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ABSTRACT Erythrocyte invasion is an essential step in the pathogenesis of malaria. The erythrocyte binding-like (EBL) family of
Plasmodium falciparum proteins recognizes glycophorins (Gp) on erythrocytes and plays a critical role in attachment during
invasion. However, the molecular basis for specific receptor recognition by each parasite ligand has remained elusive, as is the
case with the ligand/receptor pair P. falciparum EBA-175 (PfEBA-175)/GpA. This is due largely to difficulties in producing prop-
erly glycosylated and functional receptors. Here, we developed an expression system to produce recombinant glycosylated and
functional GpA, as well as mutations and truncations. We identified the essential binding region and determinants for PfEBA-
175 engagement, demonstrated that these determinants are required for the inhibition of parasite growth, and identified the gly-
cans important in mediating the PfEBA-175–GpA interaction. The results suggest that PfEBA-175 engages multiple glycans of
GpA encoded by exon 3 and that the presentation of glycans is likely required for high-avidity binding. The absence of exon 3 in
GpB and GpE due to a splice site mutation confers specific recognition of GpA by PfEBA-175. We speculate that GpB and GpE
may have arisen due to selective pressure to lose the PfEBA-175 binding site in GpA. The expression system described here has
wider application for examining other EBL members important in parasite invasion, as well as additional pathogens that recog-
nize glycophorins. The ability to define critical binding determinants in receptor-ligand interactions, as well as a system to ge-
netically manipulate glycosylated receptors, opens new avenues for the design of interventions that disrupt parasite invasion.

IMPORTANCE Plasmodium falciparum uses distinct ligands that bind host cell receptors for invasion of red blood cells (RBCs)
during malaria infection. A key entry pathway involves P. falciparum EBA-175 (PfEBA-175) recognizing glycophorin A (GpA)
on RBCs. Despite knowledge of this protein-protein interaction, the complete mechanism for specific receptor engagement is
not known. PfEBA-175 recognizes GpA but is unable to engage the related RBC receptor GpB or GpE. Understanding the neces-
sary elements that enable PfEBA-175 to specifically recognize GpA is critical in developing specific and potent inhibitors of
PfEBA-175 that disrupt host cell invasion and aid in malaria control. Here, we describe a novel system to produce and manipu-
late the host receptor GpA. Using this system, we probed the elements in GpA necessary for engagement and thus for host cell
invasion. These studies have important implications for understanding how ligands and receptors interact and for the future
development of malaria interventions.
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Forty percent of the world’s population is at risk of malaria
infection, and more than 800,000 lives, mostly children, are

lost annually (1). Of the six Plasmodium species that cause malaria
in humans, infection with Plasmodium falciparum results in the
majority of disease and death across sub-Saharan Africa. The asex-
ual parasite stage within the bloodstream is responsible for all
disease pathology, and proteins critical for invasion of erythro-
cytes are attractive vaccine targets for malaria control.

The parasite ligands and host receptors involved in invasion
include the erythrocyte binding-like (EBL) family of P. falciparum
proteins (2, 3) that bind to glycophorins (Gp) on erythrocytes:

P. falciparum EBA-175 (PfEBA-175) binds to GpA (4–8), PfEBA-
140 binds to GpC (9–16), and PfEBL-1 binds to GpB (17, 18). A
fourth EBL member, PfEBA-181, plays a role in invasion, but the
erythrocyte receptor is unknown (14, 19, 20). The P. falciparum
EBL proteins are membrane embedded and are characterized (2)
by the presence of two structurally and functionally conserved
Duffy-binding-like (DBL) domains, designated region II (RII) do-
mains (6, 7, 9, 10, 15, 18, 21), and a conserved cysteine-rich do-
main, labeled region VI (22).

GpA is the major sialylated protein on the surface of erythro-
cytes (23, 24). GpA exists as a cell surface dimer, with interactions
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mediated through the transmembrane helices (25–28). The GpA
gene contains seven exons, three of which encode the signal se-
quence and extracellular domain (23, 24, 29). The extracellular
domain contains 16 O-glycans and one N-glycan, with the glycans
comprising ~50% of the total molecular weight for this glycopro-
tein receptor (23, 24, 29, 30). Sialic acid moieties on GpA are a
critical determinant for PfEBA-175 engagement of erythrocytes,
since neuraminidase treatment to remove �2-3-linked sialic acid
from the erythrocyte surface abolishes PfEBA-175 binding to
erythrocytes (5, 6). Furthermore, mutant Tn and Cad erythrocytes
have aberrant O-glycosylation and are resistant to invasion by
P. falciparum (31).

