
RESEARCH ARTICLE

Comparison of methods for rhythm analysis

of complex animals’ acoustic signals

Lara S. BurchardtID
1,2*, Mirjam KnörnschildID

1,2,3

1 Museum für Naturkunde, Invalidenstraße, Berlin, Germany, 2 Animal Behavior Lab, Free University Berlin,

Berlin, Germany, 3 Smithsonian Tropical Research Institute, Barro Colorado Island, Balboa, Ancón, Panamá
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Abstract

Analyzing the rhythm of animals’ acoustic signals is of interest to a growing number of

researchers: evolutionary biologists want to disentangle how these structures evolved and

what patterns can be found, and ecologists and conservation biologists aim to discriminate

cryptic species on the basis of parameters of acoustic signals such as temporal structures.

Temporal structures are also relevant for research on vocal production learning, a part of

which is for the animal to learn a temporal structure. These structures, in other words, these

rhythms, are the topic of this paper. How can they be investigated in a meaningful, compara-

ble and universal way? Several approaches exist. Here we used five methods to compare

their suitability and interpretability for different questions and datasets and test how they

support the reproducibility of results and bypass biases. Three very different datasets with

regards to recording situation, length and context were analyzed: two social vocalizations of

Neotropical bats (multisyllabic, medium long isolation calls of Saccopteryx bilineata, and

monosyllabic, very short isolation calls of Carollia perspicillata) and click trains of sperm

whales, Physeter macrocephalus. Techniques to be compared included Fourier analysis

with a newly developed goodness-of-fit value, a generate-and-test approach where data

was overlaid with varying artificial beats, and the analysis of inter-onset-intervals and calcu-

lations of a normalized Pairwise Variability Index (nPVI). We discuss the advantages and

disadvantages of the methods and we also show suggestions on how to best visualize

rhythm analysis results. Furthermore, we developed a decision tree that will enable

researchers to select a suitable and comparable method on the basis of their data.

Author summary

In the analysis of animal communication more and more interest is shown in rhythm of

animal communication and what information this might convey. In this paper, we estab-

lish a workflow to analyze the temporal structure–namely the rhythm–of any particular

animals’acoustic signal with methods that are applicable for a wide range of signals and

results that are easily comparable and interpretable. This workflow will enhance the

understanding of rhythmicality in animals’ acoustic signals as well as facilitate comparison

between species. Methods we conducted ranged from simple distributional and visual
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analysis to higher mathematics such as Fourier analysis. All analyses rely on Inter-Onset-

Intervals, the duration between the beginning of one element and the next. We used dif-

ferent datasets from two neotropical bat species as well as from the sperm whale. With

this selection, we cover very short sequences with only few elements up to sequences of

around 200 elements, multisyllabic and monosyllabic sequences and social communica-

tion as well as sounds used for orientation and foraging.

This is a PLOS Computational Biology Methods paper.

Introduction

Rhythms can be found anywhere in the world: our hearts have rhythms, circadian rhythms are

all around, music across all cultures shares certain components such as rhythm, public trans-

portation (should) follow a certain schedule which in fact is nothing but rhythm. We learn

more and more about how important a certain temporal structure is in human language, in

their production as well and probably even more so in their perception; stuttering, for exam-

ple, is most likely connected to a misfunction of rhythm perception [1]. This raises the ques-

tion of whether rhythms, or temporal structures to use a more precise terminology, play an

equally important role in animal communication and sound production. Can we learn some-

thing about rhythm in animals that will help us understand their communication better and

also find underpinnings of the abundance of rhythm in human biology and culture?

Rhythm has a very narrow definition in musicality studies that does not necessarily fit the

focus of this paper. We are describing temporal structures and are searching for periodicity.

To prevent confusion and since terms might be used in different contexts depending on the

research area, we define some key terms in a glossary (Table 1). Nevertheless, we still use the

term ‘rhythm’ as a concept that will be understood by a broad audience, as most people have

an intuitive understanding of ‘rhythm’, independent of whether this study analyses ‘rhythm’ in

the musicological sense of the term.

The rhythmicality of animals’ acoustic signals has an impact on a vast field of related ques-

tions. For instance, the evolution of music is investigated in the field of biomusicology, a

research area that studies musicality in animals–where musicality is used as a term for different

traits that occur spontaneously and are based on and constrained by biology and cognition in

an animals’ acoustic signals, such as harmony, timbre or rhythm [2, 3]. Moreover, knowledge

about temporal structures is necessary to find coupled biological processes, such as the correla-

tion between beat frequencies in bat’s acoustic signals (also called vocalizations) with their

wingbeat frequencies (i.e. wingbeats per second), independent from whether a bat might actu-

ally be flying in a vocalizing context or hanging in a roost [4]. Rhythmicality might also influ-

ence mate choice and individual recognition [5, 6]. Furthermore, neural correlates might play

a role so that careful rhythm analysis can give insights into internal clocks or the importance

of certain brain waves on different behavioral aspects such as the production of acoustic sig-

nals[5, 7]. Rhythm analysis can also be used to disentangle cryptic species (distinct species that

are combined under one species name, because they cannot be distingzished morphologicaly)

that produce sounds in different rhythms [8] or is informative in the context of vocal produc-

tion learning, a part of which is for the animal to learn the correct temporal structure of a
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signal [9]. A growing body of research is addressing questions on rhythm in animal vocaliza-

tions and animal sounds (in contrast to vocalizations, sounds are produced by something

other than vocal cords, e.g. sperm whale clicks; both are combined under the term acoustic sig-

nals). But before we can elaborate on this, it is important to again note different connotations

of rhythm in this context. Where we speak of rhythms in animals’ acoustic signals a musicolo-

gist might only talk about different beats and tempi. What we mean in this paper with rhythm

and the connotation of rhythm used in other studies on the subject [4, 5, 10] describes a tem-

poral structure that might have varying complexity but is mostly based on an isochronous beat

(i.e. sounds produced by a metronome). These isochronous beats might be produced in differ-

ent tempi by different species and individuals. Therefore one could also say, we search for peri-

odicity in animals’ acoustic signals. The definition for periodicity we use here is the following:

we regard a sequence as periodic, when there is an underlying isochronous pattern describing

it. An isochronous rhythm is a metronome like rhythm with the same beat and the same gap

length’ (although beat and gap length are not necessarily similar). Not every beat of that iso-

chronous sequence needs to be corresponding with an element in the sequence that is ana-

lyzed. A beat here is every element of the isochronous pattern. It is also the actual ‘beat

frequency’ of the isochronous rhythm. We refrain from using the word ‘pulse’, to prevent con-

fusion with the use of the word ‘pulse’ in echolocation research. Keeping these definitions in

Table 1. Glossary.

