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Abstract: Biomass valorization to building block chemicals in food and pharmaceutical industries
has tremendously gained attention. To produce monophenolic compounds from palm empty fruit
bunch (EFB), EFB was subjected to alkaline hydrothermal extraction using NaOH or K2CO3 as
a promotor. Subsequently, EFB-derived lignin was subjected to an oxidative depolymerization
using Cu(II) and Fe(III) mixed metal oxides catalyst supported on γ-Al2O3 or SiO2 as the catalyst
in the presence of hydrogen peroxide. The highest percentage of total phenolic compounds of
63.87 wt% was obtained from microwave-induced oxidative degradation of K2CO3 extracted lignin
catalyzed by Cu-Fe/SiO2 catalyst. Main products from the aforementioned condition included
27.29 wt% of 2,4-di-tert-butylphenol, 19.21 wt% of syringol, 9.36 wt% of acetosyringone, 3.69 wt% of
acetovanillone, 2.16 wt% of syringaldehyde, and 2.16 wt% of vanillin. Although the total phenolic
compound from Cu-Fe/Al2O3 catalyst was lower (49.52 wt%) compared with that from Cu-Fe/SiO2

catalyst (63.87 wt%), Cu-Fe/Al2O3 catalyst provided the greater selectivity of main two value-added
products, syringol and acetosyrigone, at 54.64% and 23.65%, respectively (78.29% total selectivity
of two products) from the NaOH extracted lignin. The findings suggested a promising method for
syringol and acetosyringone production from the oxidative heterogeneous lignin depolymerization
under low power intensity microwave heating within a short reaction time of 30 min.

Keywords: alkaline hydrothermal lignin fractionation; heterogeneous catalyst; phenolic compound;
microwave-assisted lignin depolymerization; mixed iron and copper oxide catalyst

1. Introduction

To produce high-valued phenolic compounds from lignin, the researchers have pro-
posed both thermochemical reactions, e.g., based-catalyzed/acid-catalyzed depolymer-
ization [1,2], hydrogenation [3,4], hydrogenolysis [5,6], combustion [7], gasification [8],
pyrolysis [9,10], and catalytic oxidation [11] approaches. In the past decades, hydrother-
mal reaction under high pressure and temperature has been proposed to produce either
aromatic compounds or bio-oil from biomass [12,13]. In hydrothermal reactions, water
was used as a reaction medium. At subcritical condition with high temperature and high
pressure, water acts as catalyst behaving both basic and acidic properties. Apart from
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water, many other solvents could be used as the reaction medium to facilitate better reac-
tion efficiency such as superior selectivity, higher reaction rate, and greater product yield.
Moreover, both homogeneous and heterogeneous catalysts could be used to improve the
reaction performance [14]. Advantages of hydrothermal technique were the higher yield
of phenolic compounds as well as economical and simple handling. Recently, Chan et al.
(2015) studied the process parameters for the hydrothermal liquefaction of waste from the
palm oil industry for phenolic bio-oil production [15]. The proposed technology although
provides high phenolic compound yield, a great amount of energy is required as the tem-
perature range of hydrothermal liquefaction over 350 ◦C is applied. In addition, the high
capital expenditure due to the high-pressure vessel beyond 8 MPa is needed depending on
the solvents used in the reaction. Apart from that, a previous research reported successful
vanillin production under thermal condition (400–600 ◦C) that required special reactor
having capability to control reaction time down to 40–600 s [16]. Therefore, two-step lignin
fractionation followed by lignin depolymerization under mild hydrothermal reaction in
alkaline condition has been proposed in the present work.

In case of lignin depolymerization to phenolic compounds, there were five types of
reactions commonly used, consisting of metallic-catalyzed, base-catalyzed, acid-catalyzed,
ionic liquids (ILs)-induced, and supercritical solvolysis lignin depolymerization reactions.
It was found that vanillin was successfully produced from dissolution of kraft lignin and
eucalyptus via ILs pretreatment at 160 ◦C for 6 h while syringol and allyl guaiacol were
the major products observed from dissolution of switch grass and pine, respectively [17].
Various ILs assisted lignin depolymerization processes with high selectivity were also pro-
posed [18–20], but the ILs cost and recyclability are limitations. Ordinarily, base-catalyzed
and acid-catalyzed depolymerization reaction were conscientious, but low selectivity was
obtained. Not only the strong reaction conditions (high temperature, high pressure and
high pH) but also requirement of extraordinarily designed reactors, resulted in high costs
of phenolics production. Further, supercritical fluids although provides high selectivity
than acid and base-catalyzed reactions, nevertheless supercritical solvents facility limited
their applications on biomass treatment in commercial scale [21,22]. Conversion of lignin
to vanillin or phenolic aldehydes e.g., p-hydroxybenzaldehyde, vanillaldehyde, syringalde-
hyde [23], which are used in pharmaceutical application, has been widely studied via
mild oxidative reaction that required either air, molecular oxygen [24] or oxidant such as
H2O2 [25–27].

Additionally, metal-catalyzed oxidative lignin depolymerization has offered great
advantages because of its high selectivity and relatively milder reaction condition; therefore,
metal supported catalysts have been extensively used for lignin valorization [13,28,29].
It has been reported that Au/TiO2, however, favored ring-opening reactions of lignin
while Pt/TiO2 effectively promoted lignin condensation and gave minimal effect on ring-
opening reaction [30]. Although precious metal-supported catalysts are efficient for the
valorization of lignin, their utilization is not economically feasible because of limited
availability and high cost. To avoid these issues, non-precious metal supported catalysts
have been introduced for the efficient heterogeneous lignin depolymerization. Among
all metal complex investigated, the copper complexes could influence the mechanism in
accordance with formation of monophenolic compounds. It was revealed that the Cu and
La-doped porous metal oxide-based catalysts derived from hydrotalcite-like precursors
were promising catalysts for the depolymerization of organosolv lignin in supercritical
methanol [31]. In this method, lignin was depolymerized to methanol-soluble products
without any char formation. The obtained bio-oil contains oligomers with high aromatic
content and phenolic monomers. Most of early research on lignin oxidation was proceeded
with oxidant or with Zr4+, Mn3+, Co2+ and Cu2+ which were simple transition metal
ions [32,33]. After that, Mn, Co, Cu and Fe based metal oxides (e.g., CuO, MnO2), metal
chlorides (e.g., MnCl2, CoCl2, FeCl3) [26,34] and composite metal oxides were subsequently
investigated to augment oxygen catalytic efficiency for lignin depolymerization [35–38].
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Recently, lignin depolymerization using microwave heating has been widely investi-
gated due to its high heating rate and more selective to break down particular bonding thus
yielding high selectivity of desire products based on individual catalyst compared with
conventional heating approaches [4,39,40]. Liu and colleagues newly reported on lignin
degradation in isopropanol with very high liquid yield at 45.35 wt% within only 30 min
under microwave heating at 120 ◦C [39]. Even higher liquid product yield at 72.0 wt%
including 6.7 wt% monomers, mainly 2,3-dihydrobenzofuran (3.00 wt%) and p-coumaric
acid (1.59 wt%), from alkaline lignin depolymerization at 160 ◦C in formic acid/methanol
media were achieved within 30 min [40]. A study just newly revealed the catalytic C-O-C
bond scission of birch sawdust lignin promoted by Fe(OTf)3 under the identical conditions
(190 ◦C, 1 h), which yielded more selective syringyl unit (S) of lignin monomer compared
with guaiacyl-unit (G) of lignin [41]. Similar result of C-O-C ether bond cleavage was
found when Rh/C was the catalyst and formic acid was used as the reaction medium
under microwave heating [13]. Just newly reported, microwave-assisted catalytic depoly-
merization of birch sawdust lignin over Pt/C, Pd/C, or Ru/C in water/alcohol mixture
facilitated in situ hydrogen generated and simultaneously promoted the hydrogenolysis of
β-O-4 ether linkage which markedly yield S-type lignin relatively to Guaiacyl or G-type
lignin as main products [42]. The result was in good agreement with our previous study
on microwave-assisted depolymerization of alkaline lignin from palm bunch over dual
Cu(OH)2 and Fe2O3 catalysts which gave highly selective syringyl-type products within
only 15 min [26].

