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Abstract: Six halogenated trimethoxy chalcone derivatives (CH1–CH6) were synthesized and spec-
trally characterized. The compounds were further evaluated for their inhibitory potential against
monoamine oxidases (MAOs) and β-secretase (BACE-1). Six compounds inhibited MAO-B more
effectively than MAO-A, and the 2′,3′,4′-methoxy moiety in CH4–CH6 was more effective for MAO-B
inhibition than the 2′,4′,6′-methoxy moiety in CH1–CH3. Compound CH5 most potently inhibited
MAO-B, with an IC50 value of 0.46 µM, followed by CH4 (IC50 = 0.84 µM). In 2′,3′,4′-methoxy
derivatives (CH4-CH6), the order of inhibition was –Br in CH5 > -Cl in CH4 > -F in CH6 at the
para-position in ring B of chalcone. CH4 and CH5 were selective for MAO-B, with selectivity index
(SI) values of 15.1 and 31.3, respectively, over MAO-A. CH4 and CH5 moderately inhibited BACE-1
with IC50 values of 13.6 and 19.8 µM, respectively. When CH4 and CH5 were assessed for their cell
viability studies on the normal African Green Monkey kidney cell line (VERO) using MTT assays, it
was noted that both compounds were found to be safe, and only a slightly toxic effect was observed
in concentrations above 200 µg/mL. CH4 and CH5 decreased reactive oxygen species (ROS) levels of
VERO cells treated with H2O2, indicating both compounds retained protective effects on the cells by
antioxidant activities. All compounds showed high blood brain barrier permeabilities analyzed by a
parallel artificial membrane permeability assay (PAMPA). Molecular docking and ADME prediction
of the lead compounds provided more insights into the rationale behind the binding and the CNS
drug likeness. From non-test mutagenicity and cardiotoxicity studies, CH4 and CH5 were non-
mutagenic and non-/weak-cardiotoxic. These results suggest that CH4 and CH5 could be considered
candidates for the cure of neurological dysfunctions.
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1. Introduction

A well-known aspect of monoamine oxidases (MAOs) is their role in metabolizing
various types of biogenic amines, which can impart a crucial role in modulating the
central nervous system (CNS) neurotransmitter functions [1]. The malfunctioning of these
neurotransmitters by the oxidative deamination process by MAOs leads to a variety of
neurodegenerative disorders (NDDs) such as Alzheimer’s disease (AD) and Parkinson’s
disease (PD) [2–4]. Among the MAO family, selective inhibitors of MAO-A can be employed
for managing various depressive states, and at the same time, inhibitors of MAO-B can be
widely used for the adjuvant therapy for NDDs [5,6]

Subsequently, MAOs have been extensively researched, with over 23,000 publications
dealing with their properties, enzymology, functions, and specific inhibitors from various
classes, according to the PubMed database [7]. Monoamine oxidase was chosen as a target
here since it is a common enzyme for various neurological disorders and has the benefit in
kinetics studies of allowing us to determine how quickly enzymes will function in tissues
with the substrate concentrations they are likely to encounter, as well as how different
substrates will fight for the enzyme [8]. The life of two isoforms, MAO-A and MAO-B, each
with distinct structural features, has inspired clinical strategies to develop isoform-tailored
inhibitors that might be used to treat a wide range of depressive diseases and CNS-related
disorders [9,10].

β-secretase (BACE-1) is a crucial cleaving enzyme that takes part in the degradation
of the amyloid precursor protein (APP) [11]. This cleavage process leads to the formation
of amyloid β (Aβ) protein, which is neurotoxic and can trigger the neurodegeneration
and plaque deposition in the AD brain [12]. Numerous studies have documented that
inhibitors of BACE-1 have a prominent role in diminishing the Aβ concentration in the
brain and thwarting the progression of AD [13]. Considering the benefits of a multitarget
directed ligand (MTDL) approach by inhibiting MAO-B and Aβ production would be
of great interest in AD therapy. Very limited literature has been reported regarding the
development of dual-acting MAO-B and BACE-1 inhibitors [14,15].