Glossary

Animals’ acoustic

signals

All acoustic signals that animals produce on purpose

Animal

communication

The entirety of sounds and vocalizations animals produce willingly to communicate with

each other

Vocalization A sound produced on purpose; sound origin: vocal cords; a species can have various

vocalization types

Social vocalization A vocalization uttered in a social context, e.g. isolation calls

Isolation call Uttered by pups to solicit maternal/paternal care

Animal Sounds Willingly produced sounds by animals, with another origin than vocal cords, e.g. whales

produce their sounds not with vocal cords; the term vocalizations could be misleading in

this context

Musicality different traits that occur spontaneously and are based on and constrained by biology and

cognition in an animals’ acoustic signals, such as harmony, timbre or rhythm

Rhythm e.g. an ordered and recurrent alternation of different elements in a sequence of sound and

silence in speech, music or animals’ communication

Periodicity underlying reoccurring pattern describing as sequence as periodic, e.g. an isochronous

pattern

Isochrony A stereotyped pattern with same beat and same gap length (gaps and beats do nothave to be

the same length as well, though), a metronome like acoustic pattern/beat

Heterochrony A pattern with more than one underlying beat

Beat The unit to describe an isochronous pattern, given in Hertz (beats per second); a beat

frequency of 5 Hz would describe a sequence with an underlying pattern of 5 beats per

second, i.e. 5 vocalizations per second or a temporal structure where elements are

distributed regularly in a way that you could fit a maximum of 5 element into one second

Inter-Onset-Interval In a sequence of acoustic signals, the time span between the start of an element and the next

element, comprising the element duration and the following gap duration; in other

contexts also called Inter-Pulse-Interval, Inter-Click-Interval or Inter-Call-Interval

Element The smallest subunit of a sequence of acoustic signals, i.e. a distinct syllable, call, click, pulse

etc. surrounded by silence

Exact beat frequency The beat frequency we calculated to describe a specific sequence best (e.g. 5 Hz as in 5 beats

per second)

https://doi.org/10.1371/journal.pcbi.1007755.t001
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mind, we are still using the term “rhythm” as a summary of these conxepts in the text for rea-

sons of readability and understanding.

Exemplary studies on the rhythmic production of acoustic signals come from male zebra

finches (Taeniopygia guttata) [5], the bat Saccopteryx bilineata [4] or the humpback whale

(Megaptera novaeangliae) [11]. While male zebra finches sing with different rhythms depend-

ing on the individual, S. bilineata vocalizations share a common temporal structure, likely cou-

pled to wingbeat frequencies [4, 5]. Yet another pattern was found in the song of humpback

whales (Megaptera novaeangliae), where individuals can produce very stable temporal struc-

tures or sound sequences that vary rapidly in tempo and rhythm [11].

Other forms of rhythm production were found in the palm cockatoo (Probosciger aterri-
mus). The males of this species drum quasi-isochronous patterns, using tools, in a consistent

manner [12]. Chimpanzees use individual rhythm signatures—likely in a fashion to help rec-

ognize unseen companions–when cracking baobab fruits [13].

Studies on the perception of rhythms or periodocity deal for example with the ability of ani-

mals to discriminate rhythms, e.g. in rats and European starlings [14, 15]. Moreover, the first

instance for a biologically relevant rhythm in non-human mammalian acoustic signals was

found in the northern elephant seal, where males can discriminate between familiar and unfa-

miliar male opponents using the temporal structure of vocalizations. Rhythms apparently dif-

fer between individuals in a way that facilitates the discrimination of individuals [6].

With the growing body of studies and its implications for other research questions, it is

important to present methods in a reproducible way and find methods that are applicable to a

vast majority of datasets in which temporal structures can be analyzed. Reproducibility, inter-

pretation biases, p-hacking (the distortion or manipulation of results through data mining)

and apophenia (the tendency to see a pattern in random data) are key issues in all research

fields. Defining clear methodologies with open access to code and data is one way of tackling

those issues [16]. Results must be clearly structured and comparable between species and con-

texts. A number of papers address these issues and describe suitable methods by means of arti-

ficial data, with a decision tree depending on the respective question [10]. Nevertheless, a

comparison of different methods on different original datasets and of the influence of differ-

ences in datasets on the decision for a method is missing, even though this would help

researchers to choose which methods to use for their data depending on the question at hand.

Acoustic recordings can differ enormously in their features. Depending on the recording

situation and signals to record, one faces very different sampling rates and recording lengths.

Moreover, the number of elements (i.e. a distinct syllable, call or click in a given sequence, sur-

rounded by silence) in a recording differs greatly as well as element durations, noise level or

amplitudes. Also, the recording situation differs a lot between a zebra finch recorded in a con-

trolled recording box, a whale tagged with a recording device in the Pacific Ocean or a bat

vocalizing in its roost. Nevertheless, all these acoustic signals are suitable and interesting to

check for periodicity (or rhythmicality). It is crucial that a comparable method can be applied

to all these different recordings. Methods that have been used for rhythm analysis include Fou-

rier analysis [4, 5, 10, 17] or calculation of nPVIs, the normalized Pairwise Variability Index,

which was originally developed to assess temporal variability in human speech rhythm [10,

18–21]. The nPVI is a measure of variability between Inter-Onset-Intervals. It will be zero for

a perfectly isochronous sequence with all Inter-Onset-Intervals being equal. Furthermore dif-

ferent variations of the analysis of Inter-Onset-Interval–the duration between two adjacent ele-

ments (IOI [11, 22, 23]; also called Inter-Pulse-Interval, IPI [24] or Inter-Click-Interval, ICI

[25–27])—and a so called generate-and-test or GAT approach [4, 5, 10] were used in rhythm

analysis so far. All these methods search for isochronous patterns, therefore, again, we are

rather searching for periodicity and isochronous beats underlying a sequence.
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This paper aims to help researches decide on a method for the analysis of the temporal

structure of their biological data. Five methods were used on three different datasets to assess

1) what kind of rhythm an acoustic signals might have (e.g. isochronous vs. heterochronous)

and 2) which exact beat frequencies describe a given sequence best. Rhythm analysis can be

done on different levels (Fig 1). Depending on the question at hand and the detail of the analy-

sis, different methods can be used. At first, one has to establish whether a given acoustic signal

sequence is rhythmic (periodic) at all. The general hypothesis is that a signal is periodic. This

can be assessed by a detailed analysis of Inter-Onset-Intervals (IOIs) and by visual assessment

of the data. The next step is to decide whether a signal shows an isochronous–that is a metro-

nome-like–rhythm or a heterochronous rhythm. This again can be inferred from IOI analysis

and nPVI calculations. If an isochronous rhythm is to be detected and one wants to know the

exact beat frequencies of a signal, a Generate-and-test approach (GAT) [4, 5, 10] or a fast Fou-

rier transformations (FFT [4, 5, 10, 17]) can be used; which one to use depends on the data.