In the present work, based on our previous study Fe and Cu exhibited very good
performance on lignin depolymerization under mild microwave heating in the presence
of H2O2 in homogeneous catalytic system [26]. A high yield of oxidative lignin depoly-
merization products, namely, syringol, acetosyringone and vanillin, were produced with
high selectivity. Therefore, heterogeneous Fe and Cu based mixed metal oxide catalysts
were synthesized on various supports and used as the catalysts for the depolymerization
of the EFB derived alkaline lignin to produce monophenolic compounds. To the best of our
knowledge, there was no report on investigation of mixed metal oxide Fe2O3/CuO/SiO2
and Fe2O3/CuO/Al2O3 used as catalyst in oxidative lignin depolymerization. Therefore,
heterogeneously mixed metal oxide (Fe2O3 and CuO) catalysts were synthesized on differ-
ent supports (SiO2 or Al2O3) and their catalytic activity under oxidative condition using
microwave heating were compared. The synthesized catalyst was easily recovered by
filtration or centrifugation that is beneficial for recycling the catalyst. The results from
homogeneous catalytic lignin depolymerization and heterogeneous catalytic reaction were
compared.

2. Materials and Methods
2.1. Biomass and Chemicals

To prepare the material for lignin extraction, raw EFB from a palm oil mill having
initial moisture content at ~50% was washed with water and sun-dried for 12 h. After that, it
was dried at 80 ◦C in an oven for 24 h to obtain 4.3% final moisture content. Then, dried EFB
was crushed and sieved to the particle size in a range of +50/−200 mesh (74–297 µm), and
stored in a desiccator for use. For catalyst synthesis, silicon dioxide (SiO2) and aluminium
oxide (Al2O3) were purchased from KemAus, Australia and used as the catalyst support.
Copper (II) nitrate (Cu(NO3)2) and iron (III) nitrate (Fe(NO3)3) were obtained from Ajax
Finechem, Australia. For lignin separation from EFB, the chemicals namely potassium
carbonate (99.8%, Daejung, Siheung-si, Korea), sodium hydroxide (99.8%, Ajax Finechem,
New South Wales, Australia), hydrogen peroxide (30% w/w, Ajax), sulfuric acid (98%, RCI
Labscan, Bangkok, Thailand), and hydrochloric acid (37%, RCI Labscan) were purchased
and used as received. Solvents for phenolic compound extraction and GC-MS analysis
such as methanol (99.8%, HPLC, RCI Labscan) and ethyl acetate (99.5%, Daejung) were
acquired and used as received.
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2.2. Co-Impregnation of SiO2, Al2O3 Supported Cu-Fe Catalysts for EFB-Extracted
Lignin Depolymerization

Both the Cu and Fe loadings of the catalysts were 10 mol% based on SiO2 and Al2O3.
The aqueous mixture solution of Cu(NO3)2 and Fe(NO3)3 were prepared and added
dropwise in the SiO2 or Al2O3 in a crucible. The slurry was evaporated in ambient
atmosphere for 8 h, then dried at 110 ◦C overnight, and calcined in furnace at 350 ◦C in
an excess air for 4 h, as shown in Figure 1. The calcined Cu-Fe/Al2O3 and Cu-Fe/SiO2
catalysts were stored in an automatic desiccator at <25% relative humidity.
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Figure 1. Co-impregnation of Cu-Fe catalysts on SiO2 or Al2O3 supports.

2.3. Heterogeneously Mixed Metal Oxides Complex Catalysts Characterization

The crystal structure of heterogeneously mixed metal oxides catalysts was character-
ized by X-ray diffractometry (XRD, D8 Advance, Bruker, Bremen, Germany) with scan rate
at 1◦ min−1 and 2θ range from 10◦ to 70◦. The surface elemental composition of the calcined
catalysts was determined by X-ray photoelectron spectroscopy (XPS, AXIS Nova, Kratos,
Manchester, UK). Quasi-quantitative analysis of metal oxides in calcined catalysts was per-
formed using X-ray Fluorescence Spectrometer (XRF, model Rigaku ZSK Primus, Rigaku,
Tokyo, Japan). The appearance and elemental composition of catalysts were analyzed
by Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX)
(VEGA3, TESCAN Brno-Kohoutovice, Czech Republic). Field Emission Scanning Electron
Microscope (FE-SEM) model JEOL JSM7800F, JAPAN, Software: PCSEM equipped with En-
ergy Dispersive X-ray Spectrometer (EDS) model Oxford X-Max 20, United Kingdom (UK)
was used for analysis of elemental dispersion on catalyst surface with accelerating voltage
of 15 kV at 2500–5000 magnification. Analysis of ammonia-temperature programmed
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desorption (NH3-TPD) using chemisorption analyzer (BEL Japan Inc.) was applied to
quantify the acid density and the distribution of acid sites of synthesized catalysts and the
support in a temperature range of 100 and 700 ◦C.