Chalcones are well-known structural motifs with α,β-unsaturated ketones and are
open-chain flavonoids [16]. The presence of three rotatable bonds and the Michael acceptor
nature of the linker present in the chalcone scaffold provided a remarkable ability to reach
different enzyme targets [17]. Thus, many pharmacological active profiles involve chalcone-
containing compounds, including anti-tumor, anti-diabetic, anti-inflammatory, and anti-AD
agents [18–22]. Based upon the wealth of information, halogens have now established
themselves as a central player in supramolecular chemistry with wide applications in
medicinal chemistry [23]. The electron-accepting nature of halogens can preferably promote
more non-covalent hydrophobic interactions in several enzyme targets [24]. A recent report
documented that the presence of halogens in various classes of MAO inhibitors resulted
in improved MAO-B selectivity by the stabilizing property of halogen bonding in the
inhibitor-binding cavity (IBC) of the enzyme [25].

Based on the previous studies, in the simple framework of non-nitrogenous based
chalcones, the selective and potent candidates against the MAO-B isoform were character-
ized by the presence of methoxyl or methyl substituents at the para or ortho positions of
phenyl ring A [26–31]. At the same time, the presence of halogens and electron-releasing
substituents, preferably methoxy, dimethylamino, ethyl acetohydroxamate, and ethoxy
on the para position of phenyl ring B, are well tolerated in the MAO-B inhibition [32–50].
Based upon the existing literature, it is clearly proved that 99% of chalcone derived com-
pounds are a selective and reversible type of MAO-B inhibitors [51–53]. In this scenario, our
attention is mainly focused on the development of two series by the incorporation of three
methoxy pharmacophores on the A ring of the phenyl ring of chalcones at the positions of
2′, 4′, and 6′ and 2′, 3′, and 4′, respectively. A variety of halogens such as chlorine, bromine,
and fluorine have been also introduced on the para position on the B ring phenyl unit. To
the best of our knowledge, such a design strategy has not been reported regarding the
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effect and orientation of various halogens and trimethoxyl groups on chalcones framework
for the development of multi-targeted MAO-B/BACE-1 inhibitors.

The present study emphasizes the synthesis of 2′, 4′, and 6′ and 2′, 3′, and 4′ trimethoxy-
lated halogenated chalcones and the evaluation of their MAO-A, MAO-B, and BACE-1
inhibition. The lead molecules were further studied in kinetics, reversibility, cytotoxicity,
and reactive oxygen species (ROS) assays. A molecular docking study established the
detailed protein–ligand binding interactions of the lead molecules in their respective active
sites of enzyme targets.

2. Materials and Methods
2.1. Synthesis

A mixture of trimethoxy acetophenone (0.01 mol), para-substituted halogenated ben-
zaldehyde (0.01 mol), and 50% KOH was added to 15 mL of methanol and was kept stirring
at room temperature for 15 h [54]. The resulting solution was then filtered, washed with
water, and dried. The product was then recrystallized from methanol-yielded pure crystals.
The synthetic route for the titled derivatives is depicted in Scheme 1.
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Scheme 1. Synthetic route for (CH1–CH6) series.

2.1.1. (E)-3-(4-chlorophenyl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (CH1)

M.P: 136–138 ◦C; 1H NMR (500 MHz, CDCl3) δ: 3.77 (s, 6H, Ar-2′OCH3, Ar-6′OCH3,),
3.86 (s, 3H, Ar-4′OCH3), 6.15 (s, 2H, Ar-3′CH, Ar-5′CH), 6.94–6.91 (1H, d, J = 15.0 Hz,
-CHα), 7.33–7.30 (1H, d, J = 15.0 Hz, -CHβ), 7.34 (2H, d, Ar-3CH, Ar-5CH), 7.46 (2H,
d, Ar-2H, Ar-6H). 13C-NMR (500 MHz, CDCl3) δ: 193.91, 162.57, 158.93, 142.39, 136.01,
133.55, 129.54, 129.39, 129.09, 111.60, 90.69, 55.94. Molecular formula C18H17ClO4 (HRMS)
Calculated = 332.7781, Observed = 333.0892.