The crystal structure of PfEBA-175 RII in complex with sia-
lyllactose identified a total of six glycan binding pockets per
PfEBA-175 RII dimer (7). The presence of multiple pockets for
sialic acid binding highlights that multiple glycans in GpA are
engaged by PfEBA-175. EBL ligands have been shown to engage
receptors through receptor-mediated ligand dimerization, facili-
tating multimeric assembly to form stable and strong receptor-
ligand complexes (21, 32–34). Dimeric GpA likely induces
dimerization of PfEBA-175, leading to multimeric assembly of the
complex and high-avidity binding (7, 35). This binding requires
both DBL domains in RII (8) and is enhanced by additional re-
gions in PfEBA-175 (35). Receptor binding and multimeric as-
sembly are critical for parasite invasion, since an antibody (36)
that targets the GpA-binding pockets and the dimer interface of
PfEBA-175 RII potently neutralizes P. falciparum invasion (37,
38). Together, these results demonstrate that direct receptor
blockade of the PfEBA-175–GpA interaction is a viable method
for parasite neutralization.

Although the ligands and their respective receptors have been
known for years, the molecular basis for specific receptor recog-
nition by parasite ligands is still unclear, in spite of available crystal
structures (7, 15, 16). PfEBA-175 selectively binds to GpA but not
to GpB (6), but the determinants for receptor specificity have
remained elusive due to difficulties in expressing properly glyco-
sylated receptors or glycan mutants for studies. GpA shares ~95%
sequence homology with members within the same class, GpB and

GpE (23, 29). However, only GpA expresses exon 3 due to a splice
site mutation in GpB and GpE that eliminates the exon, and the
inclusion of exon 3 results in multiple O-glycans that are unique to
GpA. Glycophorins are under positive selection, and 43 known
naturally occurring variants of GpA have been identified (23, 29,
39). Many of these variants map to a zone of recombination in
exon 3 and are likely to result in functional consequences.

Here we describe molecular determinants for specific engage-
ment of GpA by PfEBA-175 during host cell invasion. We dem-
onstrate that properly glycosylated and functional recombinant
GpA can be produced and purified in large quantities using a
mammalian expression system. We show that the critical binding
region of GpA for PfEBA-175 maps to distinct glycosylation resi-
dues in exon 3. The absence of exon 3 glycans in GpA prevents
binding to PfEBA-175, and a GpA construct similar to GpB is
unable to engage PfEBA-175. We further show that recombinant
GpA disrupts parasite growth of three P. falciparum strains and
that the glycans in exon 3 are essential for parasite neutralization
by recombinant GpA.

RESULTS
Recombinant GpA, GpA exon 3�, and GpA glycosylation mu-
tants are expressed and purified to high yields from a mamma-
lian cell culture system. We previously reported preliminary ex-
pression and purification conditions for the recombinant GpA
extracellular domain (rGpA) (37). We optimized expression and
purification conditions to improve the yield of rGpA, necessary
for further study. All recombinant GpA constructs were produced
by a fusion of the extracellular domain of GpA to an antibody Fc
domain with a C-terminal His tag (Fig. 1). The fusion constructs
were transiently transfected into 293F cells, and the optimal DNA/
polyethyleneimine (PEI) ratio and time of expression were deter-
mined for each construct (Fig. 2A; see also Fig. S1 in the supple-
mental material). A DNA/PEI ratio of 1:2 produced the highest
yields and was used for all subsequent transfections of recombi-
nant glycoproteins. Expression for all constructs was observed
24 h posttransfection and continued to increase over time. Large-
scale expression was conducted at the optimal DNA/PEI ratio for

FIG 1 Schematic of constructs for glycophorin A (GpA) expression. (A) Domain structure of the GpA constructs, including the signal sequence (GpA SS), the
extracellular domain (GpA amino acids 23 to 84), and the Fc fusion protein with the PreScission protease (PP) and 6�His tag, (B) Amino acid sequence
alignment of GpA constructs used and GpB for comparison. O-glycans are indicated by black circles, and the single N-glycan is indicated by a grey circle.
Sequence similarity is indicated by grey shading.
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4 days, and the proteins were purified as described in Materials
and Methods. All constructs yielded 5 to 10 mg of protein per liter
of harvested medium.

All protein samples were glycosylated as evidenced by signifi-
cantly higher apparent molecular masses in SDS-PAGE (Fig. 2A
and B; see also Table S1 in the supplemental material). The theo-
retical molecular masses for rGpA-Fc-His and single mutants are
34.3 kDa, that for the rGpA-Fc-His triple mutant is 34.2 kDa, and
that for rGpA exon 3�-Fc-His is 30.3 kDa (see Table S1). All
constructs migrated ~20 kDa larger than the predicted molecular
mass on reduced SDS-PAGE gels, consistent with the presence of
numerous glycans (Fig. 2A). The rGpA triple mutant migrated at
a smaller apparent molecular mass than wild-type rGpA, consis-
tent with the removal of three O-glycans (Fig. 2A). rGpA exon 3�
also migrates at a smaller apparent molecular mass than wild-type
rGpA, consistent with the removal of exon 3 (Fig. 2A).