2.4. Lignin Extraction and Depolymerization of Lignin
2.4.1. Alkali Hydrothermal Extraction of Lignin from Palm Empty Fruit Bunch

Lignin extraction from EFB was described in our previous study [26]. First, dried
EFB was crushed to small particles and sieved to a range of +50/−200 mesh. Then, lignin
fractionation from EFB using alkaline solution (1 mol L−1 K2CO3 or NaOH solution) was
conducted in a high-pressure stainless-steel hydrothermal reactor with solid-to-liquid ratio
of 1:5. The reaction was performed at 200 ◦C for 20 min under 2 MPa nitrogen pressure. For
lignin precipitation, lignin-rich solution from alkali hydrothermal extraction was acidified
with concentrated sulfuric acid until final pH of solution was 1.0. The solid precipitate
was separated from solution by centrifuge at 7000 rpm at 25 ◦C for 15 min. Then, solid
precipitated lignin was washed with distilled water until the pH became neutral. Finally,
alkaline extracted lignin was dried at 50 ◦C for 18 h and used as the precursor for the
production of phenolic compounds.

2.4.2. Microwave-Assisted Phenolic Compound Production over Heterogeneously Mixed
Metal Oxides Complex Catalyst

The reaction catalyzed by Cu(OH)2 + Fe2O3 mixed metal oxides catalyst with 1 wt%
and 2.5 wt% H2O2 was selected as it was the best condition for homogeneous monophenolic
compound production from K2CO3-lignin and NaOH-lignin, respectively. Based on our
previous study [26], the reaction was carried out under microwave irradiation at 300 W
for 15 and 30 min for 0.3 g K2CO3-lignin or NaOH-lignin with 0.15 g of heterogeneously
mixed metal oxide catalyst and 1 wt% of H2O2 as an oxidant in the presence of 3 mol L−1

NaOH solution as demonstrated in Figure 2.
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Recyclability of both CuFe/Al2O3 and CuFe/SiO2 catalysts on NaOH-lignin in mi-
crowave depolymerization at 300 W for 30 min was studied. Spent catalysts after the
first reaction was filtered and washed several times with methanol to eliminate lignin
contamination. Dry catalysts at 60 ◦C for 12 h were used for the subsequent reaction with
the same weight ratio of catalyst to lignin when solid-to-liquid ratio was constant for all
catalyst recycle studies. Spent catalysts were characterized using XPS for elemental analysis
compared with fresh catalyst.

2.5. Analysis of Lignin Functional Groups and Lignin Depolymerization Products

Analysis of K2CO3-lignin and NaOH-lignin was performed after acid precipitation of
lignin from alkali hydrothermal extraction using sulfuric acid, pH 1.0. The precipitate was
centrifuged and dried at 50 ◦C for 18 h. Fourier transform infrared (FT-IR) spectroscopy
(Nicolet 6700, Thermo Fisher Scientific, Waltham, MA, USA) was used to analyze functional
groups of extracted lignin at the wavenumber ranging from 4000 to 400 cm−1 with 4 cm−1

resolution and 100 scan numbers. In order to identify and compare the different amounts
of functional groups, 0.01 g lignin sample was mixed with 0.99 g KBr for palletization
prior to FT-IR spectroscopy. In case of analysis of lignin depolymerization product from
microwave reaction, ethyl acetate extraction of monophenolic compounds from the liquid
products from depolymerization reaction was conducted, subsequently the solvent was
evaporated under vacuum, and the dry product was re-dissolved in methanol for gas
chromatography mass spectrometry (GC-MS) analysis (Agilent GC6890N, Wilmington, DE,
USA). The extracts dissolved in methanol (1 µL) was injected into the capillary HP-5 MS
column (30 m × 0.25 mm × 0. 25 µm) controlled at 250 ◦C using splitless mode. Helium
was used as a carrier gas with a flow rate of 1 mL min−1. In case of product quantification,
known concentration of main products in the reaction mixture (e.g., syringol, vanillin,
acetosyringol, acetovanillone, syringaldehyde, and 2,4-di-tert-butylphenol) was analyzed
by gas chromatography-flame ionization detector (GC-FID, model Clarus 580, Perkin Elmer,
Waltham, MA, USA).

3. Results and Discussion
3.1. Extracted Lignin from EFB

The properties of extracted lignin from EFB using K2CO3 and NaOH solution in
hydrothermal reactor were reported elsewhere [26]. As shown in Figure 3, FT-IR spectra of
NaOH-lignin and K2CO3-lignin were noticeably different especially methyl (CH3) intensity
compared with the control when lignin was hydrothermally extracted without alkali. FT-IR
peaks could be used to identify the presence of CH3 group in extracted lignin indicat-
ing by peak intensity at wave number of 1028–1052 cm−1 (symmetry O–CH3 vibration),
~1176 cm−1 (ρ CH3) and 1442–1463 cm−1 (δs HCH (CH3)) [43]. It was observed that methyl
content in extracted lignin using different extractants was found in a respective degree;
NaOH-lignin > H2O-lignin > K2CO3-lignin (Figure 3). NaOH-lignin was found to contain
the highest concentration of CH3 group. It was reported that hydroxide ions assist β-O-4
ether bonds cleavage by acting as a nucleophile. Na+ ions adducted with lignin molecules
could polarize the ether bonds rendering an enhancement of negative charge of oxygen
atom of the ether bond and thus the energy for heterolytic breakdown of the linkage is
decreased [44]. After delignification and alkaline degradation, the obtained alkali lignin
consists mainly of three phenyl-propane units. The reactive sites for heterogeneously
catalytic conversion to phenolic compounds i.e., hydroxyl, methoxyl, and aldehyde groups
were increased [45].
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Figure 3. FT-IR spectroscopic analysis of NaOH-lignin and K2CO3–lignin compared with the control
(H2O-lignin) from the alkali hydrothermal lignin extraction with solid:liquid ratio of 1:5 at 200 ◦C for
20 min under 2 MPa nitrogen pressure.

In contrast, alkali carbonates (i.e., K2CO3) were determined to influence a decrease
of proton concentration during depolymerization reaction and led to enhancing parallel
and secondary reaction mechanism to generate more phenols and conjugated phenolic
compounds from demethylation of original lignin [46]. From the K2CO3 extraction con-
dition, the smaller molecular weight lignin was obtained relative to NaOH-lignin from
gel permeation chromatography (GPC) due to greater amount of basic ions i.e., K+ and
CO3

2- compared with Na+ and OH− at the similar molar concentration (1 mol L−1) [26].
K2CO3-lignin has smaller molecular weight of 1125 g mol−1 but lower polydispersity index
(PD) of 1.53 when compared with NaOH-lignin that yielded 1244 g mol−1 molecular weight
with greater PD of 1.58. These smaller K2CO3 extracted lignin molecules possibly tended
to be more effortless to depolymerize to monophenolic products using heterogeneously
mixed metal oxide catalyst and hydrogen peroxide in the following section.

