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The diagnostic performance difference betweendigital breast tomosynthesis (DBT) and conventional full-field dig-
italmammography (FFDM) for breast suspicious calcifications fromvarious populations is unclear. The objective of
this study is to determine whether DBT exhibits the diagnostic advantage for breast suspicious calcifications from
various populations comparedwith FFDM. Three hundred andfive patientswere enrolled (ofwhich seven patients
with bilateral lesions) and 312 breasts images were retrospectively analyzed by three radiologists independently.
The postoperative pathology of breast calcifications was the gold standard. Breast cancer was diagnosed utilizing
DBT and FFDM with sensitivities of 92.9% and 88.8%, specificities of 87.9% and 75.2%, positive predictive values
of 77.8% and 62.1%, negative predictive values of 96.4% and 93.6%, respectively. DBT exhibited significantly higher
diagnostic accuracy for benign calcifications comparedwith FFDM (87.9% vs 75.2%), and no advantage in the diag-
nosis ofmalignant calcifications. DBT diagnostic accuracywas notably higher than FFDM in premenopausal (88.4%
vs 78.8%), postmenopausal (90.2% vs 77.2%), and dense breast cases (89.4% vs 81.9%). There was no significant dif-
ference in non-dense breast cases. In our study, DBT exhibited a superior advantage in dense breasts and benign
calcifications cases compared to FFDM, while no advantage was observed in non-dense breasts or malignant cal-
cifications cases. Thus, in the breast cancer screening for young women with dense breasts, DBT may be recom-
mended for accurate diagnosis. Our findings may assist the clinicians in applying the optimal techniques for
different patients and provide a theoretical basis for the update of breast cancer screening guideline.

© 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Keywords:
Breast suspicious calcification
Digital breast tomosynthesis
Full-field digital mammography
ACS, American Cancer Society;
st Imaging Reporting and Data
osynthesis; DCIS, Ductal carci-
, Mediolateral oblique position;

al Oncology, Affiliated Cancer
l, 127 Dongming Road, 450008

Department of Neurosurgery,
TX 76502, USA.
g), fcczhangyl@zzu.edu.cn
SWHealth.org (J. Guan),
S. Luo).

. on behalf of Research Network of C
1. Introduction

Breast calcification is a common manifestation in the breast cancer
screening. Amajority of calcifications are benign, while somemay indicate
the presence of early-stage breast cancer [1]. It is quite challenging to dis-
tinguish malignant calcifications from benign using current imaging tech-
niques. The Breast Imaging Reporting and Data System (BI-RADS) of the
American College of Radiology (ACR) clearly describes the morphology,
distribution, and categories of breast calcifications, including typical benign
calcifications and calcifications with suspicious morphology [2,3]. Some
suspicious calcifications, especially clustered sand-like microcalcifications
often indicate a malignant disease such as ductal carcinoma in situ (DCIS)
[4]. Hence, the identification of suspicious calcifications is crucial.
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Conventional full-field digital mammography (FFDM) is a 2-
dimensional (2D) imaging technique which is widely used to screen
for early breast cancer and diagnose breast lesions [5]. However, it has
some inevitable limitations because of its inability to accurately distin-
guish suspicious lesions from the adjacent overlapping tissue [6]. For in-
stance, FFDM has been faulted for its high false-positive rate and low
sensitivity, especially in women with dense tissue [7].

Digital breast tomosynthesis (DBT) is a 3-dimensional (3D) imaging
technique developed to overcome someof the limitations of conventional
FFDM [5], and has been increasingly employed in breast cancer screening
and assessment [8–10]. It removes the overlapping of breast tissuewhich
canmask breast abnormalities, potentially raise sensitivity for breast can-
cers, and decrease the false-positive rate [11]. DBT also improves preoper-
ative breast cancer staging in dense breasts patients significantly [12].
Meanwhile, DBT shows higher detection rate and diagnostic accuracy for
both benign andmalignant masses, with better sensitivity and specificity
and lower recall rates [13]. Ourprevious study also showed thatDBThad a
significant advantage over FFDM in the accuracy of diagnosis of breast
cancer [14], especially in the diagnosis of breast mass-like lesions. How-
ever, this technology has not been widely used in China.