2.1.2. (E)-3-(4-bromophenyl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (CH2)

M.P: 120–122 ◦C; 1H NMR (500 MHz, CDCl3) δ: 3.77 (s, 6H, Ar-2′OCH3, Ar-6′OCH3,),
3.85 (s, 3H, Ar-4′OCH3), 6.15 (s, 2H, Ar-3′CH, Ar-5′CH), 6.96–6.93 (1H, d, J = 15.0 Hz,
-CHα), 7.29–7.26 (1H, d, J = 15.0 Hz, -CHβ), 7.39–7.37 (2H, d, Ar-3CH, Ar-5CH), 7.50–7.48
(2H, d, Ar-2H, Ar-6H). 13C-NMR (500 MHz, CDCl3) δ: 193.84, 162.59, 158.95, 142.38, 134.00,
132.04, 129.75, 129.49, 124.36, 111.62, 90.71, 55.95. Molecular formula C18H17BrO4 (HRMS)
Calculated = 377.2291, Observed = 377.0370.

2.1.3. (E)-3-(4-fluorophenyl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (CH3)

M.P: 110–112 ◦C; 1H NMR (500 MHz, CDCl3) δ: 3.76–3.71 (s, 6H, Ar-2′OCH3, Ar-
6′OCH3,), 3.86–3.82 (s, 3H, Ar-4′OCH3), 6.16 (s, 2H, Ar-3′CH, Ar-5′CH), 6.90–6.93 (1H,
d, J = 15.0 Hz, -CHα), 7.35–7.32 (1H, d, J = 15.0 Hz, -CHβ), 7.03–7.07 (2H, d, Ar-3CH,
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Ar-5CH), 7.49–7.52 (2H, d, Ar-2H, Ar-6H). 13C-NMR (500 MHz, CDCl3) δ: 194.04, 164.85,
161.40, 158.74, 144.32, 142.72, 131.28, 130.12, 127.00, 115.87, 90.71, 55.49. Molecular formula
C18H17FO4 (HRMS) Calculated = 316.3235, Observed = 317.1219.

2.1.4. (E)-3-(4-chlorophenyl)-1-(2,3,4-trimethoxyphenyl)prop-2-en-1-one (CH4)

M.P: 108–110 ◦C; 1H NMR (500 MHz, CDCl3) δ: 3.92 (s, 9H, Ar-2′OCH3, Ar-3′OCH3,
Ar-4′OCH3), 6.76 (d, Ar-5′CH), 7.38–7.36 (d,2H, Ar-3H, Ar-5H), 7.55–7.53 (d,2H, Ar-2H,
Ar-6H), 7.51 (Ar-6′CH), 7.50–7.47 (1H, d, J = 15.0 Hz, -CHα), 7.65–7.62 (1H, d, J = 15.0 Hz,
-CHβ). 13C-NMR (500 MHz, CDCl3) δ: 190.56, 157.26, 153.87, 142.14, 141.37, 136.04,
133.72, 129.53, 129.18, 127.00, 126.56, 125.97, 107.41, 62.17, 61.12, 56.16. Molecular formula
C18H17ClO4 (HRMS) Calculated = 332.7781, Observed = 333.0892. Molecular formula
C18H17ClO4 (HRMS) Calculated = 332.7781, Observed = 333.0892.

2.1.5. (E)-3-(4-bromophenyl)-1-(2,3,4-trimethoxyphenyl)prop-2-en-1-one (CH5)

M.P: 98–100 ◦C; 1H NMR (500 MHz, CDCl3) δ: 3.92 (s, 9H, Ar-2′OCH3, Ar-3′OCH3,
Ar-4′OCH3), 6.75 (d, 1H, Ar-5′CH), 7.38–7.36 (d,2H, Ar-3H, Ar-5H), 7.55–7.53 (d,2H, Ar-2H,
Ar-6H), 7.51–7.47 (1H, Ar-6′CH), 7.51–7.48 (1H, d, J = 15.0 Hz, -CHα), 7.65–7.62 (1H, d,
J = 15.0 Hz, -CHβ) 13C-NMR (500 MHz, CDCl3) δ: 190.50, 157.25, 153.87, 142.14, 141.34,
136.04, 133.71, 129.53, 129.19, 126.99, 126.56, 125.97, 107.41, 62.17, 61.12, 56.17. Molecular
formula C18H17BrO4 (HRMS) Calculated = 377.2291, Observed = 377.0370.