3.2. Characterization and Reactivity of the Heterogeneously Mixed Metal Oxides Catalysts on
Phenolic Compounds Production
3.2.1. X-ray Diffraction (XRD) and X-ray Fluorescence Spectrometry (XRF) of
Heterogeneously Mixed Metal Oxide Catalysts

As demonstrated in Figure 4, the XRD patterns of Cu-Fe/Al2O3 and Cu-Fe/SiO2
catalysts show diffraction peaks at 2θ = 35.4◦ and 39.4◦ corresponding to CuO. Small
peak attributable to CuO was observed, suggesting that Cu was present as amorphous or
highly dispersed form on the support [47]. The peak at 33.4◦ ascribed to the presence of
Fe2O3 [48] were active phases for the lignin depolymerization reaction. A very broad peak
at 2θ of 22.4◦ observed on the catalyst was attributed to amorphous SiO2 and the peaks at
2θ = 37.6◦, 46.1◦, and 67◦ were ascribed to the Al2O3 support (Figure 4).
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Figure 4. XRD patterns of heterogeneously Cu-Fe/SiO2 and Cu-Fe/Al2O3 mixed metal oxides
catalysts.

The quantitative analysis of metal oxides in synthesized catalysts by XRF technique
was also reported in Table 1. After calcination at 350 ◦C for 4 h under excess air, Cu:Fe
molar ratio of 1:1 from both Cu-Fe/Al2O3 and Cu-Fe/SiO2 catalysts remained the same
amount as precursor prepared. The results exhibited that the percentages of metal oxides
in Cu-Fe/Al2O3 catalyst were 12.80% CuO, 8.15% Fe2O3, 78.67% Al2O3 and 0.07% SiO2 by
weight, while Cu-Fe/SiO2 catalyst contained 12.27% CuO, 10.38% Fe2O3, 0.12% Al2O3 and
76.36% SiO2. Majority of metal oxides from Cu and Fe was CuO or Cu2+ and Fe2O3 or Fe3+

while Al2O3 and SiO2 support remained the same phase as initial form. The XRF results of
all catalysts and supports were corresponded with XRD pattern from Figure 4.

Table 1. The percentage of metal oxides in heterogeneously Cu-Fe/Al2O3, Cu-Fe/SiO2 mixed metal
oxides catalysts and SiO2, Al2O3 supports analyzed by X-ray Fluorescence Spectrometry (XRF).

Element (wt%)
Catalyst

Cu-Fe/Al2O3 Cu-Fe/SiO2 Al2O3 SiO2

CuO 12.80 12.27 nd nd
Fe2O3 8.15 10.38 0.02 0.05
Al2O3 78.67 0.12 99.57 0.15
SiO2 0.07 76.36 0.12 98.54

Others 0.31 0.87 0.29 1.26
nd = not detected.

3.2.2. X-ray Photoelectron Spectroscopy (XPS) of Heterogeneously Mixed Metal
Oxides Catalysts

To understand more insights into the oxidation state of Fe and Cu species in synthe-
sized mixed metal oxide catalyst, the overall XPS analysis of Cu and Fe on Al2O3 and
SiO2 support was performed as shown in Figure 5A,D. Chemical surface state of catalysts
contained majority of O 1s, Cu 2p, and Fe 2p for the active species as well as Al 2p and Si
2p for the support according to the precursors. For Cu-Fe/Al2O3 catalyst, Fe 2p1/2 and Fe
2p3/2 spinning orbit peaks were illustrated in Figure 5B. The Fe 2p3/2 peaks represented
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Fe3+ and Fe2+ species were detected at binding energy of 712.4 and 710.3 eV attributed to
the presence of Fe2O3 and FeO, respectively, while the satellite vibration peak of Fe was
observed at 717.9 eV [49,50]. The peak intensity in XPS analysis suggested that the binding
energy of FeO was slightly lower than Fe2O3, and the oxidized FeO could generate Fe2O3
during calcination process in excess of air.
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In case of copper species, the XPS spectra showed the predominantly spinning orbit
peaks for Cu 2p3/2 and Cu 2p1/2 corresponding to the binding energy values at 934
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and 954.1 eV, respectively. This was in good concordance with the result in previous
literature [51–53]. Cu 2p3/2 XPS peaks of Cu2+ and Cu+ species indicating the presence
of CuO and Cu2O after calcination process were prominent at binding energy of 934.1
and 932.2 eV, respectively (Figure 5C). CuO/Cu2O oxygen carriers are the higher oxygen
transport capacity and higher reactivity [54], thus it is suitable for facilitating oxidative
depolymerization of lignin. The shake-up satellite peak of Cu at 943.6 eV was observed
which was well corresponded to a previous work [55]. Moreover, the down shifted XPS
peak from 934 to 932 eV referred to the Cu2+ ion on catalyst surface concentration while
metallic Cu0 was not obviously detected in Cu-Fe/Al2O3 and Cu-Fe/SiO2 catalysts. It has
also been observed that Cu oxides do not react with the SiO2 and have the high reactivity
and oxygen transport capacity [56]. The oxidation state and electron vacancy of Fe and Cu
on catalyst surface substantially influences the catalytic pathway of lignin depolymerization
to phenolic compounds. Similar results were found for Cu-Fe/SiO2 (Figure 5D–F); however,
when compared with Al2O3 support, Fe2+ species attributed to FeO were less intense
compared to Fe3+ assigned to Fe2O3. This was confirmed by XRF results demonstrated
in Table 1. Since the oxidation state of iron species is Fe1−xO→Fe3O4→Fe2O3 [57], the
depletion of oxygen during calcination from the trade-off between copper and iron species
possibly causes the presence of mixed FeO/Fe2O3 and Cu2O/CuO as shown in XPS peaks.
This occurrence may facilitate the greater acid state of Cu-Fe/Al2O3 and more basic state
of Cu-Fe/SiO2 which could be characterized by NH3-TPD analysis.

3.2.3. NH3-TPD Analysis of Synthesized Catalysts

Variation of temperature from low to high levels in NH3 adsorption-desorption process
was performed to analyze the strength of acidity in the synthesized catalyst. As illustrated
in Figure S1, the peak appeared in the temperature range from 150 ◦C to 200 ◦C found in Cu-
Fe/Al2O3, Al2O3, Cu-Fe/SiO2 and SiO2 indicated the weak acid sites or weak interaction
of ammonia with copper and iron oxides as well as the Al2O3 and SiO2 supports. This peak
at low temperature was ascribed to weakly bound ammonia onto the catalysts whereas
the peak at higher temperature corresponds to ammonia specifically adsorbed onto the
acid sites. It has been previously reported that very strong acid sites (h+-peak) were found
between 550 ◦C to 700 ◦C [58] which were considerably found in Cu-Fe/SiO2, and SiO2
indicating very strong acid sites in the catalysts.