The antibody Fc domain forms a disulfide-linked dimer. Con-
sistent with disulfide-linked dimerization, rGpA-Fc-His fusions
have an apparent molecular mass of ~110 kDa in SDS-PAGE in
the absence of reducing conditions and an apparent molecular
mass of ~55 kDa when reduced (Fig. 2B). In addition, rGpA-Fc-

His eluted earlier than region II of PfEBA-175 (RII-175) in size
exclusion chromatography, consistent with a molecular mass
larger than those of the 73-kDa PfEBA-175 RII and the 54-kDa Fc
domain alone (Fig. 2C). Finally, the molecular mass of rGpA in
solution measured by sedimentation equilibrium analytical ultra-
centrifugation was 107.6 � 3.5 (see Fig. S2 in the supplemental
material). These results demonstrate that rGpA is dimeric in so-
lution.

Recombinant GpA is correctly glycosylated and recognized
by both an anti-GpA antibody and lectins. To assess the glycosyl-
ation state and functionality of the recombinant proteins, purified
samples were examined by antibody and lectin recognition. An
anti-GpA antibody recognizes endogenous GpA (40) and inhibits
PfEBA-175 RII binding to erythrocytes (8). This anti-GpA anti-
body bound untreated (UT), neuraminidase (NA)-treated, or
PNGase F-treated rGpA but did not bind to the Fc control that
lacks the GpA extracellular domain (Fig. 3A). This demonstrates
that the recombinant protein is GpA and that binding of the an-
tibody is specific for the GpA extracellular domain of the fusion
protein. The anti-GpA antibody failed to recognize rGpA exon 3�,
while an anti-6�His tag antibody recognizes both GpA and GpA
exon 3� (Fig. 3B), further emphasizing its specificity for GpA and
suggesting that the antibody epitope lies in residues 50 to 84 of the
GpA extracellular domain.

Lectin soybean agglutinin (SBA) and peanut agglutinin (PNA)
are known to bind different sugar moieties on glycosylated pro-
teins. SBA from Glycine max binds to �- and �-N-acetyl-
galactosamine (GalNAc), which are found predominantly on
O-linked glycans. The GalNAc in O-linked glycans is made acces-
sible by removal of the terminal sialic acid by NA treatment. Sialic
acid removal results in a large increase in binding observed when
SBA binds to NA-treated rGpA and rGpA exon 3� (Fig. 3C and
D). SBA’s specificity for O-linked glycans demonstrates that rGpA
and rGpA exon 3� contain correctly glycosylated O-linked resi-
dues. PNA from Arachis hypogaea is specific for �-galactose (�-
Gal), which can be found in both O-linked glycans and N-linked
glycans. Again, �-Gal is made accessible for binding by removal of
the terminal sialic acid by NA treatment. Similar to SBA, PNA
shows an increase in binding to NA-treated rGpA and rGpA exon
3� due to increased accessibility upon sialic acid removal (Fig. 3E
and F). Together, these results demonstrate that rGpA and rGpA
exon 3� are properly glycosylated.

Glycans encoded by exon 3 are critical for PfEBA-175 RII
binding to GpA. To further determine the role of the glycans in
PfEBA-175 RII binding to GpA, individual glycan mutants, as well
as a triple glycan mutant in exon 3 of rGpA, were expressed and
purified (Fig. 1B and 2A). A direct protein-protein interaction
assay by affinity pulldown with PfEBA-175 RII was conducted
using rGpA, glycosylation mutants, and rGpA exon 3� (Fig. 4; see
also Fig. S3 in the supplemental material). PfEBA-175 RII bound
rGpA but not NA-treated rGpA, as expected (P � 0.001) (Fig. 4).
rGpA exon 3� contains a sequence and glycosylation pattern sim-
ilar to those of GpB, and, consistent with PfEBA-175 specificity for
GpA over GpB, rGpA exon 3� was incapable of supporting bind-
ing to PfEBA-175 RII (Fig. 4) and the reduction in binding was
significant (P � 0.01) (Fig. 4B). The individual glycosylation mu-
tants had various effects on binding (Fig. 4). rGpA S66A had a
minimal effect on binding (Fig. 4), implying that it is not involved
or was minimally involved in PfEBA-175 RII binding and the re-
duction observed was not significant (Fig. 4B). On the other hand,

FIG 2 Expression, purification, and analysis of recombinant GpA and vari-
ants expressed as fusions to an Fc domain and 6-His tag. (A) Reduced SDS-
PAGE gel of recombinant GpA, recombinant GpA glycan mutants, and re-
combinant GpA exon 3�. Apparent molecular mass estimates by SDS-PAGE
are consistent with heavily glycosylated samples. (B) SDS-PAGE gel of rGpA
under oxidizing (�DTT) and reducing (�DTT) conditions reveal that rGpA
is a disulfide linked dimer. (C) Size exclusion chromatography of recombinant
GpA, RII-175 (73 kDa), and the Fc-His domain (54 kDa) alone show that
rGpA elutes before RII-175 or Fc, consistent with a molecular mass of 110 kDa.
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both rGpA S69A and rGpA T72A significantly reduced binding
(P � 0.05) (Fig. 4B). This implies that multiple glycans are in-
volved in binding of PfEBA-175 RII to GpA, although neither
mutation alone resulted in a complete elimination of binding. In
contrast to the individual mutants, an rGpA triple glycan mutant
containing all three individual glycan mutants (S66A/S69A/
T72A) is able to completely eliminate binding of PfEBA-175 RII (P
� 0.01) (Fig. 4). This demonstrates that multiple glycans encoded
by exon 3 are necessary for PfEBA-175 RII binding.