Multiple breast imaging studies have implemented the combined
procedure of FFDM and DBT [15–17]. The combination of FFDM and
DBT improved breast cancer accuracy, decreased the false-negative
rate, and increased the sensitivity as compared to using only FFDM.
The primary limitations of FFDM plus DBT for screening and clinical di-
agnosis are the increase of interpretation time [18] and radiation dose
[19]. To break through these limitations, the synthetic 2D images
are reconstructed from the information acquired during a DBT data
acquisition procedure [19]. DBT plus synthetic 2D imaging increases
cancer detection rates and the image reading times compared with
FFDM, with comparable recall rates [20]. While for the evaluation of
microcalcifications, the diagnostic performances of synthetic 2D imag-
ing and FFDM were not significantly different, whether performed
with DBT or alone [21]. TOMMY Trial found that synthetic 2D imaging
plus DBT demonstrated similar performance to that of standard FFDM
plus DBT, while the addition of DBT increased the sensitivity of FFDM
in patients with dense breasts and the specificity of FFDM for all sub-
groups [22]. Some other studies estimated the 3D positions of the
microcalcifications in each of the clusters and reconstructed the clusters
as ellipsoids by utilizing multiple projections and the geometry of DBT,
aswell as demonstrated a possible way of 3D shape analysis by utilizing
DBT to make the diagnosis more accurate [23]. These studies indicated
that DBT might possess a potential benefit as a stand-alone modality
in the screening and diagnosis, other than an adjunct of 2D imaging.

However, the detectability of stand-aloneDBT for the breast
microcalcifications is still controversial. Some studies demonstrated that
DBT enabled the detection and characterization of microcalcifications
with no significant differences from FFDM [24,25]. Kopans et al. found
that the clarity of DBT images in 92% cases was equal to or better than
that of conventional mammography, and was judged to be better in al-
most half cases than conventional mammography [26]. In contrast,
some other studies demonstrated that FFDMappears to bemore sensitive
than DBT for the detection of calcification [27,28]. To our knowledge, few
studies have focused on the comparison of DBT and FFDM for breast sus-
picious calcifications with different breast densities and menopausal sta-
tus. The aim of our analyses was to determine whether DBT exhibits the
diagnostic advantage for breast suspicious calcifications from various
populations compared with FFDM and assist the clinicians in applying
appropriate method for different patients.

2. Materials and Methods

2.1. Patients

This retrospective study was approved by the Ethics Committee of
the Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer
Hospital) and the patients provided written informed consent for
the surgical biopsy and imaging. The study was conducted between
03/2015 and 03/2018. Study participation was offered to women who
met the following recruited criteria: (a) participants who underwent
FFDM and DBT examinations; and (b) calcification was found through
either FFDMor DBT andwas classified into category 4A or above accord-
ing to BI-RADS of ACR [2]; (c) the lesions were finally confirmed by his-
topathology through surgical biopsy in our hospital. The exclusion
criteria were the following: (a) mammography indicated typical benign
calcifications [2,3]; (b) pregnant or lactating women; (c) participants
who underwent breast surgery or breast treatment. We included a
final cohort of 312 breast suspicious calcified lesions from 305 women
(of which seven cases with bilateral lesions) (age range 31–72 years;
mean age 48.7 years).

2.2. Image Acquisition

The patients underwent FFDM and DBT imaging of both breasts in
the craniocaudal (CC) and mediolateral oblique (MLO) positions using
a standard DBT system (Selenia Dimensions 5000, Hologic, USA) before
surgery. The specifications of this machine are as follows: detector pixel
size 3328 × 4096; resolution 7.1 lp/mm; pixel pitch 70 μm. Using the
standard imaging phantom in the combo mode (DBT plus FFDM), the
average glandular radiation doses for FFDM, DBT, and combo mode in
a single view are approximately 1.25, 1.65, and 2.90 mGy, respectively.
DBT examination was performed immediately after FFDM in the same
compression mode (combo mode) using automatic exposure control
by the same designated technician. For DBT, while the x-ray tube
rotated through an arc of −7.5 to +7.5°, a series of low-dose 1 mm-
thick 2D images were obtained while the breast was compressed in
the fixed position. These images were reconstructed into a series of
1 mm-thick slices using the filtered back projection technique
automatically.