For NH3-TPD analysis, the peak position gives information about the relative acid
strength while the width of the peak provides evidence of the distribution of the strength
under identical experimental conditions. To calculate the binding strength of the acid
sites, a theoretical model is an effective tool when slow diffusion as the rate-limiting step
has to be excluded [59,60] and the total acid sites could be quantified by the integration
of peak area from NH3-TPD chromatograms. As shown in Table S1, the total acid site
density of synthesized catalysts and the supports was calculated based on the absorption
and desorption of ammonia when the temperature range was 100 and 700 ◦C (Figure S1).
Comparing at the same dry weight of materials, the addition of metal oxides, Cu(NO3)2
and (Fe(NO3)3) as precursors, by doping into the Al2O3 and SiO2 supports significantly
decreased the acid site density as shown in Table S1.

3.2.4. Field Emission Scanning Electron Microscopy with Energy-Dispersive X-ray
Spectroscopy (FESEM-EDX) Mapping of Heterogeneously Mixed Metal Oxides Catalysts

The morphological and surface elemental composition of heterogeneously mixed
metal oxides Cu-Fe/SiO2 and Cu-Fe/Al2O3 catalysts were analyzed with field emission
scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX) as
illustrated in Figure 6 and Figures S2 and S3. The EDX mapping analysis showed the similar
pattern of Cu and Fe ions from co-impregnation that were well dispersed on Al2O3 and
SiO2 supports. The surface elemental analysis results showed the presence of Cu and Fe
on Al2O3 and SiO2 support accordingly as demonstrated in Tables S2 and S3, respectively.
Therefore, the co-impregnation technique for mixed metal oxides catalyst synthesis was
suitable to form the metal oxide catalysts on the support without either agglomeration
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or growth of metal crystal cluster. The morphology of the synthesized Cu-Fe/Al2O3 and
Cu-Fe/SiO2 catalysts after Cu and Fe impregnation was analyzed by scanning electron
microscopic (SEM) technique as illustrated in Figure S4. The SiO2 support was the finest
particle with 1000 magnification and having 5–20 µm in particle size.
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3.3. Phenolic Compounds Production from K2CO3-Lignin and NaOH-Lignin with
Heterogeneously Mixed Metal Oxides Catalysts

After the synthesis of heterogeneously mixed metal oxides catalysts, they were used
for microwave-assisted hydrothermal depolymerization of K2CO3-lignin and NaOH-lignin
to produce phenolic compounds. From the previous experiment, the optimal condition for
homogeneous lignin depolymerization to specific products was the microwave-assisted
reaction catalyzed by Cu(OH)2 + Fe2O3 co-catalyst at 300 W for 15 and 30 min with 1 wt%
of H2O2 [26]. Thus, for the present experiment on heterogeneous lignin depolymerization
using mixed metal oxides catalyst, the aforementioned optimal condition was selected and
the reaction took place for 15 and 30 min for both K2CO3-lignin and NaOH-lignin.

From the GC-MS analysis, the percentage of phenolic compound concentration was
summarized in Table 2. The highest percentage of total phenolic compound concentration
of 63.87 wt% was obtained from microwave-assisted oxidative degradation of K2CO3-
lignin when the lignin degradation reaction was at 300 W, 30 min with 1.0 wt% H2O2 and
catalyzed by Cu-Fe/SiO2 catalyst. The main products from aforementioned condition
contained 19.21 wt% of syringol, 2.16 wt% of vanillin, 3.69 wt% of acetovanillone, 2.16 wt%
of syringaldehyde, 9.36 wt% of acetosyringone and 27.29 wt% of 2,4-di-tert-butylphenol
(Figures S5 and S6). In case of NaOH-lignin, the highest percentage of phenolic com-
pound concentration was 49.52 wt%. The major products included 27.06 wt% of syringol,
1.61 wt% of vanillin, 4.39 wt% of acetovanillone, 1.97 wt% of syringaldehyde, 11.71 wt%
of acetosyringone and 13.09 wt% of 2,4-di-tert-butylphenol when the lignin depolymer-
ization reaction was conducted with 1.0 wt% H2O2 and Cu-Fe/Al2O3 catalyst for 30 min
(Figures S7 and S8). Although Cu-Fe/SiO2 catalyzed the K2CO3-lignin depolymerization
provided greater total phenolic products, lower selectivities of main products i.e., syringol
and acetosyringone were obtained compared with CuFe/Al2O3 catalyzed the NaOH-lignin
depolymerization (Table 2).

For K2CO3-lignin, the Cu-Fe/SiO2 catalyst showed the higher performance and greater
selectivity for total phenolic compound production compared with Cu-Fe/Al2O3 catalyst.
Although, Cu-Fe/Al2O3 catalyst surface contained 8.15 wt% Fe2O3 and 12.80 wt% CuO
similar to 10.38 wt% Fe2O3 and 12.27 wt% CuO in Cu-Fe/SiO2 catalyst (Table 1), neverthe-
less, the smaller particle size of Cu-Fe/SiO2 catalyst analyzed by SEM images (Figure S4) as
well as lower acid site density of Cu-Fe/SiO2 catalyst compared with that of Cu-Fe/Al2O3
catalyst (Table S1) substantially promoted the depolymerization of K2CO3-lignin. From
gel permeation chromatography (GPC) results, the K2CO3-lignin had smaller molecular
weight lignin relative to NaOH-lignin [26] and thus particular 2,4-di-tert-butylphenol were
selectively generated as the main product (Tables S4 and S5).

In contrast, NaOH-lignin exhibited the greatest amount of syringol and acetosyringone
when using Cu-Fe/Al2O3 as the catalyst from 30-min depolymerization reaction. This was
possibly due to the higher molecular weight of NaOH-lignin required stronger acidity of
Cu-Fe/Al2O3 catalyst to facilitate the lignin depolymerization (Table S1). From the results
when the oxidative depolymerization took place for 30 min, Cu-Fe/Al2O3 catalyst exhibited
higher selectivity on lignin conversion to both syringol and acetosyringone compared with
Cu-Fe/SiO2 catalyst. Although, the total phenolic compound from Cu-Fe/Al2O3 catalyst
(49.52 wt%) was lower compared with that from Cu-Fe/SiO2 catalyst (63.87 wt%), the
higher syringol yield from Cu-Fe/Al2O3 catalyst (27.07 wt%) was achieved compared with
that from Cu-Fe/SiO2 catalyst (19.21 wt%). These corresponded to 54.64% and 30.08%
selectivity from Cu-Fe/Al2O3 and Cu-Fe/SiO2 catalyst, respectively as demonstrated in
Tables 2, S6 and S7.
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Table 2. Percentage of phenolic compounds concentration from GC-MS analysis for K2CO3-lignin and NaOH-lignin depolymerization with 1.0 wt% H2O2 at 300 W using Cu-Fe/Al2O3,
Cu-Fe/SiO2, and without catalyst.