Recombinant GpA competes with endogenous GpA on red
blood cells for binding to PfEBA-175 and inhibits parasite inva-

sion. We assessed the functionality of purified, fully glycosylated
rGpA by analyzing its ability to compete with endogenous GpA on
erythrocytes by quantifying inhibition of parasite invasion of
erythrocytes. We assayed for changes in parasite growth by adding
increasing concentrations (0.3 to 300 �M) of purified rGpA to
synchronized schizont-stage parasite culture and determined the
parasitemia 48 h later for four different laboratory strains of P. fal-
ciparum. Recombinant GpA inhibited parasite growth in three
strains with 50% inhibitory concentrations (IC50s) of 43 �
19 �M, 25 � 17 �M, and 52 � 12 �M for 3D7, Dd2, and FVO/
FCR1, respectively (Fig. 5; see also Fig. S4 and Table S2 in the

FIG 3 Recognition of untreated and enzyme-treated rGpA and rGpA exon 3� by antibodies and lectins. UT, untreated; NA, neuraminidase treated; PNGF,
PNGase F treated; Fc, Fc domain alone. (A) Anti-GpA monoclonal antibody (Ab) binding to rGpA. The antibody binds to UT rGpA but not Fc. NA and PNGF
treatment of rGpA did not affect binding to the antibody. (B) Anti-GpA monoclonal antibody binding to rGpA exon 3�. The antibody is unable to bind rGpA
exon 3�, while it retains the ability to bind rGpA. A positive control for binding using an anti-His antibody binds to both rGpA and rGpA exon 3�, demonstrating
that the inability of the anti-GpA antibody is not due to a lack of protein. (C) SBA from Glycine max binding to rGpA. Binding is observed upon NA treatment,
since sialic acid removal exposes GalNAc residues predominantly found in O-glycans. (D) SBA from Glycine max binding to rGpA exon 3�. Again, binding is
observed upon NA treatment. (E) Lectin PNA from Arachis hypogaea binding to rGpA. PNA binding is observed only on NA treatment, since removal of the sialic
acid exposes the correct sugar residue for binding. PNA does not bind the Fc domain. (F) PNA from Arachis hypogaea binding to rGpA exon 3�. Again, binding
is observed upon NA treatment. A.U. � absorbance units.
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supplemental material). These IC50s are reported as the means
and standard deviations of data from three independent experi-
ments. The Fc domain alone did not significantly inhibit parasite
growth (see Table S2), demonstrating a specific dependence on
the rGpA for inhibition. These data suggest that rGpA is fully
functional and can compete with endogenous GpA for binding to
the known ligand PfEBA-175. rGpA did not inhibit parasite
growth of a fourth P. falciparum strain HB3 (see Fig. S5), since this
strain invades erythrocytes through sialic acid-independent path-
ways and does not appear to use PfEBA-175 (14, 41). Together
these results suggest that rGpA inhibits parasite invasion by tar-
geting PfEBA-175 specifically.

Binding of recombinant GpA to PfEBA-175 and inhibition of
parasite growth are mediated through the sialic acid moieties on
exon 3. The ability to express and purify not only wild-type rGpA

FIG 4 PfEBA-175 RII binding depends on glycans in exon 3. (A) Anti-PfEBA-
175 RII Western blots after pulldown with rGpA wild type, mutant rGpAs, and
rGpA exon 3�. The panels are three independent pulldowns, demonstrating
experimental reproducibility. PfEBA-175 RII binds to rGpA (lane 1), and
neuraminidase (NA) treatment of rGpA abolishes binding (lane 2). The single
mutations S66A (lane 3), S69A (lane 4), and T72A (lane 5) have various effects
on binding. The triple mutation S66A/S69A/T72A (lane 6) completely abol-
ishes binding. rGpA exon 3� (lane 7) is unable to significantly bind PfEBA-175
RII, indicating that residues 23 to 49 of GpA are unable to support efficient
binding. (B) Band intensities were quantified by densitometry and plotted as
means � SEM. Significance compared to result for GpA was determined by a
one-way ANOVA. Asterisks denote P � 0.001 (***), P � 0.01 (**), and P �
0.05 (*).