2.3. Image Analysis

Three radiologists (Hengwei Zhang, Hui Jiang, and Xuhui Guo) with
7–18 years of breast image experience participated in the image analy-
sis. All readers had participated in prior reader studies of interpreting
tomosynthesis examinations and had undergone training in the inter-
pretation of DBT images. A standard hanging protocol was used to dis-
play both the FFDM and DBT images. Image interpretation was
performed per breast, not per patient. The retrospective double-blind
methodwas used. Each radiologistfirst evaluated the FFDM images ran-
domly while blinded to the DBT images and the patient's clinical infor-
mation, and assigned a BI-RADS category. Similarly, they evaluated the
DBT images randomly while blinded to the FFDM images and the
patient's clinical information. To minimize the learning and memory
bias, they evaluated the DBT images and assigned the BI-RADS category
with a one-month interval at least [24,29]. When the assigned BI-RADS
categories within the same imaging modality were inconsistent among
the radiologists, a consensus was reached through discussion [15].

Breast density was rated according to ACR BI-RADS categories as
follows [2]: (a) almost entirely fatty-ACR1; (b) scattered fibro-
glandular-ACR2; (c) heterogeneously dense-ACR3; and (d) extremely
dense-ACR4. In this study, the first two types (ACR1-2) were classified
as non-dense glandular and the latter two types (ACR3-4) as dense
glandular.

Breast suspicious calcifications were characterized utilizing BI-RADS
categories [2] from 2 to 5 to assess the probability of malignancy, as: 2,
benign; 3, probably benign (0–2% malignant), initial short-interval
(6months) follow-up suggested; 4, suspicious abnormality, malignancy
further stratified as 4A, N2% but ≤10%; 4B, N10% but ≤50%; and 4C, N50%
but b95%; 5, highly suggestive (≥95% malignant), appropriate action
should be taken. The categories 0 (requiring additional imaging evalua-
tion or prior mammograms for comparison), 1 (negative), and 6
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(known biopsy-proven malignancy) were not applicable, because this
was a retrospective study. BI-RADS categories 2, 3, 4A were identified
as negative, while categories 4B, 4C, and 5 were identified as positive
[30]. The histopathology findings from surgery were used as the gold
standard for the diagnosis of breast cancer. Category 4Ameans low sus-
picion of malignancy according to ACR BI-RADS [2]. Though histological
diagnosis is necessary, the possibility of a benign lesion is much larger
than the possibility of a malignant lesion. Therefore, we regarded BI-
RADS 4A as negative in our analysis to avoid the dilution of the criteria
of malignancy by a high number of benign lesions.

2.4. Statistical Analysis

Statistical analysis was performed using GraphPad Prism software
(GraphPad Software Inc. CA, USA, version 6.02) and MedCalc software
(MedCalc Software bvba, version 15.2.2). The overall comparison of
clinical performance was derived from the differences between the
mean area under the receiver operating characteristic (ROC) curve.
The χ2 test was used to determine differences in the final BI-RADS cate-
gories of breast suspicious calcifications based on the images takenwith
the two methods. Fisher's exact test was used to compare the sensitiv-
ity, specificity and to ascertain the difference in performance according
to patient breast density and menopausal status. All statistical tests
were 2-sided; a p-valueb.05 was considered to be statistically
significant.

3. Results

3.1. Clinicopathological Characteristics

A total of 305 patients with 312 separate sites of suspicious calcifica-
tions were included in the final study population. Nighty-eight (31%)
sites of suspicious calcifications were proved malignant and 214 (69%)
were benign. The final histologic results of malignant calcifications
were invasive ductal carcinoma, ductal carcinoma in situ, mucinous car-
cinoma, and apocrine carcinoma. The benign lesions were hyperplasia
with calcification, adenopathy, atypical hyperplasia, and cystic hyper-
plasia (Table 1). Regarding breast density, 226 (73%) breasts were
dense (ACR3–4), whereas 86 (27%)were non-dense (ACR1–2). Regard-
ingmenstrual status, 187 (61%) patients were premenopausal (two pa-
tients with bilateral breast lesions), whereas 118 (39%) patients were
postmenopausal (five patients with bilateral breast lesions). The aver-
age glandular doses for a single view were 1.68 ± 0.67 mGy (range,
0.63–4.12 mGy) for FFDM, 2.04 ± 0.57 mGy (range, 1.08–4.32 mGy)
for DBT, and 3.72± 0.98mGy (range, 1.71–6.47mGy) for combomode.