Type of
Reaction

Alkaline EFB
Extracted

Lignin
Catalyst

Main Products (wt%)

Total
Phenolic

Compounds
(wt%)

%Selectivity

Ref.Syringol
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From the main products of lignin depolymerization from NaOH-lignin from EFB
i.e., syringol and acetosyringone, similar results were reported for NaOH depolymerized
lignin, which contained an increased phenolic hydroxyl group, active protons at C5, and an
enhanced methoxyl group twice as much as that of original lignin [45]. In case of K2CO3-
lignin, 65–67% selectivity of 2,4-Di-tert butylphenol was achieved as the main product
for the system without catalyst for both 15 min and 30 min of alkaline depolymerization
(Table 2). The findings were in good agreement with a previous report in which alkali
carbonates influenced a decrease of proton concentration during depolymerization reaction
and led to enhancing parallel and secondary reaction mechanisms to generate more phenols
and conjugated phenolic compounds from demethylation of original lignin [46].

Table 2 additionally demonstrated the comparison of yield and selectivity of main
products from lignin depolymerization, especially syringol and acetosyringone. The find-
ings revealed that homogeneous catalytic depolymerization of EFB lignin by Cu(OH)2
+ Fe2O3 gave higher yield and selectivity relative to heterogeneous catalysis. However,
similar trends were observed for both homogeneous and heterogeneous depolymerization
when highest syringol + acetosyringone yields were achieved when using 15 min of de-
polymerization for K2CO3-lignin (50.33 wt% of syringol and 20.48 wt% of acetosyringone)
and 30 min depolymerization for NaOH-lignin (52.51 wt% of syringol and 29.58 wt% of
acetosyringone). Both conditions provided remarkably high selectivity. Lower selectivity
of phenolic compound production indicates that more side reaction products were ob-
tained in the experiments of heterogeneously mixed metal oxides catalysts compared with
homogeneous mixed metal oxides catalysts in our previous study [26]. It was observed
from GC-MS analysis that when the reaction time was increased from 15 min to 30 min,
higher concentration of carboxylic acids and quinone such as benzoic acid and acetic acid
were generated Figures S5 and S8.

As demonstrated in Figure 7, it was obvious that NaOH-lignin from EFB gave higher
yield of S-lignin which was mainly syringol and acetosyringone at 15 min of reaction com-
pared with K2CO3-lignin (Figure 7A), and Cu-Fe/Al2O3 catalyst markedly facilitated the
generation of syringol product over Cu-Fe/SiO2 and without catalyst. For the microwave
reaction at 30 min, syringol and acetosyringone yields from NaOH-lignin polymerization
over Cu-Fe/Al2O3 and Cu-Fe/SiO2 catalysts were substantially enhanced as shown in
Figure 7B. This was possibly due to either enhanced hydrogenolysis of β-O-4 ether linkages
within lignin precursor or oxidative cleavage of C-O-C under microwave heating over
metal catalysts i.e., Fe, Rh which markedly yield S-type lignin relatively to guaiacyl or
G-type lignin as main products [13,42]. Another tentative mechanism was oxidative C-O-C
break down and demethylation at Cα and C5 of 2,4-di-tert-butylphenol yielding syringol
as a main product.

When considering the yield and selectivity of the main products, Figure 8A–C shows
the correlation between the different alkaline extraction methods and the role of heteroge-
neous catalysts used in the subsequent depolymerization step. In case of syringol production,
the depolymerization reaction of NaOH-lignin using Cu-Fe/Al2O3 catalyst provided the
greatest syringol yield (27.06 wt%) and selectivity (54.64 %) from the microwave reaction
at 300 W for 30 min as illustrated in Figure 8A. The reason was possibly owing to higher
acidity and Fe2O3 content of Cu-Fe/Al2O3 catalyst compared with Cu-Fe/SiO2 catalyst
(Tables 1 and S1). For production of acetosyringone, NaOH-lignin was the suitable substrate
for microwave-assisted depolymerization and the highest monophenolics yield at 10.28
wt% and selectivity at 35.78% were achieved from the reaction at 300 W for 30 min without
adding catalyst (Figure 8B). Therefore, mild oxidative reaction using H2O2 without catalyst
was the most optimal condition for acetosyringone production from NaOH-lignin. In case
of 2,4-Di-tert butylphenol production (Figure 8C), the highest yield from 23.19–24.39 wt%
and selectivity from 72.09–73.11% were obtained from K2CO3-lignin and successive lignin
depolymerization over Cu-Fe/SiO2 and Cu-Fe/Al2O3 catalysts at 300 W for only 15 min.
An increase of microwave reaction duration from 15 min to 30 min gave adverse effect
on both yield and selectivity of 2,4-Di-tert butylphenol. The results confirmed that the
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K2CO3-lignin had smaller molecular weight lignin relative to NaOH-lignin [26] and thus
particular 2,4-Di-tert butylphenol was selectively generated as the main products in a very
short period of reaction (15 min) over Cu-Fe/SiO2 and Cu-Fe/Al2O3 catalysts.
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to (A) syringol, (B) acetosyringone and (C) 2,4-di-tert butylphenol using 300 W microwave reaction for 15 and 30 min over
different catalysts.

As shown in Figures 7 and 8, CuFe/Al2O3 exhibited greater performance on both
yield and selectivity toward syringol and acetosyringone, which were the main products
of EFB lignin in this system. The synergistic effect of Cu and Fe was found to favor the
reactivity of the catalyst. The results were confirmed by greater monophenolic yield and
selectivity of the products. The present system gave superior phenolic yields compared
with other previous work on lignin depolymerization, for example 17.92 wt% monopheno-
lic compound from CuO/Fe2(SO4)3/NaOH catalyst [61], less than 35 wt% monophenolic
yield from CuSO4 and LaMn0.8Cu0.2O3 catalysts [34].