FIG 5 Recombinant GpA is fully functional and can compete with endoge-
nous GpA on erythrocytes to inhibit parasite invasion. Purified rGpA or Fc was
serially diluted and tested for its ability to inhibit parasite growth. Represen-
tative inhibition curves are shown for the 3D7 (A), Dd2 (B), or FVO/FCR1 (C)
strain. Growth inhibition by rGpA was determined by microscopy analysis of
parasitemia, and the results are expressed as growth normalized to that of
untreated control wells (0 �M).
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but also the rGpA triple glycan mutant and rGpA exon 3� enabled
us to map the binding region on GpA that is critical for engage-
ment with PfEBA-175 during invasion of erythrocytes by P. falci-
parum. We next examined whether rGpA lacking the critical
O-glycosylation residues in exon 3 can block parasite growth. A
near-IC50 concentration of rGpA (30 �M) was utilized in analyz-
ing the effects of the rGpA triple mutant and rGpA exon 3� on
parasite growth. While wild-type rGpA at a 30 �M concentration
could inhibit parasite growth to ~50% in all three sialic acid-
dependent strains, neither the rGpA triple mutant nor rGpA exon
3� inhibited parasite growth significantly (Fig. 6A to C), provid-
ing further support that sialic acid moieties on exon 3 of GpA are
necessary for binding to PfEBA-175. This also demonstrates that
the O-glycans in residues 23 to 49 of the GpA extracellular domain
that are conserved in GpB are dispensable for binding to PfEBA-
175 and inhibition of parasite growth in sialic acid-dependent
strains. In addition, we tested the growth of the sialic acid-
independent HB3 strain (14, 41) in the presence of rGpA and
found that it was not significantly affected by GpA, the triple gly-
can mutant, or rGpA exon 3� (Fig. 6D; see also Fig. S5 in the
supplemental material).

DISCUSSION

The EBL family of ligands on the parasite surface serve as attractive
targets for vaccine development, since antibodies against these
ligands have been shown to be inhibitory and PfEBA-175 is rec-
ognized by antibodies in individuals with naturally acquired im-
munity (36, 37, 42, 43). Although EBL ligands are functionally
redundant, PfEBA-175 is an excellent vaccine candidate (44, 45)
because it is a major invasion pathway (46) and antibodies that
target PfEBA-175 inhibit parasite growth of multiple strains of
P. falciparum, including those that use PfEBA-175-independent
invasion pathways (47). Toward development of more efficacious
vaccines, greater understanding of interactions between surface
receptors and ligands is needed to better focus vaccine responses.
Here we describe a necessary step in facilitating a complete under-
standing of the PfEBA-175– glycophorin A interaction.

Region II of PfEBA-175 is responsible for binding to GpA on
the surface of erythrocytes (6–8), and structural studies suggest
that PfEBA-175 RII dimerizes around a dimer of GpA engaging
three distinct glycans from each GpA monomer (7). The identifi-
cation of six glycan binding sites per PfEBA-175 RII dimer implies

FIG 6 rGpA triple mutant and rGpA exon 3� fail to inhibit parasite invasion of 3D7, Dd2, or FVO/FCR1. rGpA, rGpA triple mutant, or rGpA exon 3� was
purified and used at 30 �M in a growth inhibition assay with the 3D7 (A), Dd2 (B), FVO/FCR1 (C), or HB3 (D) strain. Fc was included in the experiment as a
control. HB3 showed no inhibition by rGpA, since this strain invades through sialic-acid-independent pathways that do not rely on PfEBA-175. Parasitemia at
the end was analyzed by microscopy, and growth was normalized to that of untreated control wells (0 �M). Data shown are means � SEM from three
independent experiments, each done in triplicate. Asterisks denote P � 0.001 (***) and P � 0.01 (**), and “n.s.” denotes not significant.
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that multiple glycans are engaged to facilitate high-avidity binding
of PfEBA-175 to GpA.

Prior studies have relied on extraction of GpA from erythro-
cytes due to the lack of expression systems for protein production
and genetic manipulation. Toward understanding the mechanism
of PfEBA-175 binding to GpA, we developed a novel glycoprotein
expression system to efficiently produce large quantities of cor-
rectly glycosylated recombinant GpA. This system also allows the
generation of glycan mutants by single amino acid mutation and
by truncation. We described a protocol to express large quantities
of soluble recombinant GpA by transient transfection of
HEK293F cells and reported that recombinant GpA and glycan
mutants can be produced with yields of 5 to 10 mg/liter of har-
vested medium. The success in producing glycosylated protein
was essential in mapping the interface between PfEBA-175 and
GpA, since glycosylation is required for binding. The glycosylated
protein products were assessed for adequate glycosylation and
functionality through antibody and lectin binding.