2.1.6. (E)-3-(4-fluorophenyl)-1-(2,3,4-trimethoxyphenyl)prop-2-en-1-one (CH6)

M.P: 80–82 ◦C; 1H NMR (500 MHz, CDCl3) δ: 3.92 (s, 9H, Ar-2′OCH3, Ar-3′OCH3,
Ar-4′OCH3), 6.75 (d, Ar-5′CH), 7.11–7.07 (d,2H, Ar-3H, Ar-5H), 7.62–7.59 (d,2H, Ar-2H, Ar-
6H), 7.50 (Ar-6′CH), 7.45–7.42 (1H, d, J = 15.0 Hz, -CHα), 7.67–7.64 (1H, d, J = 15.0 Hz,
-CHβ). 13C-NMR (500 MHz, CDCl3) δ: 190.63, 157.15, 153.81, 142.14, 141.67, 131.44,
131.42, 130.28, 130.21, 126.66, 126.29, 125.91, 107.41, 62.17, 61.12, 56.17. Molecular formula
C18H17FO4 (HRMS) Calculated = 316.3235, Observed = 317.1219.

2.2. MAOs and BACE1 Inhibition Studies

MAO events were assessed with recombinant MAO-A and MAO-B, as well as the
substrates kynuramine (0.06 mM) and benzylamine (0.3 mM). The kinetics of MAO-B were
analyzed under 2.4 × Km (i.e., 0.051 mM) of benzylamine. BACE-1 was measured using a
β-secretase (BACE-1) assay kit at 320 nm for excitation and 405 nm for emission using a
fluorescence spectrometer. The inhibitory activities of CH1-CH6 against MAO-A, MAO-B
and BACE-1 were observed at 10 µM. IC50 values of CH4 and CH5, which showed residual
activities of <50% for MAO-A and MAO-B, were evaluated, as described previously. The
IC50 value of CH5 for BACE-1 was also analyzed [55,56].

2.3. Enzyme Inhibition and Kinetic Studies

The inhibitory actions of the six molecules against MAO-A, MAO-B, and BACE-1
were first tested at 10 µM. Initially, the IC50 values of the compounds for MAOs were
calculated [57]. At three inhibitory concentrations and five substrate concentrations, kinetic
tests were conducted on CH4 and CH5, which inhibited MAO-B most potently.

2.4. Inhibitor Reversibility Analysis

Dialysis was used to assess the reversibility of MAO-B inhibitions by CH4 and CH5
after preincubating them for 30 min at 0.15 µM with MAO-B. For contrast, MAO-B was
preincubated with lazabemide (a reference reversible MAO-B inhibitor) or pargyline (a
reference irreversible MAO-B inhibitor) at 0.20 and 0.30 µM. Reversibility patterns were
analyzed by comparing the activities of dialyzed (AD) and undialyzed (AU) samples [58].
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2.5. Cytotoxicity and ROS Assay

The lead molecules CH4 and CH5 in the current series were further evaluated for their
cytotoxic nature and ROS scavenging ability by the previously reported procedure [59,60]
(Supplementary Material).

2.6. Blood-Brain Barrier (BBB) Permeability

The CNS bioavailability of the molecules was confirmed by a parallel artificial mem-
brane permeability assay (PAMPA) by Di et al. [61].

2.7. Computational Studies

X-ray coordinates of the crystal structures of both the MAO isoforms and BACE-1
were retrieved from the Protein Data Bank with the entries 2Z5X, 2V5Z and 3TPP, respec-
tively [62–64]. Protein and ligand structures were treated with the Protein Preparation
Wizard and Ligprep Tool, respectively [65–67]. These preliminary steps are crucial for
further docking analyses, allowing the generation of the correct protonation states at
physiological pH or the generation of all allowed tautomers and possible conformations.
Enclosing boxes were centered on the center of a mass of cognate ligand, and SP docking
protocols were employed using GLIDE software [68]. To corroborate the reliability of
docking simulations, redocking analyses were performed on the cognate ligands in their
binding sites. Cognate ligands were moved back to the original positions with Root Mean
Square Deviations (RMSD), considering all the heavy atoms, equal to 0.155 Å, 0.208 Å, and
0.467 Å for BACE-1, MAO-A, and MAO-B cognate ligands, respectively. Discovery Studio
2.5 software package (Accelrys, San Diego, CA, USA) was used to predict the ADMET
parameters of all the molecules. The Vega and PredHerg platforms were employed to
assess the mutagenicity and cardiotoxicity potentials [69,70].