3.2. Calcification Characterization

Breast suspicious calcifications were characterized using BI-RADS
categories from2 to 5 to assess theprobability ofmalignancy. The differ-
ent BI-RADS categories of DBT and FFDM for suspicious calcifications are
shown in Table 2. The difference of BI-RADS categories distribution for
Table 1
Pathological Types of Malignant and Benign Cases.

Pathology Type n (%)

Malignant 98
Invasive ductal carcinoma 43 (44)
Ductal carcinoma in situ 51 (52)
Mucinous carcinoma 3 (3)
Apocrine carcinoma 1 (1)

Benign 214
Hyperplasia with calcification 97 (45)
Adenopathy 86 (40)
Atypical hyperplasia 12 (6)
Cystic hyperplasia 19 (9)
benign calcifications between DBT and FFDM was statistically signifi-
cant, while no significant difference was observed in malignant calcifi-
cations. In benign group, FFDM classified more cases into BI-RADS 4B,
4C, and 5 which were identified as positive (44 cases vs 25 cases).
3.3. Diagnostic Accuracy of DBT and FFDM for Suspicious Calcifications

According to histopathology results, the prevalence of breast cancer
was 31.4% (98/312). Utilizing BI-RADS category 4B as a cut-off for diag-
nosing breast cancer in both DBT and FFDM, DBT diagnostic accuracy for
benign calcifications was significantly higher than FFDM (87.9% vs
75.2%, χ2= 10.494, p= .0012). The diagnostic accuracy of DBT for ma-
lignant calcifications was slightly higher than FFDM, but the difference
was not statistically significant (92.9% vs 88.8%, χ2 = 0.551, p =
.4581). The total diagnostic accuracy of DBT was higher than that of
FFDM, with a statistically significant difference (89.4% vs 79.5%, χ2 =
10.986, p = .0009). The areas under the ROC curves (AUC) were 0.904
(95% CI 0.865–0.934) for DBT and 0.820 (95% CI 0.773–0.861)
for FFDM, and the difference was statistically significant (Z = 5.502,
p b .0001) (Table 3).

Breast cancer was diagnosed utilizing DBT and FFDMwith sensitivi-
ties of 92.9% (91/98) and 88.8% (87/98), specificities of 87.9% (188/214)
and 75.2% (161/214), positive predictive values (PPV) of 77.8% (91/117)
and 62.1% (87/140), negative predictive values (NPV) of 96.4% (188/
195) and 93.6% (161/172), positive likelihood ratio (+LR) of 7.64 and
3.58, negative likelihood ratio (−LR) of 0.08 and 0.15, respectively.
The specificity of DBT was higher than that of FFDM, with a statistically
significant difference (87.9% vs 75.2%, χ2= 25.04, p b .0001). No signif-
icant difference was observed in the sensitivity between DBT and FFDM
(92.9% vs 88.8%, χ2 = 2.25, p = .1250). There were no adverse events.
3.4. Comparisons of the Diagnostic Accuracy of DBT and FFDM in Patients
with Different Menopausal Status and Breast Densities

The ROC curves of DBT and FFDM in premenopausal, postmeno-
pausal, dense breast, and non-dense breast cases are shown in Fig. 1
and Table 4.

Of all 305 patients, 187 patients were premenopausal, whereas 118
patients were postmenopausal. The diagnostic accuracy of DBT and
FFDM with different menopausal status is shown in Table 4. The diag-
nostic accuracy of DBT in premenopausal patients was higher than
that of FFDM, with a statistically significant difference (88.4% vs 78.8%,
χ2 = 5.576, p = .0182). In postmenopausal patients, the diagnostic
accuracy of DBT and FFDM were 90.2% and 77.2% respectively, and the
difference was also statistically significant (χ2 = 6.717, p = .0095). Of
all 305 patients with 312 calcification clusters, 226 breasts were classi-
fied as dense (ACR3–4) and the remaining 86 as non-dense (ACR1–2).
The diagnostic accuracy of DBT in dense breast caseswas notably higher
than that of FFDM (89.4% vs 81.9%, χ2=4.600, p=.0320). In non-dense
breast cases, the diagnostic accuracy of DBT was slightly higher than
that of FFDM, but the difference was not statistically significant (89.5%
vs 84.9%, χ2 = 0.469, p = .4934).
Table 2
BI-RADS Distribution of Suspicious Calcifications Detected by DBT and FFDMModes.