The data presented here from direct protein-protein interac-
tion, parasite growth inhibition assays, and direct manipulation of
GpA and its glycosylation reveal that the critical binding domain
corresponds to multiple glycans encoded by exon 3 of GpA. This
finding provides insight into how PfEBA-175 discriminates be-
tween GpA and GpB, the latter of which lacks exon 3. Exon 3 of
GpA has five O-glycans (T55, T59, S66, S69, and T72) that are
unique to GpA (30). To determine the role of glycans in this re-
gion, single glycan mutants of three (S66, S69, and T72) of the five
glycosylated residues and a triple glycan mutant were tested for
binding to PfEBA-175 RII in a direct protein-protein interaction
assay. Individual glycan showed mutants reduced binding, but
only the triple mutant showed a complete loss of binding, dem-
onstrating that multiple glycans of exon 3 are necessary for en-
gagement. The other two single mutants (mutated at T55 and
T59) could not be assayed due to difficulties in protein expression,
and it is plausible that these two O-glycans may also be involved in
binding. Furthermore, rGpA exon 3� and the triple mutant both
retain at least 11 O-glycans and are still unable to engage PfEBA-
175 RII, suggesting that general sialic acid binding is insufficient
for PfEBA-175 engagement of GpA. Together these results suggest
that the identity, location, and presentation of the three glycans in
exon 3 are critical for high-avidity binding of PfEBA-175 to GpA
on erythrocytes. These results are consistent with findings of prior
studies that suggested the region encoded by exon 3 is important
for engagement, since red blood cell (RBC)-extracted GpA but not
GpB disrupted binding of erythrocytes to PfEBA-175 expressed
on the surface of tissue culture cells (rosetting assays) (6). Further,
separation of GpA into two pieces by protease digestion within the
protein sequence encoded by exon 3 abolished inhibition by GpA
in in vitro rosetting assays, and neither each piece alone nor a
combination of both fragments was able to inhibit binding (6).

The growth inhibition assay (GIA) results demonstrated the
role of glycans in the parasite invasion process. Recombinant GpA
inhibited parasite growth in culture, likely as a result of direct
competition with endogenous GpA on erythrocytes. In contrast,
the recombinant GpA triple glycan mutant could not bind to
PfEBA-175, was unlikely to impede endogenous GpA binding to
PfEBA-175, and did not inhibit parasite growth. Likewise, rGpA
exon 3� is similar to GpB and retains 11 of the 16 O-glycans of
GpA but could not bind PfEBA-175 and did not affect parasite
growth. These results indicate that residues 23 to 49 and the gly-

cans in this region of GpA/B are dispensable for engagement with
PfEBA-175. This is consistent with P. falciparum invading Mg
erythrocytes at the same rate as normal erythrocytes even though
Mg erythrocytes lack glycosylation of residues 24, 25, and 26 (29,
31). Taken together, these results demonstrate the functional im-
portance of exon 3 O-glycans in the PfEBA-175 invasion pathway.

An intriguing observation is that recombinant GpA inhibited
three distinct P. falciparum strains with differing dependence on
sialic acid for invasion. W2mef (the parental line of Dd2) has been
reported to be primarily sialic acid dependent compared to the
3D7 and FVO/FCR1 strains (42, 46). Consistent with this obser-
vation, we found that rGpA inhibited Dd2 slightly better than 3D7
or FVO/FCR1. However, inhibition of parasite growth by rGpA
was observed in all three strains, demonstrating that these strains
depend on PfEBA-175 for invasion. This is supported by the ob-
servation that anti-PfEBA-175 antibodies inhibit P. falciparum
strains independent of their sialic dependence for invasion and
identification of the PfEBA-175–GpA pathway as a dominant in-
vasion pathway (44, 46, 47). To ensure that inhibition by rGpA
was not due to off-target effects independent of PfEBA-175, we
examined inhibition of HB3, a strain that invades predominantly
through pathways not involving PfEBA-175 (14, 41). HB3 was
unaffected by rGpA, suggesting that the inhibitory effects target
PfEBA-175 specifically. Minor reductions in growth were ob-
served with nonspecific proteins (Fc), although these were not
significant in any case. The studies described here enable mapping
of the determinants for GpA engagement by PfEBA-175 by mul-
tiple P. falciparum strains.

The production of recombinant GpA and multiple mutants is
an important innovation for the field, since it now allows for the
future study of known GpA variants, as well as other ligand-
receptor systems. Three particular GpA variants of interest are Vr,
Hop, and Nob, which map to exon 3, and all may affect the num-
ber of O-glycans present in this exon (29). The Vr variant corre-
sponds to a Ser-to-Tyr change at position 66, and it is one of the
glycosylated residues investigated in this study. Mutating Ser to
Ala (S66A) resulted in a partial but not significant reduction of
PfEBA-175 RII binding to GpA in our pulldown assay. It is con-
ceivable that the S66Y variant has a diminished capacity to engage
PfEBA-175, although further studies are needed. The other vari-
ants, Hop and Nob, potentially result in the addition of glycans to
exon 3. Both Hop and Nob have the Arg68Thr mutation, while
Nob carries a second mutation, Tyr71Ser (29). The potential ad-
dition of O-glycans immediately adjacent to existing O-glycans
could influence binding. The ability to express multiple mutants
in large quantities opens new areas of research not possible previ-
ously due to limitations in reagent availability.

