu
et al., 2009). Obviously, all profiling methods will largely benefit
from a more even sampling of the microbial world.

In several cases, it may be useful to include eukaryotic organisms
in the analysis of the taxonomic composition. In particular, the
inclusion of a known host genome provides a straightforward
way to identify the fraction of host-specific DNA in a sample.
In this context, the modular architecture of Taxy allows an easy
integration of eukaryotic genomes in the database of signature
vectors. Preliminary results with 28 fully sequenced eukaryotic
organisms added to the database show that Taxy was able to benefit
from eukaryotic signatures in the analysis of an insect herbivore
microbiome dataset (Suen et al., 2010), which is characterized by a
high proportion of eukaryotic DNA (see Supplementary Material).

The main advantage of the Taxy approach over all existing
methods is the inherent read length invariance of the composition
estimates. First of all, this property makes it possible to fully utilize
ultra-short reads from all high-throughput sequencing technologies.
Secondly, without losing comparability, it allows the use of datasets
with heterogeneous sequence lengths, which for instance arise from
a combination of raw reads and assembled contigs. In this case, the
method is also robust with respect to erroneous assemblies because
no taxonomic assignment of contigs is actually performed. Finally,
Taxy facilitates the comparability of data obtained from different
sequencing platforms. This advantage is of particular importance
because the heterogeneity of sequencing technologies and the
associated read lengths is still increasing. Read length invariance,
however, cannot cope with the variability of metagenomic protocols,
which affect the preparation of samples before sequencing and
which can severely degrade the comparability of data. Other sources
of variability, for instance, include the cloning bias of Sanger
sequencing or particular sequencing errors.

Another consequence of the read length invariance is that the
prediction performance cannot be assessed in terms of sensitivity and
specificity as in sequence classification methods. Because no single
read is actually assigned to a taxonomic category, it is impossible to
measure the performance in terms of detection accuracy. Instead, the
compositional parameters describing the abundance of taxonomic
units are directly predicted from the overall oligonucleotide
distribution. For many problems of quantitative metagenome
analysis, direct predictions of the taxonomic composition will be
sufficient, but in some cases, a more detailed investigation is
necessary. For example, further analysis of reads from a particular
phylogenetic group would require a sequence classification method
for the identification of the corresponding reads. Therefore, Taxy
complements the current range of profiling methods rather than
replacing any of the existing methods. Furthermore, the organism-
specific weights as obtained from a Taxy analysis can be used as
priors in a probabilistic fragment classification framework such as
the NBC approach (Rosen et al., 2008).

Currently, a number of web-based metagenome analysis systems
exist, which provide the user with a comfortable platform for
comparative metagenomics and taxonomic profiling: MG-RAST
(Meyer et al., 2008), Galaxy (Kosakovsky Pond et al., 2009),

IMG/M (Markowitz et al., 2008) and CAMERA (Seshadri et al.,
2007). Although these platforms are of great value for metagenome
analyses, they show the typical disadvantages of web-based tools,
such as restrictions on user-supplied data or long response times.
Several platforms are based on a BLAST (Altschul et al., 1990)
engine, which matches the supplied sequence data against particular
databases. BLAST analyses usually involve a number of parameters
that have a measurable effect on the results. The optimal choice
of BLAST parameters depends on the complexity and size of the
sample and on the sequence length distribution. As a consequence,
the specific adjustment of parameters such as E-value, word length,
minimal alignment length and percent identity for each metagenomic
dataset can complicate a BLAST-based comparative analysis. The
same difficulties are encountered when using tools like MEGAN
(Huson et al., 2007), which rely on prior results from a costly BLAST
analysis. As our Galaxy results on the glacial ice sample and on
the simHC data demonstrate, also the taxonomical distribution of
the reference database may affect the estimation of profiles. On the
other hand, read classification methods based on BLAST offer the
adjustment of a similarity-based rejection criterion, which allows
to exclude parts of the data from taxonomic profiling. This can be
a great advantage if sequence quality is low and it suggests the
combination of different methods rather than favoring one single
approach.

The particular utility of Taxy arises from a quick overview of the
taxonomic distribution of large datasets, which can be a good starting
point for any kind of computational metagenome analysis. Besides
the inherent read length independence of Taxy, which significantly
simplifies comparative analysis, there is another striking advantage
that qualifies the method as an excellent early stage data mining tool
for metagenomics: the computational speed is orders of magnitude
faster than that of any of the existing taxonomic profiling methods.
Therefore, large amounts of data can be processed without having
access to extensive computational facilities. All computations can be
performed on a local standard PC requiring at most a few minutes
for even the largest datasets. This efficiency makes it possible to
already obtain a first estimate of the sample composition, long before
extensive computations on external servers or computer clusters may
provide a more detailed picture of the community structure.
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