3. Results
3.1. Synthesis

The synthesis of two small series of trimethoxylated halogenated chalcones was
achieved by the Claisen–Schmidt condensation of 2,4,6-trimethoxy acetophenone/2,3,4-
trimethoxy acetophenone with various para-substituted halogenated benzaldehydes. 1H
NMR showed a sharp doublet peak for Hα and Hβ at 7.65–7.62 and 7.50–7.47, respectively.
A large coupling constant of 15Hz of the double bond of chalcones revealed its trans
conformation [71]. The protons of methoxy groups showed a singlet peak at 3.92, while the
13C NMR showed a peak at 55.95–62.17 for the methoxy carbon and a characteristic peak
of carbonyl carbon at 190.63–193.91. The HRMS analysis showed the molecular weight of
the targeted compounds [Supplementary Material].

3.2. MAO-A, MAO-B, and BACE1 Inhibition Studies

The six compounds CH1-CH6 inhibited MAO-B more effectively than MAO-A, and
CH4 and CH5 revealed the most inhibitory activities against MAO-A and MAO-B at 10 µM
with residual activities of <50% (Table 1). Compound CH5 most potently inhibited MAO-A
with an IC50 value of 0.46 µM, followed by CH4 (IC50 = 0.84 µM). In the compounds,
2′,3′,4′-methoxy moiety in CH4-CH6 was more effective for MAO-B inhibition than 2′,4′,6′-
methoxy moiety in CH1-CH3. In 2′,3′,4′-methoxy derivatives (CH4-CH6), inhibitory
activities against MAO-B increased in the order of –Br in CH5 > –Cl in CH4 > –F in CH6 at
para-position in ring B. CH5 and CH4 were selective for MAO-B with selectivity index (SI)
values of 31.3 and 15.1, respectively, over MAO-A. No compounds effectively inhibited
BACE-1, except CH4 and CH5, which moderately inhibited BACE-1 with IC50 values of
13.6 and 19.8 µM, respectively (Table 1). The IC50 value of CH4 for BACE-1 (13.6 µM) was
similar to that of reference quercetin (IC50 = 13.4 µM)

Based upon the above small selected library of compounds, it is possible to expand
some interesting structure–activity relationships (SARs) on the basis of the orientation
pattern of methoxyl groups on the various positions of phenyl ring A and the presence of
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various halogens on the para-position of ring B of chalcones. The results clearly documented
that all the trimethoxylated halogenated derivatives showed moderate to good inhibition
of MAO-B as compared to MAO-A. Considering the orientation pattern, it is clearly
understood that introduction of methoxyl groups on the 2′, 4′, and 6′ positions does not
have much influence when compared with the positions of 2′, 3′, and 4′. This suggests that
the crowding of methoxyl groups without the separation of a carbon atom on the A ring is
crucial for the activity. As regards halogen substitution on the B ring, bromine or chlorine
improved MAO-B inhibitory activity when compared to fluorine substitution (the residual
activities were 0.93% and 0.38% at 10.0 µM, respectively).

Table 1. Inhibitions of MAO-A, MAO-B, AChE, BChE, and BACE-1 by halogenated trimethoxy chalcone derivatives a.