Malaria is thought to have shaped human evolution by pro-
moting the evolution of surface receptors on erythrocytes to pre-
vent infection. The archetypal change is the loss of the Duffy an-
tigen/receptor for chemokines on red blood cells, which reduces
infection by P. vivax (48, 49). In addition, individuals in areas of
Papua New Guinea to which malaria is endemic have selected for
loss of GpC, which is thought to prevent P. falciparum infections
that initiate via PfEBA-140 (11). The mapping of the PfEBA-175
binding site in GpA and the lack of this binding site in GpB and
GpE are supportive of selection to evade infection. The results
raise the possibility that GpB and GpE arose due to selective pres-
sure to evade malaria infection by eliminating the PfEBA-175
binding site and a predominant invasion route for P. falciparum.
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The mapping of the critical binding domain to exon 3 has
implications for understanding species tropism. In nonhuman
primates, GpA contains exon 3, with the major zone of variation
being present in this exon (50, 51). Determining the influence of
polymorphisms unique to humans versus other primates requires
further experimentation that is now feasible with the novel ex-
pression system described here. Glycophorins function as recep-
tors for other critical human pathogens, and this study opens up
new avenues of research to identify receptor-binding determi-
nants in these systems (52–54). In conclusion, the results pre-
sented here have a wide application for mapping receptor-ligand
interactions and have important implications for the design and
development of peptidoglycan mimetics that aim to disrupt the
essential process of parasite invasion.

MATERIALS AND METHODS
Glycoprotein expression and purification. rGpA (amino acids 23 to 84 of
the extracellular domain), rGpA glycosylation mutants, and rGpA exon
3� (amino acids 23 to 49 of the extracellular domain) (Fig. 1A) were
cloned into a pHLFchis vector containing the GpA signal sequence and a
PreScission protease site inserted between the glycophorin domain and
the Fc domain. The constructs were transiently transfected into HEK293F
cells using a DNA/PEI ratio of 1:2 with the concentration of the DNA at
1 �g/ml of culture as described elsewhere (37). For the DNA/PEI ratio
experiment, 4 days posttransfection, the medium was harvested and di-
luted 3-fold with binding buffer (50 mM Tris [pH 8], 100 mM sodium
chloride, and 10 mM imidazole [pH 8]) and incubated with Ni2�-agarose
beads. Recombinant proteins were eluted from the beads with elution
buffer (50 mM Tris [pH 8], 100 mM sodium chloride, and 500 mM imi-
dazole [pH 8]). For all other experiments, 4 days posttransfection, the
medium was harvested and diluted 3-fold with binding buffer (50 mM
Tris [pH 8]) and incubated with Q Sepharose Fast Flow beads (GE Health-
care), which were then washed with a 3� column volume with wash
buffer (50 mM Tris [pH 8] and 50 mM NaCl). The protein was then eluted
with a 5� column volume of elution buffer (50 mM Tris [pH 8] and
500 mM NaCl). The eluted protein was then diluted 3-fold with binding
buffer (50 mM Tris [pH 8] and 10 mM imidazole [pH 8]) and incubated
with Ni2�-agarose beads, which were then washed with a 3�column vol-
ume with wash buffer (50 mM Tris [pH 8], 100 mM sodium chloride, and
10 mM imidazole [pH 8]). Recombinant proteins were eluted from the
beads with 5 column volumes of elution buffer (50 mM Tris [pH 8],
100 mM sodium chloride, and 500 mM imidazole [pH 8]). Recombinant
proteins were concentrated and buffer exchanged into phosphate-
buffered saline (PBS) using a 10-kDa-molecular-mass-cutoff Amicon Ul-
tra centrifugal filter (Millipore). Proteins required for growth inhibition
assays were purified under sterile conditions.

Analytical ultracentrifugation. Sedimentation equilibrium experi-
ments were carried out in a Beckman/Coulter XL-A analytical ultracen-
trifuge (Beckman/Coulter, Palo Alto, CA) using an An60Ti rotor at 10°C.
Absorbance measurements at a wavelength of 266 nm for three indepen-
dent replicates at three concentrations of 5 �	, 7 �M, and 8 �M were
obtained at speeds of 6,000 rpm (6K), 7K, and 8K. A partial specific vol-
ume for fully glycosylated rGpA of 0.693633 was calculated by using the
software program Sednterp (55), and a global fit analysis was performed in
the program Ultrascan II, version 9.9 (56). The molecular mass reported is
the mean � standard deviation for the three independent replicates at all
speeds analyzed.