BI-RADS 2 3 4A 4B 4C 5 χ2 p Value

Malignant
DBT 0 3 5 39 46 5 7.263 0.2018
FFDM 3 7 3 44 39 2

Benign
DBT 44 86 59 17 7 1 27.183 0.0001
FFDM 39 44 77 40 12 2

Abbreviations: DBT, digital breast tomosynthesis; FFDM, full-field digital mammography;
BI-RADS, Breast Imaging Reporting and Data System.



Table 3
Diagnostic accuracy of DBT and FFDM for breast calcifications.

Accuracy Malignant Benign Total AUC (95%CI)

DBT 92.9% 87.9% 89.4% 0.904
(91/98) (188/214) (279/312) (0.865–0.934)

FFDM 88.8% 75.2% 79.5% 0.820
(87/98) (161/214) (248/312) (0.773–0.861)

χ2 0.551 10.494 10.986 5.502 (Z)
p Value 0.4581 0.0012 0.0009 b0.0001

Abbreviations: DBT, digital breast tomosynthesis; FFDM, full-field digital mammography;
AUC, the area under the ROC curve.

85J. Li et al. / Computational and Structural Biotechnology Journal 17 (2019) 82–89
4. Discussion

In the present study,we evaluated the diagnostic accuracy of 3DDBT
relative to that of 2D mammography FFDM for breast suspicious calcifi-
cations, found that DBT could increase the sensitivity and specificity of
the diagnosis of breast suspicious calcifications, which is quite helpful
for the identification of benign calcifications, especially in young people
with higher gland density. The diagnostic sensitivity of DBT and FFDM
on breast calcifications were 92.9% and 88.8%; specificity were 87.9%
and 75.2%, respectively, and the differenceswere statistically significant.
Fig. 1. Performance Curves of Pooled Data for All Readers. Data are receiver operating characteri
in premenopausal (a), postmenopausal (b), dense breast (ACR1-2) (c), and non-dense breast (A
mammography; ACR, American College of Radiology; ROC, the receiver operating characteristi
DBT significantly increased the diagnostic accuracy of total cases, from
79.5% for FFDM to 89.4% for DBT. The diagnostic accuracy difference
between DBT and FFDM was significant for benign cases. Whereas, for
malignant cases, a significant difference was not observed. The malig-
nancy rates reported in the previous literatures ranged from 10%
(8/78) to 39% (41/105) [31–33], which was consistent with our result.
In our study, 98 (31%) sites of suspicious calcificationswere provedma-
lignant and 214 (69%) were benign. Our study did not include similar
numbers of benign and malignant calcifications. It is possible that the
less numbers of malignant calcification cases disturbed the difference
between DBT and FFDM.

Our results seem to contradict several previous studies. Clauser et al.
found that the diagnostic performance of DBT was as good as that of
FFDM; however, a notable inter-reader difference was observed [24].
They concluded DBT enabled the detection and characterization of
microcalcifications with no notable differences from FFDM. Even some
investigators agreed that FFDM appeared to be slightly more sensitive
than DBT for the detection of calcifications [27]. The inconsistency be-
tween their findings and ours may be due to some factors. First, these
studies included fewer cases of calcifications, which adds the possibility
of inaccuracy. Second, Clauser's study focused on comparing the differ-
ences between different readers and found high inter-reader variability
stic (ROC) Curves for DBT (green line) versus FFDM(orange line) in the diagnostic accuracy
CR3-4) (d) cases. Abbreviations: DBT, digital breast tomosynthesis; FFDM, full-field digital
c curve



Table 4
Comparisons of Diagnostic Accuracy of DBT and FFDMwithDifferentMenstrual Status and
Breast Densities.

Characteristics Accuracy χ2 p Value FNR AUC (95%CI)

Premenopausal
DBT 88.4% 5.576 0.0182 11.6% 0.893

(167/189) (22/189) (0.840–0.933)
FFDM 78.8% 21.2% 0.813

(149/189) (40/189) (0.751–0.866)
Postmenopausal

DBT 90.2% 6.717 0.0095 9.8% 0.906
(111/123) (12/123) (0.840–0.951)

FFDM 77.2% 22.8% 0.781
(95/123) (28/123) (0.697–0.850)

ACR1-2
DBT 89.5% 0.469 0.4934 10.5% 0.904

(77/86) (9/86) (0.821–0.957)
FFDM 84.9% 15.1% 0.842

(73/86) (13/86) (0.747–0.912)
ACR3-4

DBT 89.4% 4.600 0.0320 10.6% 0.903
(202/226) (24/226) (0.857–0.939)