We developed a goodness-of-fit value for exact beat frequencies calculated with FFT and by

IOI analyis, as these were missing so far. This makes it now possible to not only infer exact

beat frequencies but how good a beat frequency actually fits a dataset and how good a ‘beat

producer’ an animal is. To find an underlying pattern within or between individuals a cluster

analysis can be run. If a heterochronous beat is to be expected, recurrence plots are a good way

to visualize the data, to find underlying structures and to be able to decide how to proceed in

the analysis. Visualizing underlying or sub-structures can also be relevant in the context of

nested signals, where a small part of a sequence might have a very different tempo than the

rest. In that case it might be worthwhile to rerun parts of the analysis on that specific part.We

also introduce recurrence plots on isochronous data in this paper. All of the above mentioned

methods were used on three datasets to compare results and to show the advantages and disad-

vantages of the different methods as well as their interpretation.

Methods

Labeling of elements and datasets

We chose three different datasets for the analysis with very different properties: 1) monosyl-

labic (i.e. only one element type in a sequence), short isolation calls of the neotropical bat Car-
ollia perspicillata, 2) multisyllabic, medium long isolation calls of the neotropical bat

Saccopteryx bilineata–both social vocalizations–and 3) monosyllabic, very long echolocation

click trains of the sperm whale Physeter macrocephalus used for orientation and foraging (Fig

2). With this, we cover a broad range of possible acoustic signal sequence structures and can

infer the applicability of the methods for a broad range of acoustic signals.

The basis for all analyses were element onsets. An element is a distinct syllable, call or click

in a given sequence that is surrounded by silence. It is necessary that elements and their onsets

are clearly recognizable. For each acoustic signal sequence, the on- and offset of its elements

were determined for subsequent analyses. For multisyllabic isolation calls of S. bilineata, we

manually determined element on- and offsets based on oscillograms (see [29] for details). For

sperm whale echolocation click sequences and isolation call bouts of C. perspicillata, we used

an automatized procedure in Avisoft SASLab Pro (based on amplitude detection threshold; -

20 dB relative to the element’s peak frequency for bats; adjusted manually to not include

buzzes for sperm whales) to determine element on- and offsets.

We analyzed multisyllabic isolation calls from 5 pups of S. bilineata (see [29] for details on

study site and sound recordings). Each isolation call contained 5–26 elements, i.e. syllables

(14 ± 3.5, mean ± SD) and was composed of 2–4 different element types (mean: 3 element

types), but this distinction was not relevant for further analyses. Furthermore, isolation call
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Fig 1. Which methods to use depending on the level of analysis: A first evaluation of whether a signal is periodic or aperiodic relies on

IOI and visual assessment of the data. Whether an acoustic signal sequence might be isochronous or heterochronous can be inferred from

IOIs and nPVI calculations. To find exact beat frequencies a GAT approach, FFTs or again an assessment of IOIs can be used, and the detection

of simple or complex heterochronous patterns is guided visually by recurrence plots. Exact beat frequencies are only interpretable if

accompanied by a goodness-of-fit value. The figure was adjusted after [28].

https://doi.org/10.1371/journal.pcbi.1007755.g001

Fig 2. Visual representation of the different sequences. Different colors indicate different element types. (A) An

exemplary sequence of C. perspicillata isolation calls. (B) An exemplary sequence of S. bilineata isolation calls. (C) An

exemplary sequence of P. macrocephalus echolocation clicks as used for orientation and foraging. Click trains can be

up to 200 elements long.

https://doi.org/10.1371/journal.pcbi.1007755.g002
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bouts of 5 C. perspicillata pups were analyzed (see [30] for details on study site and sound

recordings). Each bout contained 3–11 elements (mean: 3 elements) and was composed of a

single element type. We assessed a total of 47 bouts (Pup 1: 11 bouts, Pup 2: 8 bouts, Pup 3 and

5: 9 bouts, Pup 4: 10 bouts). Furthermore, we analysed 60 sequences of echolocation clicks

from a single deep dive of the female sperm whale Sophocles, recorded by the Dominican

sperm whale project on 24. April 2014 (for details on study site and recordings see [31, 32]).

We extracted trains manually with the software CoolEdit 2000. Single trains were distin-

guished visually by a clear silent gap of at least 3 seconds (in most cases at least 5 seconds). The

elements were afterwards labeled with the software Avisoft SASLab Pro; only the search phase

was labelled and feeding buzzes–if at all present–ignored. Feeding buzzes can occur at the very

end of a click train when an animal is hunting; they are characterized by a higher repetition

rate and less energy [33]. Trains contained 13 to 248 elements, i.e. clicks (115 ± 48,

mean ± SD).

Rhythm analyses

The different methods used are IOI analyses, including the calculations of coeffiecients of vari-

ation and three methods using the IOIs as input, namely nPVI calculations, Fourier analyses,

and a generate-and-test approach. IOIs can be used to visualize the data in histograms or

recurrence plots. When one wants to find the exact beat frequencies which best describe an

acoustic signal sequence Fourier analysis, IOI analsyis, and the GAT approach can be used. To

assess how good any of those exact beats describe a given sequence, goodness-of-fit values are

crucial. Different values serve as a proxy for the goodness-of-fit of the best fitting beat in the

three different methods and play an important part in the interpretability and comparability of

results between species and studies.