Enzyme treatments. Glycoproteins were treated with 400 mU of neur-
aminidase (NA) from Clostridium perfringens (Sigma) or 154 mU of PN-
Gase F (NEB) overnight at 4°C in PBS. rGpA-Fc-His or rGpA exon 3�-
Fc-His was treated with PreScission protease for 1 h at room temperature
in PBS. The Fc-His portion (Fc) was then purified using Ni2�-agarose
beads by binding Fc to the beads with binding buffer (50 mM Tris [pH 8],
100 mM sodium chloride, and 10 mM imidazole [pH 8]). Fc was eluted

from the beads with elution buffer (50 mM Tris [pH 8], 100 mM sodium
chloride, and 500 mM imidazole [pH 8]).

Lectin and antibody binding. Nunc 96-well Maxisorb plates were
coated by incubation overnight at 4°C with 10 �g of each protein sample
and were blocked with 2% bovine serum albumin (BSA) in PBS for 1 h at
room temperature. Plates were subsequently incubated with either anti-
GpA antibody (Santa Cruz Biotech), anti-6�His antibody (Invitrogen),
Gycine max soybean agglutinin (SBA)-Alexa Fluor 488 (Invitrogen), or
Arachis hypogaea peanut agglutinin (PNA)-Alexa Fluor 488 (Invitrogen)
for 1 h at room temperature in the dark. Plates incubated with anti-GpA
or anti-6�His antibodies received an additional incubation with anti-
mouse IgG–Alexa Fluor 488 antibody (Invitrogen) for 30 min at room
temperature in the dark. The plates were washed with PBS-Tween 20
(0.1%) after every step and were read with either a FLUOstar Omega
(BMG Labtech) or POLARstar Omega (BMG Labtech) plate reader.

Direct protein-protein interaction assay for GpA engagement of
PfEBA-175. Direct interaction studies were performed as previously de-
scribed (37). PfEBA-175 RII was obtained as reported previously (8, 37).
Eight micromolar rGpA, rGpA mutants, or rGpA exon 3�, either un-
treated or treated with NA as described above, was incubated with 3 �M
PfEBA-175 RII and 20 �l of Ni2�-agarose beads in a total of 100 �l in
pulldown buffer (50 mM Tris [pH 8], 50 mM imidazole, 100 mM sodium
chloride, and 0.1% Triton X-100) for 1 h at room temperature. The beads
were then washed 3 times with pulldown buffer, resuspended in 50 �l (for
analysis by using a Fujifilm Fla-5000 system) or 100 �l (for analysis by
autoradiography) of 4� protein sample dye, separated by SDS-PAGE,
and immunoblotted with an anti-PfEBA-175 antibody (36, 37) to detect
PfEBA-175 RII bound to GpA. The immunoblot was imaged using either
film or a Fujifilm Fla-5000 phosphorimager. Three independent pull-
downs with two technical replicates utilizing different antibody concen-
trations for the technical replicates were quantified using the Fuji phos-
phorimager and Image Gauge V4.23 software. Band intensities were then
analyzed in a one-way analysis of variance (ANOVA) of all six blots in the
software program Prism 5, and the raw data were plotted as means �
standard errors of means (SEM) with significance values.

Parasite growth inhibition assay. The P. falciparum strains 3D7, Dd2,
FVO/FCR1, and HB3 were cultured in fresh human O� red blood cells in
RPMI 1640 medium with 0.5% Albumax and synchronized with succes-
sive rounds of 5% sorbitol treatment as described previously (57). Growth
inhibition assays (58) were performed in a 96-well format with a starting
parasitemia of 0.1 to 0.5%. Briefly, synchronized cultures with 5 to 10%
parasitemia were used to isolate erythrocytes infected with late stages of
the parasite using a magnetic bead column (MACSQuant Columns;
Miltenyi Biotec). Giemsa-stained smears of the culture and flow cytom-
etry by acridine orange staining of the parasites were performed as needed
to evaluate parasitemia of 0.1 to 0.5% at the start of invasion assay. The
cultures were then incubated in the absence or presence of various con-
centrations of rGpA, the rGpA triple mutant, rGpA exon 3�, or Fc control
for 48 h at 2% hematocrit in triplicate wells. Final parasitemia was assessed
by light microscopy analysis. Giemsa-stained thin smears were prepared
from each well, and 10 random field images per smear (30 total images per
data point) were acquired using a Zeiss Axioskop microscope equipped
with a 100� oil immersion lens (1.3 numerical aperture [NA]) and an
AxioCam MRm camera with Axiovision v. 3.1 software (Carl Zeiss). The
number of parasite-infected erythrocytes in each image was visually
counted, while the total number of erythrocytes in each image was ana-
lyzed using the Volocity 6.3 Cellular Imaging software program
(PerkinElmer). Parasitemia was calculated as the number of parasite-
infected erythrocytes divided by the total number of erythrocytes. The
microscopist was blinded to the experimental group designation of each
smear. Each growth inhibition assay was performed three independent
times, with each concentration in triplicate. For the rGpA IC50 analysis,
nonlinear dose-inhibition curve fitting and individual IC50s for each
growth inhibition assay were derived using Prizm 5.0 software. The mean
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IC50 and standard deviation of results from the three independent exper-
iments was reported.
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