FFDM 81.9% 18.1% 0.841
(185/226) (41/226) (0.787–0.886)

Abbreviations: DBT, digital breast tomosynthesis; FFDM, full-field digital mammography;
ACR, American College of Radiology; FNR, False-Negative Rate; AUC, the areas under the
ROC curves.
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in the use of the descriptors [24], maybe this high inter-reader variabil-
ity disturbed his research results. However, a few different studies indi-
cated that inter-reader variability did not affect the accuracy,
sensitivities and specificities between different methods for predicting
the probability of malignancy [21,29]. Whether the inter-reader vari-
ability influences the diagnosis is still controversial. Dibble et al. found
that DBT decreased inter-reader variability, increased the readers' con-
fidence, and improved sensitivity in detecting breast architectural dis-
tortion [29]. In clinical application, accurately identifying findings from
the mammography is mainly dependent on the reader's experience. In
our study, we did not evaluate the inter-reader variability and the read-
ing times. However, to decrease inter-reader variability as far as possible
and guarantee a relatively accurate BI-RADS category, three experi-
enced radiologists participated in prior training in the interpretation
of DBT images. A consistent diagnosis among the three readers was
employed in our study to decrease the bias of inter-reader variability
and guarantee the diagnosis more accurate, which was consistent
with Ohashi's study [15].

In our study, all the DBT images were acquired using the narrow-
angle (15°/15 projections) modality. The detectability of DBT is depen-
dent on the tomographic scan angle, the number of projections, the
radiation dose, and the reconstruction methods. In the wide-angle
modality, owing to the greater tissue scanned by X-rays and the de-
creased dose per projection, the signals received by the detector lower
and the relative noise increases, which may reduce the visibility of
small structures (including microcalcifications) [28]. Maybe the use of
wide-angle (50°/25 projections) DBT also can explain the results of
Clauser's study [24].

Due to the pixels binning in DBT, the pixel pitch of DBT is larger than
2D-mammography, which makes DBT images look less sharp than
FFDM images. Furthermore, the tube movement in DBT and the relative
noise increase of each projection in wide-angle DBT may contribute to
the geometric blurring [28]. Nevertheless, mild blurring of DBT images
can't mask its advantage in breast screening and diagnosis [8–13].
According to the Mammography Quality Standards Act (MQSA) limit
(a breast dose restriction of 3mGyper acquisition) [34], slightly increas-
ing the radiation dose of DBT may improve the blurring of DBT images.
For the machine in our study, using the standard imaging phantom in
the combo mode (DBT plus FFDM), the average glandular radiation
doses for FFDM, DBT, and combo mode in a single view are approxi-
mately 1.25, 1.65, and 2.90 mGy, respectively. Every patient recruited
in our research underwent FFDM and DBT imaging in combo mode. Al-
though the average glandular radiation dose for combo mode doubled
the dose for FFDM, the overall dose to the breast was within the
MQSA limit. Hence, there is no need to worry that the use of this FDA-
approved technique would be associated with any harm to the patients
[35]. Osteras et al. investigated the average glandular dose in paired
FFDM and DBT acquisitions in a population-based screening program
(including 3819 women) and found that the mean dose for FFDM,
DBT, and Combo was 1.72, 2.09, and 3.81 mGy, respectively [36]. Our
study observed similar results. In the clinical practice, some parameters
of themachine (including the tube loading and voltage) are determined
by the automatic exposure control according to the features of the
breast (compressed breast thickness and glandular composition),
which make the actual breast doses vary between acquisitions.

Meanwhile, we characterized the suspicious calcifications using BI-
RADS categories from two to five to assess the probability of malig-
nancy. The difference of BI-RADS categories distribution for benign cal-
cifications between DBT and FFDM was statistically significant, while
the difference for malignant was not and thus both DBT and FFDM are
alternative detection methods for malignant cases. Our results suggest
that the accuracy of DBT in classifying benign calcifications is signifi-
cantly higher than that of FFDM, and DBT classify more benign calcifica-
tions into BI-RADS 3 and 4A categories, probably because DBT relatively
reduced the influence of overlapping tissues and radiologists are able to
better assess the 3D character of a lesion in various planes [37,38]. Fur-
thermore, we observed that, for malignant lesions, both DBT and FFDM
classifiedmost malignant calcifications into BI-RADS 4B, 4C, and 5 cate-
gories, which avoided delay in diagnosing the disease. In patients with
benign calcifications, FFDMclassified a significant proportion of patients
into BI-RADS 4B category (Fig. 2), which may lead to unnecessary tests
or even biopsies. This further proves that DBT has the advantage of
avoiding unnecessary biopsies in patients with benign conditions man-
ifest as microcalcifications. This observation regarding benign lesions is
consistent with Tagliafico's study [25].