IOI. The Inter-Onset-Intervals (IOI) were assessed and the mean IOI of each sequence

converted into the corresponding exact beat frequency by dividing it by 1 [as Hertz is 1/sec-

ond]. The coefficient of variation was calculated as an indicator of variability. It is estimated as

the ratio of the standard deviation to the mean of the sample ([34], Eq 1). The formula for an

unbiased estimator ([35], Eq 2) was used.

cCV ¼
s
�x

ð1Þ

dCV
� ¼ 1þ

1

4n

� �

cCV ð2Þ

cCV ¼ Coefficient of Variation dCV
� ¼ unbiased Coefficient of Variation

s ¼ standard deviation �x ¼ sample mean n ¼ sample size

nPVI. Two adjacent IOIs were compared: their difference was calculated and divided by

their average; the nPVI gives the average of all these ratios in a sequence multiplied by 100.

The obtained values have little explanatory power, beyond being able to assess whether a

sequence is isochronous or not [10, 18, 19, 21]. We calculated nPVI for all sequences of a data-

set separately (named ‘sequence’ in results) and for all IOIs of a dataset combined (named

PLOS COMPUTATIONAL BIOLOGY Comparison of methods for rhythm analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007755 April 8, 2020 7 / 22

https://doi.org/10.1371/journal.pcbi.1007755


‘overall’ in the results).

nPVI ¼
Xm� 1

k¼1

j

IOIk � IOIkþ1

IOIk þ IOIkþ1

2

j �
100

m � 1
ð3Þ

nPVI ¼ normalized Pairwise Variability Index k ¼ index number

m ¼ total number of indices IOI ¼ Inter � Onset � Interval

Recurrence plots. In a recurrence plot higher-order patterns within an acoustic signal

sequence can be visualized. It plots the sequence of IOIs as their differences, building a raster

showing the differences between every IOI with every n-th IOI. The differences are marked by

color code (for code see [10]). Both axes represent the IOI indices in their sequential order.

Fourier analysis. Timestamps of element onsets were used to form a binary point process.

Sequences with a time resolution of 5 ms were created, in which only events (i.e. element

onsets) were represented by ‘1’, everything else in the ssequence was represented by ‘0’. Each

sequence started and ended with an event, represented as a ‘1’. A fast Fourier transformation

was calculated (FFT). After that, frequencies of maximum power were selected as ‘best fitting

beat’ [4, 17], which are the exact beat frequencies we subsequently described a sequence with.

A normalized goodness-of-fit value based on the zero-bin component (DC Offset) of the

FFT signal was established. In a normal oscillating signal the zero-bin-component–the ampli-

tude of the signal at 0 Hz–is zero. In a binary sequence, the zero-bin component is not 0 but,

instead, same as the mean of the signal in the time domain (adjusted after [36]; Eqs 4 & 5);

therefore it is dependent on the total number of elements and the number of samples. It thus

functions as an internal reference (Fig 3).

X fð Þ ¼
1

N

XN� 1

n¼0

xðnÞe� j2p
f
Nn ð4Þ

X 0ð Þ ¼
1

N

XN� 1

n¼0

xðnÞ ð5Þ

Xðf Þ ¼ Signal frequency domain N ¼ sample size j ¼ j function e ¼ Euler number

n ¼ index number xðnÞ ¼ signal in time domain f ¼ frequency

The nGOF value is calculated by dividing the amplitude P of the best fitting beat frequency

(Pbest) by the amplitude P of the zero-bin-component (P0) multiplied with the sampling length

(L) (Eq 6).

nGOF ¼
jPbestj

L � jP0j
ð6Þ

nGOF ¼ normalized Goodness of Fit value Pbest ¼ highest Amplitude

L ¼ sampling length P0 ¼ Amplitude at 0 Hz; zero � bin � component
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GAT. In the generate-and-test approach (developed by [5]) the original sequence of ele-

ment onsets gets tested against computed perfectly isochronous onset sequences of a prede-

fined frequency window (i.e. 5–100 Hz as in beats per second). Sequences were computed in a

frequency window from 2–100 Hz in 0.01 Hz increments. For each beat frequency, the the

root-mean-square deviation (RMSD) of all elements in a sequence from their nearest single

beat was calculated. The parameter was then normalized for frequency (by dividing it by the

frequency), resulting in the frequency normalized root-mean-square deviation–FRMSD.

Artificial data. To further the understanding of the analysis principles we ran all methods

on three artificial datasets: 1) perfectly isochronous sequences with IOIs of 0.1, 0.3 or 0.5 sec-

onds; 2) Ten sequences á 100 elements randomly drawn from a uniform distribution between

0 and 1 and 3) three subdatasets, that were drawn from a Gaussian distribution with means of

1, 0.2 or 0.1 seconds with standard deviations of 0.5, 0.1 and 0.05 respectively. Again each data

set consisted of 10 sequences with 100 elements in each sequence. Negative numbers were per-

mitted and the drawing of a negative number re-run until a positive number was selected. This

was done manually (dataset 1) and in Matlab with the ‘rand’ (dataset 2) and ‘normrand’ func-

tion (dataset 3).

Cluster analysis

An agglomerative, hierarchical clustering algorithm that used the group average of frequency

distances as the basis for finding clusters was applied. Dissimilarities were given by Euclidean

distances; the dissimilarity threshold to find clusters was set to 0.05 for all data sets. Cluster

analyses were performed for all three methods yielding exact beat frequencies in Matlab.

Software and code

We used Matlab (Version 2017b & 2016b) and R (Version 3.5.3) for the analyses. CoolEdit

2000 (Syntrillium, Phoenix, USA) was used to extract single echolocation click trains from the

dive of a sperm whale. Furthermore, we used Avisoft SASLab Pro Version 5.2.10 (Berlin,

Fig 3. Visual explanation of the internal reference: The mean of the binary sequence that serves as input for the Fourier analysis determines the amplitude

of the zero-bin-component (DC-term). This amplitude will always be the highest in this kind of analysis serving as an internal reference for the second highest

peak that determines the best fitting exact beat frequency.

https://doi.org/10.1371/journal.pcbi.1007755.g003
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Germany) to visualize recordings and to determine element onsets automatically (for isolation

call bouts of C. perspicillata and click trains of P. macrocephalus) and manually (for multisyl-

labic isolation calls of S. bilineata).

The code for the GAT approach was published elsewhere (see [10]) and the code to run the

FFT as well as exemplary data is provided here: https://github.com/LSBurchardt/FFT-Method.

Results and methods discussion

IOIs and nPVIs

We show key data for all datasets in Table 2: the mean of the IOIs in seconds, the standard

deviation of IOIs, as well as the coefficient of variation over all IOIs of a dataset (CV overall)

and the average coefficient of variation between sequences (CV sequences) of a dataset. In con-

trast to the commonly used parameters variance and standard deviation, the coefficient of vari-

ation is neither sample-size nor mean dependent. Therefore it yields comparable results

independent of the dataset. To ensure comparability we used the formula for an unbiased esti-

mator ([35], Eq 2) since especially for smaller sample sizes the normal coefficient of variation

(Eq 1) tends to underestimate the variation.