Compounds
Residual Activity (%) IC50 (µM) SI b

MAO-A MAO-B AChE BChE BACE-1 MAO-A MAO-B BACE-1

CH1 90.1 ± 7.51 70.7 ± 2.16 89.2 ± 2.23 71.1 ± 0.68 61.3 ± 0.078
CH2 92.4 ± 1.10 84.3 ± 3.00 83.8 ± 7.96 74.5 ± 0.71 57.2 ± 0.46
CH3 94.9 ± 7.19 75.4 ± 0.27 75.2 ± 3.43 79.9 ± 0.76 59.7 ± 0.077
CH4 63.7 ± 1.02 0.93 ± 0.25 72.5 ± 7.22 73.8 ± 0.70 54.3 ± 2.20 12.7 ± 0.23 0.84 ± 0.025 13.6 ± 0.094 15.1
CH5 66.7 ± 3.96 0.38 ± 0.53 81.5 ± 5.31 67.1 ± 0.64 64.3 ± 0.74 14.4 ± 1.10 0.46 ± 0.12 19.8 ± 0.12 31.3
CH6 92.1 ± 0.75 19.6 ± 2.17 83.2 ± 1.23 84.6 ± 0.80 66.7 ± 0.45 4.17 ± 0.23

Toloxatone 1.08 ± 0.025 - -
Lazabemide - 0.11 ± 0.016 -
Clorgyline 0.007 ± 0.0007 - -
Pargyline - 0.14 ± 0.0059 -
Quercetin - - 13.4 ± 0.035

a Results are the means ± standard errors of duplicate or triplicate experiments. b Selectivity index (SI) values are expressed for MAO-B as
compared with MAO-A. IC50 values of donepezil for AChE and BChE were 0.0095 ± 0.0019 and 0.18 ± 0.0038 µM, respectively. Values for
reference compounds were determined after preincubation with enzymes for 30 min.3.3. Kinetic Study.

The two representative MAO-B inhibitors, CH4 and CH5, showed good BACE-1
inhibition with 54.3% and 64.3% residual activity, respectively, at 10.0 µM. The IC50 value
of the BACE-1 inhibition of CH4 was 13.6 µM, which, interestingly, is very close to the
standard value. In BACE-1 inhibition, both chlorine and bromine have a large impact on
the fluorine substitution

3.3. Kinetic Study

Kinetic experiments were carried out at five concentrations of the substrates and
three inhibitor concentrations. In the kinetic studies of MAO-B binding by CH4 and CH5,
Lineweaver–Burk plots showed that CH4 and CH5 were competitive inhibitors of MAO-B
(Figure 1a,c), and their secondary plots showed that their Ki values were 0.68 ± 0.17 and
0.31 ± 0.014 µM, respectively (Figure 1b,d). These results suggest that CH4 and CH5
compete with the substrate at the active site of MAO-B.

3.4. Reversibility Studies

The reversibilities of the inhibitions were analyzed using dialysis after preincubating
MAO-B with CH4 or CH5 for 30 min, as previously described. In the experiments, the
concentrations used were the following: CH4 at 1.68 µM, CH5 at 0.92 µM, lazabemide
(a reference reversible inhibitor) at 0.22 µM, and pargyline (a reference irreversible in-
hibitor) at 0.28 µM. The relative activities for undialyzed (AU) and dialyzed (AD) samples
were compared to determine the reversibility patterns. In reversibility experiments using
dialysis, the inhibition of MAO-B by CH4 and CH5 was recovered from 30.9% (AU) to
96.9% (AD), and from 37.2% to 73.8%, respectively (Figure 2). The recovery values were
indistinguishable to those of the reversible reference lazabemide (from 33.0% to 89.2%),
contrary to the inhibition of MAO-B by the irreversible inhibitor pargyline, which was not
recovered (i.e., from 37.2% to 38.5%). These experiments indicated that CH4 and CH5 were
reversible inhibitors of MAO-B.
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Figure 1. Lineweaver–Burk plots for MAO-B inhibition by CH4 and CH5 (a,c), and their respective secondary plots (b,d) of
the slopes vs. inhibitor concentrations.
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3.5. Blood–Brain Barrier (BBB) Permeation Studies

From the assay, highly effective permeabilities and high CNS bioavailabilities were
observed for the halogenated chalcones with Pe ranges of 13.22~15.65 × 10−6 cm/s (Ta-
ble 2). All halogenated substituted derivatives showed higher CNS permeabilities than
unsubstituted ones.

Table 2. BBB assay of the CH compounds.