In premenopausal, postmenopausal, and dense breast cases, DBT di-
agnostic accuracy was higher than FFDM, with a statistically significant
difference. But there was no significant difference in non-dense breast
cases. This indicates the diagnostic advantage of DBT in premenopausal,
postmenopausal, and dense breast populations. In Asian countries, in-
cludingChina, the femalemammary gland is small anddense [39]. Com-
pared to FFDM, DBT exhibits potential benefits in patients with dense
breasts, such as reducing recall rates in screening mammography [6],
improving preoperative cancer staging [12], improving cancer detection
and mammographic sensitivity [17] by eliminating overlapping tissues,
which can reduce false-positive rates and the number of biopsies.

According to the updated breast cancer screening guidelines [40],
the American Cancer Society (ACS) currently recommends that
women should undergo regular screening mammography starting at
age 45 years. For women younger than 45 years, some may choose to
be screened based on cancer individual risk factors, particularly those
with family history [41]. The traditional mammography is not very use-
ful in younger women owing to the dense breast tissue, making it
harder to see potential cancers. DBTmay be a better choice for screening
in younger women, especially with microcalcifications.

This study had several limitations. First, we mainly recruited pa-
tients who underwent surgical biopsy for suspicious calcifications
(BI-RADS 4A category or above) and agreed with this study. The pa-
tient who was diagnosed with suspicious calcification BI-RADS 2 or 3
category by both DBT and FFDM were excluded from our study. The
bias of the population selection was inevitable. Second, this was a
retrospective study and the patients were not randomized, which
may not completely represent the clinical problem. Third, we
reviewed the images and the pathological results mainly from our
workstation and three readers were all from our hospital, which
may not be consistent with a multicenter design. Nonetheless, the
results of this study still provide clues not only in the diagnostic



Fig. 2. FFDM and DBT Images of A 47-year-old Woman with Adenopathy. FFDMwith CC (a) and MLO (b) view of the right breast reveals irregular microcalcification (white box) in the
lower inner quadrant and classifies it into BI-RADS 4B. DBT with CC views (c-e) dynamically reveal the spatial distribution of calcification more detailedly in the same patient and
classifies it into BI-RADS 4A. Abbreviations: DBT, digital breast tomosynthesis; FFDM, full-field digital mammography; CC, craniocaudal position; MLO, mediolateral oblique position;
BI-RADS, Breast Imaging Reporting and Data System

87J. Li et al. / Computational and Structural Biotechnology Journal 17 (2019) 82–89
performance but also in the clinical operation, such as hookwire
localization of breast suspicious calcification.

Preoperative hookwire localization is an essential tool in the surgical
management of non-palpable breast lesions, especially suspicious
microcalcifications [42]. It is generally performed under 2Dmammogra-
phy guidance at the discretion of the radiologist. Then the computer cal-
culates the skin entry site and the path to the lesion. Owing to the
scattered and stereoscopic distribution of microcalcifications, and over-
lapping images of 2Dmammography, inaccurate localization occurs fre-
quently, which requires a relocation. DBT images can reveal the spatial
distribution of calcifications [23], which may make the hookwire
localizationmore accurate. Further studies on how to improve this tech-
nique is still needed.

5. Conclusions

From our data, compared with the conventional FFDM, DBT in-
creased the sensitivity and specificity of the diagnosis of breast suspi-
cious calcifications, which was beneficial for the identification of
benign calcifications, especially in the young women with dense
breasts. DBT exhibited a superior advantage in dense breasts and benign
calcifications cases, while no advantage was observed in non-dense
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breasts or malignant calcifications cases. In the breast cancer screening
for youngwomenwith dense breasts, DBTmaybe recommended for ac-
curate diagnosis. Thus, our findings may assist the clinicians in applying
the optimal techniques for different patients and provide a theoretical
basis for the update of breast cancer screening guideline.
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