Furthermore, we give information on the range of IOIs in seconds and the number of IOIs

comprising the datasets. The range of calculated nPVIs as well as their mean is given together

with the information on the number of sequences underlying the nPVI analysis and subse-

quent analysis of exact beat frequencies per sequence via GAT, Fourier analysis and IOI

calculation.

A visual inspection of IOIs is the first step in determining the temporal structure of any

given dataset. A unimodal distribution of IOIs is a strong indicator for isochrony because all

IOIs spread around the one most prominent duration category. The steeper the distribution,

the more consistent an isochronous pattern should be. We find unimodal distributions for all

three datasets (Fig 4, first column). To quantify the temporal structure, we then look at differ-

ent key data values: first the CV (sequences) and the nPVI.

The smaller the CV (sequences), the less variation we find in IOIs of a dataset, indicating a

more consistent structure and possibly isochrony. Smaller nPVIs suggest a similar interpreta-

tion. A small nPVI value does not only show a consistent structure but an isochronous struc-

ture. When interpreting nPVI values we must consider that even though a very small nPVI

indicates isochrony, a middle (20–40) or even high (60–100) nPVI does not necessarily dis-

agree with isochrony and definitely not with rhythmicity. In a computer simulated element

sequence with a stress pattern, namely a pattern with an isochronous occurrence of stressed

elements, an nPVI value of 94.54 was calculated (see [10]). An indicator of variation between

sequences and possibly between individuals is the difference between the CV (sequences) and

CV (overall). The CV (sequences) should always be smaller than the CV (overall), the bigger the

Table 2. Summary of IOI results.

Mean IOI

[sec]

SD

(σ)

Coefficient

of Variation

(overall)

Coefficient of Variation

(mean of sequences)

Range[sec] n

IOIs

nPVI n

sequences

C. perspicillata 0.043 0.013 0.31 0.23 0.01 – 0.1 195 2.3 to 110.7

mean 35.9

47

S. bilineata 0.078 0.022 0.29 0.19 0.028 – 0.28 646 6.4 to 99.4

mean 22.8

50

P. macrocephalus 0.46 0.1 0.22 0.14 0.03 – 3.1 6913 0.4 to 13.6

mean 5.2

60

https://doi.org/10.1371/journal.pcbi.1007755.t002
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difference between the two, the higher the variation between sequences and possibly individu-

als (S1 Table for examples on artificial data).

Looking at the results for our datasets, we can infer isochrony for all three datasets, with P.

macrocephalus showing the strongest patterning and likely a very strict isochrony and only a

few variations between sequences. S. bilineata and C. perspicillata show values that hint at an

underlying isochronous structure with small (S. bilineata) and medium (C. perspicillata) dif-

ferences between sequences and individuals.

Exact beat frequencies

After the overall analysis of the pattern, it is interesting to analyze exact beat frequencies,

which would describe individual sequences best. Depending on the results of the overall pat-

terns (isochrony or not, high variability vs. low variability), different methods are appropriate

to analyse these exact beat frequencies. For example, if results indicate a higher probability of

differences between sequences and individuals, an IOI analysis would oversimplify results and

we do not consider it fitting. In that case GAT analysis is useful. Nevertheless, if the overall pat-

tern suggests a very strong rhythm, the computationally more intensive analysis of the GAT

Fig 4. Analysis of the datasets per method: The first column shows the distribution of IOIs for all datasets. The second to fourth column depict exact beat frequency

distributions for the three datasets (1. C. perspicillata, 2. S. bilineata, 3. P. macrocephalus) and different methods.

https://doi.org/10.1371/journal.pcbi.1007755.g004
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approach can be spared, because it would most probably not add substantially to the results of

the IOI analysis or Fourier analysis. Fourier analysis is a very strong tool to analyse rhythm,

but also needs some consideration, for example when deciding which time resolution to

choose for the binary sequence. The rather coarse time resolution of 5 ms used in our analysis

was chosen for different reasons. A time resolution of 5 ms results in a sampling rate of 200

Hz. Since in an Fourier analysis, signals up to half of the sampling rate can be deconstructed, a

sampling rate of 200 Hz will result in frequencies between 0 and 100 Hz being analyzed. In

other studies, 100 Hz as the upper boundary for the investigation proved suitable for bird song

as well as the much faster echolocation pulses of neotropical bats [4, 5]; therefore, we also used

this frequency window for the analysis here. Another very important point to be kept in mind:

the chosen time resolution directly influences the frequency resolution of the Fourier signal;

the higher the time resolution, the lower the frequency resolution will be and vice versa (Eq 7).

This problem diminishes with long sampling length but especially in short signals of under

and around 1 second, it is a considerable issue. Our chosen time resolution gives suitable fre-

quency resolutions even with short sampling length.

temporal resolution
sample length

¼ frequency resolution ð7Þ

Keeping advantages and disadvantages in mind, one should always run more than one anal-

ysis method to get a better picture of the data at hand. Our results for the exact beat frequencies

are presented in Table 3. For each method for calculating exact beat frequencies (GAT, FFT,

IOI) the range of detected beat frequencies is given for the three datasets. The results cluster

around certain values. We divided the frequency window we looked at (0–100 Hz) in 10 Hz

categories; one category will encompass most of the found sequences (i.e. the category 20–30

Hz). This most prominent category is given alongside the percentage of sequences showing

beat frequencies in that category. In addition, the results are visualized in Fig 4, with the differ-

ent methods in columns and the datasets as rows. The most prominent categories are clearly

visible in the histograms for all methods and datasets.

Goodness-of-Fit

Finding such strong categories as we can see in the histograms (Fig 4) hints at an underlying

isochronous pattern and we can be sure that the exact beat frequencies we found describe the

sequences well. It is very unlikely that we find random exact beat frequencies by chance that

show such a pattern of up to 100% of beats found falling into the same bin category. But what

if such an overall pattern is uniformly distributed? How can we be sure that we did not find

random beats and how can we compare species and contexts with regards to how well a single

beat describes a sequence? For that, we used and developed different goodness-of-fit values

which quantify how well a beat describes a sequence.