Compounds Bibliography
Pe (×10−6 cm/s) a

Experimental
Pe (×10−6 cm/s) Prediction

Progesterone 9.3 9.02 ± 0.11 CNS+
Verapamil 16.0 15.53 ± 0.24 CNS+
Piroxicam 2.5 2.43 ± 0.30 CNS+/−

Lomefloxacin 1.1 1.12 ± 0.01 CNS−
Dopamine 0.2 0.22 ± 0.01 CNS−

CH1 13.22 ± 0.33 CNS+
CH2 14.06 ± 0.80 CNS+
CH3 15.33 ± 0.71 CNS+
CH4 14.56 ± 0.26 CNS+
CH5 15.65 ± 0.22 CNS+
CH6 15.22 ± 0.26 CNS+

CNS+ (high): Pe (10−6 cm/s) > 4.00; CNS− (low): Pe (10−6 cm/s) < 2.00; CNS± (uncertain): Pe (10−6 cm/s) from
4.00 to 2.00. a from [61].

3.6. In Vitro Toxicity Evaluation

An in vitro toxicity evaluation of CH4 and CH5 was carried out using an MTT assay.
We used the African Green Monkey kidney cell line (Vero) as a valuable in vitro model
for basal toxicity studies [72]. To check the toxicity of the tested compounds, the Vero
cell line was incubated with different concentrations of CH4 and CH5 (1 to 500 µg/mL),
and the relative cell viability was measured after 48 h. Both the compounds induced
toxicity at concentrations higher than 200 µg/mL (Figures 3A and 4A). The result of the cell
viability assay was represented as a dose–response curve using the GraphPad Prism 6.0
software (USA). The IC50 value was calculated at a 198.5 µg/mL for CH4 (Figure 3B) and
126.4 µg/mL for CH5 (Figure 4B). The reduction in cell number and also the membrane
damage were very evident in treatment with CH4 and CH5 at IC50 and higher concentra-
tions, as analyzed by phase-contrast microscope. These two experiments strongly support
that CH4 and CH5 are one hundred times safer than the effective concentration of one
micromolar (Figures 3C and 4C). Both results demonstrate that the undesired changes in
membrane integrity and a reduction in cell number are indicative of oxidative stress only
at higher concentrations.

3.7. ROS Assay

Our next attempt was to study the effect of CH4 and CH5 on inhibiting the excess
reactive oxygen species (ROS) involved in the pathogenesis of neurodegenerative diseases.
This ROS causes neuronal damage via oxidative damage in the brain during neurodegener-
ative diseases [73,74]. We examined the intracellular ROS generation on Vero cell cultures
after exposure to exogenous H2O2. During our experiment, it was noted H2O2-treated Vero
cells had a higher ROS generation. When we incubated Vero cells with CH4 and CH5 at
IC50, we observed a decrease in ROS levels compared with non-treated cells (Figure 5a,b).
Based on this observation, it is understood that the disruption of the balance between
pro-oxidant and antioxidant levels can be retained by CH4 and CH5 at IC50 concentrations.
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Figure 4. Evaluation of CH5 effect on cell viability in Vero cell line. (A) Cell viability; a very high percentage of viable cells
(>90%) up to 100 times the effective concentration. (B) Representation of a dose–response curve and IC50; 126.4 µg/mL.
(C) Morphological observation of Vero cells on treatment with different concentration under phase-contrast microscope.
Vero cells were incubated with CH5 for 48 h, and cell viability was calculated by MTT assay as described in “Experimental
Procedures.” Untreated cells (control) were considered to have 100% viability.
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Figure 5. Effects of CH4 (a) and CH5 (b) on Vero cells treated with H2O2 to induce ROS. Vero cells
were treated with 100 µg/mL of 30% H2O2, and the production of ROS was evaluated immediately
as described in “Experimental Procedures”.