From recyclability study, the amount of main products from fresh and spent catalysts
was quantified using standard curve (Figure S9). The results from Figure 9A showed that
the presence of Fe and Cu on Al2O3 support from CuFe/Al2O3 catalyst favored to produce
high yield of syringaldehyde from NaOH-lignin in the 1st reaction in which fresh catalyst
was used. However, the 2nd and 3rd reaction of spent catalyst gave minimal yield of sy-
ringaldehyde in a respective degree (Table S8) due to the leaching of Cu and Fe respectively
as demonstrated in XPS analysis results for Fe2p and Cu2p of spent CuFe/Al2O3 catalyst
in Figure 10A. After Cu and Fe leaching, acidity of Al2O3 support seemingly enhanced
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the yield of acetosyringone, vanillin, and acetovanillone. Similar to CuFe/SiO2 catalyst,
fresh catalyst was prone to selectively generate acetosyringone and syringaldehyde as
demonstrated in Figure 9B. The spent CuFe/SiO2 catalyst was found to lose Cu and Fe
respectively during the second time of recyclability test (Figure 10B), therefore the effect of
SiO2 support was found to favor vanillin, acetosyringone, syringol, and acetovanillone as
NaOH-lignin depolymerization products in a respective degree. SiO2 support exhibited
no effect on generation of syringaldehyde and (2,4-Di-tert butylphenol) without Cu and
Fe doping.
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Figure 9. Product yield from the recyclability study of (A) CuFe/Al2O3, and (B) CuFe/SiO2 catalysts
on depolymerization of NaOH-lignin under microwave at 300 W for 30 min.
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Figure 10. Atomic concentration of fresh and spent catalysts (A) CuFe/Al2O3 and (B) CuFe/SiO2

from recyclability study of heterogeneous catalyst on NaOH-lignin depolymerization under mi-
crowave heating at 300 W for 30 min.

3.4. The Proposed Mechanism of Oxidative Depolymerization of EFB Derived Lignin with Mixed
Metal Oxides Cu-Fe Catalyst

The results of the present experiments were consistent with a previous report of Ma
and coworkers [32] who reported that catalysts of Cu (II), Fe (III), and Mn (II, III) played
an important role in catalysis of oxidation reaction of lignin structure in the presence of
oxygen or peroxide (H2O2). By breaking down the β-O-4 bonds in the lignin structure via
oxidative and hydrolysis reaction, the lignin structure was depolymerized to monophe-
nolic compounds such as vanillin, syringaldehyde or p-hydrobenzaldehyde. Similarly,
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Ouyang studied the Cu(II) and Fe(III) catalyzed reactions in alkaline solution for lignin
depolymerization that were able to produce a high yield of phenolic compounds [61]. It
was postulated that the oxidation of lignin structure does not only cleave the β-O-4 or
C-C bonds in lignin, but also breaks down the structure of the aromatic ring resulting in
smaller phenolic monomers such as phenol and benzoic acid. It additionally produced
by-products including quinones and dicarboxylic acid groups such as formic acid, acetic
acid and butanoic acid by ring-opening reactions (Figures S3–S6).

EFB lignin contains a substantial fraction of sinapyl units, which can be observed from
syringol derivatives after oxidative depolymerization. From the results, syringaldehyde,
acetosyringone, acetovanillone, and vanillin were the major products formed during lignin
depolymerization. The lignin oxidative degradation results indicate that the transformation
mechanism of lignin could generate oligomers, and subsequent phenolic compounds
involving a free radical pathway that initiates cleavage of alkyl-aryl ether (α-O-4 and β-O-4),
aryl-aryl ether (4-O-5) and aryl-aryl (5-5) bonds, hydrogen abstraction and β-scission
reactions, which is in good agreement with previous work [62]. It was found that similar
products were detected from lignin depolymerization via pyrolysis and UV radiation.
It can be implied that thermal energy is the main driving force for the aforementioned
bond fission reactions in thermolysis, while UV radiation augments the bond cleavage in
photocatalysis. In the present study, microwave radiation and the reactive radical species
such as •OH and O2•− radicals from H2O2 dissociation induce these reactions to occur.
Importantly, hydroxyl radicals can react with benzene ring via electrophilic addition and
cause the cleavage of α-O-4 or β-O-4 ether links in lignin [63]. As a result, OH group
substitution is achieved. Moreover, the previous research reported that the formation of
dimethoxy benzoquinone was earlier proposed to occur by the action of singlet oxygen
(1O2) or superoxide radicals (O2•–) on the phenolic ring, which results in the cleavage of
the bond between aromatic and the α-carbon [63]. Solely the effect of either Cu or Fe did
not influence the improvement of the reaction, but the combination effect of bimetallic
Cu-Fe catalyst. This was confirmed by the findings from a previous work demonstrating
that Fe2O3/γ-Al2O3 catalyst provided similar lignin degradation product and yield similar
with the blank test. The Fe2O3/γ-Al2O3 catalyst did not show good activity in the lignin
oxidation reaction [64].

The aforementioned phenomena were found to give superior catalytic performance
from the synergistic effect of bimetallic Cu and Fe, especially on Al2O3 support. It has
been observed that the oxygen space will be enhanced with the partial replacement of
Fe3+ by Cu2+, according to the previous report [65], which would accelerate the oxygen
surface absorption ability of the catalyst and the intermediate content of O2-Fe3+-lignin
complex will be enhanced [66]. They act as oxygen carriers that can attack the lignin [67].
Moreover, the amount of activated species Cu2 + O2

− will be increased with the partial
replacement of Fe3+ by Cu2+, which will result in a cycling of Cu2+/Cu+ (Cu2+→Cu+→Cu2

+ O2
−→Cu2+) and Fe3+/Fe2+ [23]. The proposed mechanism was in good accordance

with XPS (Fe2p and Cu2p) and XRF results, which indicated the presence of CuO/Cu2O
and Fe2O3/FeO, respectively. This cycling accelerates the generation of the intermediate
quinone methide radicals [68]. Moreover, the intermediate reduction potential of Cu2+

found in alkaline condition (−0.16 V for the CuO/Cu2O redox pair at pH 14) was postulated
to be satisfactory for oxidation of lignin to aldehydes with limited subsequent oxidation of
aldehydes [27]. With all the combined effect of the above mentioned factors, the catalytic
activity of CuFe/Al2O3 is improved.

The role of catalyst support was proved in the recyclability study. The previous study
revealed that relatively more acidic γ-Al2O3 support showed better catalyst performance
than CeO2 or TiO2 to generate vanillin from lignin depolymerization [30,64]. As a result,
in the present study, SiO2 had higher acidity than Al2O3, and therefore played a vital
role to enhance the conversion of guaiacyl lignin (G-lignin) to form acetovanillone and
vanillin relatively to Al2O3 as demonstrated in Figure 9 for the 3rd reaction when Cu
and Fe were leached out. In the case of SiO2 support, it was additionally postulated that
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H2O2 decomposition formed reactive oxygen species and are then physisorbed on silica
framework trapped on the hydroxyl network, and eventually transferred to the secondary
carbon on the side chain. Consequently, oxidation to such secondary carbon converts it to a
more stable carbonyl group of acetovanillone. Further oxidation could yield vanillin as the
final product. As shown in Figure 9B, the 3rd spent CuFe/SiO2 catalyst with the leaching
of Cu and Fe indicated by decreased intensity of XPS (Cu2p and Fe2p) could significantly
change the reaction pathway to more selectively generate acetovanillone and vanillin. The
reason was confirmed by a previous study on lignin model compound depolymerization
using various structure of silica catalyst under microwave irradiation [69] revealing that
surface hydroxyl groups, which in turn facilitate the adsorption of 4-hydroxy-3-methoxy-
alpha-methyl benzylalcohol or apocynol leading to high conversion to acetovanillone in
the systems. Similar result was observed in the case of Al2O3 support. After Cu and Fe
leaching, effect of acidity of solely Al2O3 seemingly shifted the selectivity of product from
syringaldehyde to acetovanillone and vanillin as demonstrated in Figures 9A and 10A.