There are different ways to assess the goodness-of-fit of a beat. By and large, it represents

how close the original sequence of elements is described by one certain beat. Since we are

searching for the best fitting beat, it describes how well this beat describes the sequence. The

goodness-of-fit values for the different methods are correlated to different measures like the

number of elements and length of the sequence, and sometimes to a certain extent to beat fre-

quencies; they fall on very different scales and therefore need careful consideration (S3 Table

for examples on artificial data).

For the GAT approach, the FRMSD (Frequency-normalized Root Mean Square Deviation)

depicts the goodness-of-fit. It is positively correlated to the number of elements in a sequence

in a non-linear way, but superior to the RMSD which is in addition highly frequency
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dependent. Using the FRMSD results in finding the slowest beat, coinciding best with element

onsets [4, 5, 10]. It describes the average temporal deviation as a fraction of a full cycle and

therefore has no unit [4, 5]. For the most part, FRMSD values for C. perspicillata pups overlap

with FRMSD values in S. bilineata pups. Nevertheless, the minimum value we find in S. bili-
neata is much higher, while the highest value is lower than in C. perspicillata pups. Goodness-

of-fit values for the GAT approach show a much broader range for C. perspicillata. Element

numbers in S. bilineata pups are 2- to 9-fold higher, therefore values for S. bilineata are consid-

ered to show a better fit than the ones for C. perspicillata. Due to the FRMSDs positive correla-

tion to element numbers, it is not surprising that we find higher values in the very long

sequences of P. macrocephalus. Exact values for all three species are shown in Table 4.

For the Fourier analysis the basis for the goodness-of-fit is the amplitude of the Fourier sig-

nal. The amplitude P of the Fourier signal, which is used to determine the best fitting beat, is

also indicative of how good the beat actually fits: the higher the amplitude, the better the fit.

Nevertheless, the amplitude is strongly correlated to sample length and number of events in

the sequence. Therefore, amplitudes could so far only be compared within one dataset and

with good knowledge about the correlations. The nGOF on the other hand shows a much

smaller correlation with sample length and number of events (S1 Table) and is therefore more

appropriate to use as a goodness-of-fit value. The nGOF was validated by correlating it to the

already established goodness-of-fit value of the Generate-and-test approach, the FRMSD value

(S1 Table). The nGOF values range from 8e-6 to 1.3e-3 with a median of 2.5e-5 for P. macroce-
phalus. The measure only set into relation with the internal references–but not normalized for

the length of the signal–lie between 0.22 and 0.67 (GOF) which can be thought of as the per-

centage this one particular beat frequency has on describing the original sequence. This value

is easier to interpret, but–again–the signal length has a strong impact, which gets clear when

comparing the values of the very long sperm whale click trains with the way shorter values for

isolation call bouts of C. perspicillata, that show much higher and therefore actually “better”

values. All other results, on the other hand, have to lead to the interpretation, that the sperm

whale echolocation click trains are a lot more regular and therefore closer to a “perfect” beat

than the bat isolation calls. This also shows in the nGOF values for the FFT of C. perspicillata

Table 3. Overview of exact beat frequencies found for three datasets with three methods.

GAT FFT IOI

Min

[Hz]

Max

[Hz]

Prominent category [Hz]

and %

Min

[Hz]

Max

[Hz]

Prominent category [Hz]

and %

Min

[Hz]

Max

[Hz]

Prominent category [Hz]

and %

C. perspicillata 17.9 100 20–30

39.1%

11.8 83.3 20–30

39.1%

12.4 30.6 20–30

82.6%

S. bilineata 8 100 10–20

54%

11.4 86.6 10–20

70%

8.1 17.1 10–20

88%

P. macrocephalus 2 40.9 0–10

83%

1.7 93.7 0–10

93.3%

1.9 2.4 0–10

100%

https://doi.org/10.1371/journal.pcbi.1007755.t003

Table 4. Comparison of Goodness-of-Fit values for all datasets and methods.

GAT FFT IOI

Dataset/Method FRMSD GOF nGOF CV (overall) CV (sequence)

C. perspicillata 0.007–0.214 0.57–0.98 0.012–0.064 0.31 0.23

S. bilineata 0.059–0.183 0.5–0.92 5.5e-4–0.014 0.29 0.19

P. macrocephalus 0.07–0.26 0.23–0.87 1.2e-5–0.0032 0.22 0.14

https://doi.org/10.1371/journal.pcbi.1007755.t004
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pups. They show values that are more than a thousand fold larger than in the sperm whale

data.

The goodness-of-fit values for FFT analysis of S. bilineata isolation calls fall in between

sperm whales and C. perspicillata pups, being 10 fold smaller than the values from C. perspicil-
lata and 100 fold larger than P. macrocephalus. Again exact values are shown in Table 4.

In IOI analysis the sample size independent measure of the coefficient of variation (CV) can

be used as an indicator of the goodness-of-fit; the smaller the CV, the less spread there is in the

IOIs, which means they are more similar to each other, thus corresponding to a more regular

beat. Since the IOI analysis bears little sequence information it is just indicative of the overall

regularity. All measures are shown in Table 4. The differences between CV (overall) and CV

(sequence) moreover give insight into the likelihood of finding individual differences. While

in the CV (overall) all IOIs of an acoustic signal sequence are regarded, in CV (sequence) only

one sequence is regarded and the average for all analysed sequences calculated. Therefore we

might have individually very isochronous sequences leading to small values for CV (sequence)

but very different sequences, leading to a high value for CV (overall). Therefore, the bigger the

difference between CV (overall) and CV (sequence), the higher the likelihood of finding differ-

ences between individuals. The difference between the two is the smallest for P. macrocephalus
and highest for C. perspicillata. This leads to the interpretation that it is most likely to find indi-

vidual differences in exact beat frequency patterns in C. perspicillata and we do not expect

them in P. macrocephalus.

Cluster analysis

Visual inspection of the detected exact beat frequencies per individual confirms what the over-

all pattern and CV calculations already indicated. We find a pattern within individuals, where

beat frequencies cluster around certain values. Depending on the method and the dataset,

these clusters are differently strong and fall around different values.

The cluster analysis is a good way of depicting “preferences” of the different individuals for

certain beats. In S. bilineata pups, clusters do not differ much between individuals and show

cluster strengths of between 30 and 70% for the GAT approach; clustering the results of the

FFT analysis leads to clusters containing 40% to 60% of sequences per individual. In IOI analy-

sis, clusters contain between 60% and 100% of sequences. All strongest clusters fall between 10

and 20 Hz (also see [4]). The picture for C. perspicillata pups looks slightly different though.