3.8. Computational Studies

Compounds CH5 and CH4 can bind the MAO-A binding pocket with similar posing
(Figure 6). The para-bromine and para-fluorine styrene can establish Pi–Pi interactions
with F208, and tri-methoxy phenyl rings can cause Pi–Pi interaction with Y407, facing
FAD. Docking score values were equal to −6.416 kcal/mol and −6.465 kcal/mol for
CH5 and CH4, respectively. As far as MAO-B is concerned, the para-bromine and para-
fluorine styrene can interact with the MAO-B-selective residue Y326, and trimethoxy
phenyl rings face the FAD cofactor, forming Pi–Pi interactions with the side chain of the
Y398 aromatic residue (Figure 7). Docking score values were equal to −9.824 kcal/mol
and −10.251 kcal/mol for CH5 and CH4, respectively. As far as BACE-1 is concerned,
compounds CH5 and CH4 can establish mainly hydrophobic interactions. In particular, the
tri-methoxy aromatic rings can face a hydrophobic region made by side chains of F108 and
I118, and the halogenated styrene moieties take place towards Y14 side chain (Figure 8).
Docking score values were equal to −6.749 kcal/mol and −6.762 kcal/mol for CH5 and
CH4, respectively.
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Figure 8. Zoomed in view of a BACE-1 binding pocket. Panels (a,b) reported the best pose returned
from docking analysis for CH5 (green sticks) and CH4 (yellow sticks), respectively.

Computational analyses were performed in order to shed light on the interactions
behind the higher affinity towards MAO-B. The interaction between CH5 and CH4 with
Y326 MAO-B selective residue is crucial for enhancing activity and selectivity towards
MAO-B. Furthermore, despite the binding poses of the two compounds being similar
between MAO binding pockets, the gap between the docking score values towards the two
receptors significantly favors MAO-B. For this reason, a more detailed analysis of the terms
that constitute the GLIDE scoring function was performed, revealing that the Glide energy
term values, which are a sum of van der Waals and Coulomb energy terms, were equal
to −50.263 kcal/mol and −46.128 kcal/mol for CH4 and CH5 bonded to MAO-B, respec-
tively, and −21.341 kcal/mol and −23.449 kcal/mol for CH5 and CH4 bonded to MAO-A,
respectively, thus considerably favoring the binding to MAO-B. Regarding computational
simulations of BACE-1, the binding was mainly due to hydrophobic interactions and the
Glide energy term values were equal to −46.583 kcal/mol and −45.809 kcal/mol, thus
comparable to those of MAO-B.

On the basis of ADME prediction, all the compounds in the present study showed
good absorption and BBB permeability, at 99% and 95%, respectively (Figure 9). A drug
target matching analysis was also performed by using our predictive platform MuSSel
(Multifingerprint Similarity Search aLgorithm) [75,76]. It is notable that MAO-A and
MAO-B were predicted as reliable targets for CH4 and CH5 [Supplementary Material].

Finally, we predicted the mutagenicity and cardiotoxicity potentials for CH4 and
CH5 [77]. These are two relevant toxicity endpoints of the utmost importance to prioritize
compounds in early stages of drug discovery and are often behind the attrition of preclinical
and clinical studies [78,79]. Regarding the mutagenicity, four non-test predictive models
(i.e., CAESAR model version 2.1.13; SARpy/IRFMN model version 1.0.7; ISS model version
1.0.2; KNN/read-across model version 1.0.0) were employed in consensus to provide a
qualitative assessment of the mutagenic potentials of CH4 and CH5 [80]. Interestingly, both
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the compounds were found to be non-mutagenic [Supplementary Materials]. Predictive
QSAR models of hERG blockage were employed for cardiotoxicity analysis [81]. In the
results, CH4 was returned to be non-cardiotoxic, while CH5 was flagged as potentially
weak cardiotoxic (Supplementary Materials).
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4. Conclusions
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CH5 were revealed as competitive and reversible inhibitors of MAO-B, with Ki values of
0.68 ± 0.17 and 0.31 ± 0.014 µM, respectively. On the other hand, CH4 and CH5 showed
good BACE-1 inhibition with IC50 values of 13.6 and 19.8 µM, respectively. Additionally,
CH4 and CH5 were found to be safe as analyzed by an in-vitro toxicity study. Additionally,
the pro-oxidant and antioxidant levels can be retained by CH4 and CH5. These results
suggest that CH4 and CH5 could be considered as a potential multi-targeted ligand for the
treatment of neurological disorders.
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