From the lignin depolymerization with mixed metal oxides catalyst, the 2,4-di-tert-
butylphenol was one of the different major products produced in the reaction mixture.
This has been shown to occur during lignin degradation by mixed metal oxide catalysts
typically containing aluminum (Al2O3) and silicon (SiO2) as active sites for promoting
chemical reactions [70]. However, their reactivity to breakdown inter-unit linkages remains
to be proven. It has been revealed that under mild oxidative lignin depolymerization, the
side-chain hydroxyl groups were oxidized to carbonyl groups, and after that the reaction is
quenched. This conceivably provides a highly selective lignin oxidative modification and
warrants further investigation [32,70]. Based on the previous study, mixed Cu-Fe oxide
catalyst can possibly react with the electronegative hydroxyl groups of H2O2 and H2O, and
thus remove the hydroxyl group from lignin monomer. The partial hydrogenation of the
benzene ring intermediates is postulated, which is favorable to the subsequent dehydroxy-
lation due to the lower bond dissociation energy [71,72]. The intermediate product then
reacts with the adsorbed methyl groups, leading to the formation of primitive alkylphenol.
The methyl group can be formed from the demethylation step during guaiacol generated
during lignin depolymerization [73]. Subsequently, the higher alkylphenols, including
tert-butylphenols, iso-propylphenols, and neo-pentylphenols could be formed [74].

4. Conclusions

Lignin depolymerization was successfully catalyzed by Cu (II) and Fe (III) mixed
metal oxides catalyst supported on Al2O3 and SiO2 support. The highest percentage of
total phenolic compounds of 63.87 wt% was obtained from microwave-induced oxidative
degradation of K2CO3-lignin when the lignin depolymerization reaction carried out at
300 W, 30 min with 1.0 wt% H2O2 and catalyzed by Cu-Fe/SiO2 catalyst. However, when
the main products were considered, it contained 19.21 wt% of syringol corresponding
to 30.08% selectivity. In contrast, the Cu-Fe/Al2O3 catalyst gave lower total phenolic
compounds of 49.52 wt% from NaOH-lignin, but it provided the greatest selectivity of
syringol and acetosyrigone at 54.64% and 23.65%, respectively (78.29% total selectivity
of two products). Consequently, this optimal condition successfully generated the most
favorable value-added chemicals from EFB lignin for utilization as food aroma additives
and chemical feedstock.

Supplementary Materials: The following are available online. Table S1: Acidity of synthesized
catalysts from NH3-TPD analysis, Table S2: The type of element from EDX analysis of Cu-Fe/Al2O3
catalyst, Table S3: The type of element from EDX analysis of Cu-Fe/SiO2 catalyst, Table S4: The
phenolic compounds peak area percentage from GC-MS analysis for K2CO3-lignin depolymerization
with Cu-Fe/Al2O3, Cu-Fe/SiO2, and without catalyst (microwave heating at 300 watts, 1% w/w
of H2O2 in NaOH solution for 15 min), Table S5: The phenolic compounds peak area percentage
from GC-MS analysis for K2CO3-lignin depolymerization with Cu-Fe/Al2O3, Cu-Fe/SiO2, and
without catalyst (microwave heating at 300 watts, 1% w/w of H2O2 in NaOH solution for 30 min),
Table S6: The phenolic compounds concentration peak area from GC-MS analysis for NaOH-lignin
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depolymerization with Cu-Fe/Al2O3, Cu-Fe/SiO2, and without catalyst (microwave heating at
300 watts, 1% w/w of H2O2 in NaOH solution for 15 min), Table S7: The phenolic compounds
concentration peak area from GC-MS analysis for NaOH-lignin depolymerization with Cu-Fe/Al2O3,
Cu-Fe/SiO2 and without catalyst (microwave heating at 300 watts, 1% w/w of H2O2 in NaOH
solution for 30 min); Table S8: Recyclability study of CuFe/Al2O3 and CuFe/SiO2 catalysts on
depolymerization of NaOH-lignin under microwave at 300 W for 30 min; Figure S1: NH3-TPD
chromatograms of synthesized catalysts and supports of (a) Cu-Fe/Al2O3, (b) Al2O3, (c) Cu-Fe/SiO2,
(d) SiO2, Figure S2: The elemental composition of Cu-Fe/Al2O3 mixed metal oxide catalyst from
EDX analysis, Figure S3: The elemental composition of Cu-Fe/SiO2 mixed metal oxide catalyst from
EDX analysis, Figure S4: Morphological of heterogeneous bimetallic and metal organic framework
catalysts (a) Cu-Fe/Al2O3 at ×500 magnification (b) Cu-Fe/Al2O3 ×1000 magnification (c) Cu-
Fe/SiO2 at ×500 magnification, and (d) Cu-Fe/SiO2 at ×2000 magnification, Figure S5: The phenolic
compounds concentration peak area from GC-MS analysis for K2CO3-lignin depolymerization
with Cu-Fe/Al2O3, Cu-Fe/SiO2, and without catalyst (Microwave heating at 300 watts, 1% w/w
of H2O2 in NaOH solution for 15 min), Figure S6: The phenolic compounds concentration peak
area from GC-MS analysis for K2CO3-lignin depolymerization with Cu-Fe/Al2O3, Cu-Fe/SiO2,
and without catalyst (microwave heating at 300 watts, 1% w/w of H2O2 in NaOH solution for
30 min), Figure S7: The phenolic compounds concentration peak area from GC-MS analysis for
NaOH-lignin depolymerization with Cu-Fe/Al2O3, Cu-Fe/SiO2, and without catalyst (microwave
heating at 300 watts, 1% w/w of H2O2 in NaOH solution for 15 min), Figure S8: The phenolic
compounds concentration peak area from GC-MS analysis for NaOH-lignin depolymerization with
Cu-Fe/Al2O3, Cu-Fe/SiO2, and without catalyst (microwave heating at 300 watts, 1% w/w of H2O2
in NaOH solution for 30 min), Figure S9: Standard curve from GC analysis of main products of lignin
depolymerization for recyclability study.
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