We find the strongest clusters containing a third up to 100% of sequences of an individual fall-

ing into one cluster with IOI analysis. The difference is that not all clusters lie in the same beat

category. We find most of the strongest clusters between 20 Hz and 30 Hz for GAT and FFT

analysis as well as between 40 Hz and 50 Hz. Other clusters fall in different categories. For IOI

analysis, on the other hand, all clusters fall at least partially between 20 Hz and 30 Hz (Fig 5

and S2 Fig).

Since we analyzed echolocation click trains of a single individual for P. macrocephalus such

a cluster analysis is not useful here. But the very strong patterning and previous research [37]

let us assume that there are no significant individual differences.

Recurrence plots

In the following section, we describe two exemplary recurrence plots, one showing a multisyl-

labic isolation call of S. bilineata and the other one showing an echolocation sequence of P.

macrocephalus. Recurrence plots offer a visual representation of the temporal pattern of a

sequence. The more uniform the sequence, the more white and light grey colors can be seen in

the plot: white stands for no to very little differences between two adjacent IOIs and the darker
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Fig 5. Individual Beat Clusters in C. perspicillata pups confirm the results of other methods: Exact beat frequencies as analyzed with the three different methods

are shown with clusters in the data. One individual is depicted per column, all exact beat frequencies found are shown as dots. Depicted in red are the sequences

falling into the largest cluster of sequences sharing a similar beat. Percentages at the bottom indicate the percentage of sequences per individual in the largest cluster. (a)

Exact beat frequencies and individual clusters as obtained by the GAT approach. (b) Exact beat frequencies and individual clusters as obtained by the FFT method. (c)

Exact beat frequencies and individual clusters as obtained by IOI analysis.

https://doi.org/10.1371/journal.pcbi.1007755.g005

Fig 6. Recurrence plots of two sequences. No difference is indicated by white; the darker the color, the bigger the difference. Note that absolute differences are depicted

and colors represent different differences in both plots, as shown in the legend. A) Echolocation click train of P. macrocephalus: a very isochronous pattern is visible by

only white and light grey colors. B) The multisyllabic structure of an isolation call of S. bilineata is visible in the differences in IOIs: a subsequence of very similar IOIs is

followed by an alternating sequence of two more element types.

https://doi.org/10.1371/journal.pcbi.1007755.g006
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a comparison, the bigger the difference. The very strict isochronous pattern of the sperm

whale echolocation sequences is depicted in an almost white plot (Fig 6A). In contrast, we can

even see the structure of the multisyllabic isolation call of S. bilineata pups in the correspond-

ing recurrence plot (Fig 6B), where very similar IOIs are followed by slight pairwise changes of

IOIs at the end of the sequence, which corresponds to changes between two element types.

These plots could be a very valuable addition in the analysis of more complex temporal struc-

tures in acoustic signals because higher order structures–for example, different parts of tempo-

ral structure within one acoustic signal sequence–can be visualized and used to determine how

to proceed. For very short sequences such as for C. perspicillata isolation calls, plotting a recur-

rence plot most often does not offer additional valuable insights. They are to be interpreted

carefully, especially when sequences to be compared via a recurrence plot vary widely in IOI

length. The same absolute difference between IOIs might be irrelevant for one but important

for another species. The same color might not stand for the same absolute difference in two

plots.

Decision tree

Incorporating the different methods into a workflow that includes both the data structure as

well as results of early analysis steps leads to a decision tree, describing which methods to use

in what case (Fig 7).

Discussion

This study presents a comprehensive overview of the analysis of periodicity and rhythmicality

in animal acoustic signals by comparing different methods for three different original datasets

and introduces two new goodness-of-fit values for rhythm analysis methods. How to decide

on the fitting methods depending on the data is depicted in Fig 7.

Periodicity can be inferred for all three datasets from the results of the IOI analysis and

visual assessment of the sequences: multisyllabic isolation calls of S. bilineata, isolation call

bouts of C. perspicillata and echolocation click trains of P. macrocephalus. This information

might be useful to answer a broad range of questions, but independent of the question at hand

are the methods. Those methods enable us to actually infer or exclude periodicity for a given

sequence. These methods are the topic of this paper.

The methods (nPVI calculations, CV, IOI analyses, GAT, Fourier analyses) were adjusted

by using three very different kinds of vocalization and sounds for them to be applicable to a

broad range of acoustic signals. We used long and short signals in terms of overall duration

and element duration, multisyllabic and monosyllabic sequences, and echolocation sequences

for navigation as well as social calls. Furthermore, this ensures comparable results and fast and

relatively easy implementation of the different analyses, which was the main aim of this study.

Nevertheless there might be extreme examples of acoustic signals where the method (i.e. Fou-

rier analysis’ time resolution or the frequency window in the GAT approach) could need

adjustments; these could include the very slow and long rumbles of elephants [38, 39] or the

extremely fast and short echolocation signals of some bats such as Kerivoula pellucida, a small

Verspertilionidae bat from Southeast Asia with element lengths of ~1.9 ms and IOIs of around

5 ms [40] or the even shorter but a little slower calls of Micronycteris microtis with an element

length of 0.2 ms and IOIs of 14 to 30 ms [41]. For the very short elements of some bat species,

the sampling rates for creating the binary sequence, serving as input for Fourier analysis,

would need to be much higher for two reasons: first, with a time resolution of 5 ms and ele-

ment lengths of 2 ms or even 0.2 ms, the accuracy of labelling becomes to coarse. Second, the

range of frequencies a sequence is described with in a Fourier analysis is dependent on the
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sampling rate; with the used sampling rate, frequencies of up to 100 Hz can be decomposed

but this is not enough for faster signals (decomposition into frequencies up to half the sam-

pling rate). Changing the sampling rate would on the other hand have implications on the fre-

quency resolution. Duration of samples would need to be at least ~1 second for sampling

frequencies up to 1000 Hz; if sequences are shorter, Fourier analysis is not suitable (Eq 7). On

the other end of extremes, very slow signal sequences should not generate these kinds of prob-

lems. The frequency range to test for exact beat frequencies with the GAT approach would

need careful consideration in this case though, because 2 Hz, which was the lower boundary in

this case, might not be slow enough.

Looking at the different possible analysis paths we describe in the flowchart (Fig 7), we used

data fitting into three different paths, leading to two different end categories. All three datasets

show a unimodal distribution when looking at the IOI distribution. Results of nPVI and CV

calculations differ. While echolocation click sequences of the sperm whale show low nPVI val-

ues and a small difference between CV (sequence) and CV (overall), both bat vocalizations do

not fall into that category because nPVI values are higher. Nevertheless, since the difference

between CV (overall) and CV (sequence) are also small in S. bilineata, we proceed in the

Fig 7. Deciding on a method depending on the dataset and results. The workflow starts with simple distributional measures such as IOI analysis and nPVI calculations.

Questions to be answered in subsequent order are: 1) Is a dataset periodic? 2) If so, can we infer isochrony? 3) Assuming an isochronous pattern, how to analyze exact beat

frequencies best, depending on the data at hand? The sequences we analyzed fall in three of the decision paths: S. bilineata isolation calls would be best to analyze with IOI

or FFT; C. perspicillata would be best to analyze with the GAT approach, while P. macrocephalus echolocation click trains should be analyzed with IOI and FFT as well.

https://doi.org/10.1371/journal.pcbi.1007755.g007
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flowchart to the interpretation that, comparable to the sperm whale trains, isolation calls of S.

bilineata are isochronous with probably no or only small individual differences. For C. perspi-
cillata isolation calls, however, we conclude that even though isochronous, the probability for

individual differences is increased, and therefore we proceed on a different path in the

analysis.

Sequences of S. bilineata and P. macrocephalus are adequate in length (i.e mostly more than

1 second), therefore the frequency resolution in Fourier analysis is no problem and IOI analy-

sis and Fourier analysis are most suitable for exact beat analysis. C. perspicillata sequences are

shorter than 1 second and show a constant tempo, which would make the GAT approach the

most suitable one. To give possible acoustic signal types for other paths, depending on the data

might be from left to right in Fig 7: short call sequences of rodents, for example ultrasonic

pulses of Typhlomus chapensis [42]; for sequences with a higher probability for individual dif-

ferences that are above 1 second in duration and show a constant tempo one could think of

male zebra finch song [5] or the vocalization sequences of pinnipeds such as the Northern ele-

phant seal [6]. For a sequence with a changing tempo, one might think of a territorial song of

some bat species that escalate and increase the tempo in the end [43–45]. Sequences, where

none of the methods would be applicable, could, for example, be short, accelerating pecking

patterns of woodpeckers [46].

The analysis of echolocation click trains of P. macrocephalus shows some interesting dis-

crepancies between methods. Beat frequencies as known from the literature–often termed

click rates or repetition rates in the respective literature–lie around 0.7–4 Hz [47, 48]. Using

the IOI analysis, we get results fitting perfectly into that frame, which makes sense, as the same

methodology is used. The other analyses also show way faster beat frequencies, even though

not very prominently. The important message is that Fourier analysis and the GAT approach

reproduce the overall pattern that most echolocation trains show beats as previously described

in the literature. Nevertheless, it also shows the possibility of the oversimplification of IOI anal-

ysis; this needs more analyses but it might be possible that especially in more variable contexts

than whale echolocation, IOI analysis is missing a lot of information, e.g. small differences that

might be pronounced between individuals for discrimination purposes. It was already sug-

gested that echolocation click beats of sperm whales may include this information [49].

There are a few general take home messages regarding methods to analyze the rhythm.

Starting with the data, since all analyses rely on IOIs, elements need to be clearly separable and

recordings need to have a good signal-to-noise ratio. Furthermore, the duration of a single

sequence (i.e. duration between the first and the last element) should not be too short and a

sequence should contain at the very least 3 elements for all methods to be applicable. In gen-

eral, as many methods as possible should be applied to get a full picture of the data. Different

methods have different flaws; by using various methods and comparing the results, artefacts or

inconsistencies are easier to detect. Methods to calculate exact beat frequencies do have very

different major flaws: Fourier analysis is not well applicable for very short sequences, because

of the trade-of between time resolution in the original signal and frequency resolution in the

Fourier signal (Eq 7). The GAT approach has issues with sequences changing in tempo since

the optimization task is carried out for all elements within a sequence, such that one outlier

can influence the results strongly. IOI analysis tends to oversimplify structures since it depends

only on the mean of IOIs in a sequence, which is not depicting the variation in a sequence at

all (Fig 5).

To enable reproducible rhythm analysis, one needs to provide at least the original IOI

sequences of the data or even the raw acoustic signals with labels. Information on the genera-

tion of the binary sequence for the Fourier analysis is essential; this mainly refers to the time

resolution used. If cluster analyses are run to detect individual patterns, reporting the used
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distance measures, as well as clustering algorithm and distance threshold, are necessary to

make results comparable between studies.

Considering all these things, rhythm analysis can be used to tackle many questions. Not

only can we further investigate couplings of biological processes such as motor rhythms [50,

51], but it can be used to find possible guiding neural processes [5, 7] and can give valuable

information for studies on the perception of temporal structures [52]. Especially in echolocat-

ing animals such as whales and bats, rhythm analysis yields a good background for studies on

rhythm perception. Furthermore, rhythm analysis might prove to be a valuable tool for the

analysis of vocal production learning, as was already suggested for example for the vocal learn-

ing in zebra finches, where very stereotyped elements are learned, with a difference only in the

temporal structure [53]. In other species, one aspect of vocal production learning is for the ani-

mal to learn the temporal structure of an acoustic signal. Without knowing the beats produced

by animal tutors and tutees, this is difficult to achieve [9].

Looking at a broad range of animal acoustic signals and uncovering broader patterns

between animal taxa can, in the end, inform us about the origins and importance of periodicity

and rhythmicity.
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16. Munafó MR, Nosek BA, Bishop DVM, Button KS, Chambers CD, Percie du Sert N, et al. A Manifesto for

Reproducible Science. Nature Human Behaviour. 2017; 1, https://doi.org/10.1038/s41562-016-0021

17. Saar S, Mitra PP. A Technique for Characterizing the Development of Rhythms in Bird Song. PLOS

One. 2008; 3(1):e1461, https://doi.org/10.1371/journal.pone.0001461 PMID: 18213370

18. Grabe E, Low E. Durational Variability in Speech and the Rhythm Class Hypothesis. Laboratory Phonol-

ogy VII. 7. Berlin: Mouton de Gruyter; 2002. p. 515–46.

19. Toussaint GT. The Geometry of Musical Rhythm: What Makes a "Good" Rhythm Good?. Boca Raton,

FL: CRC Press; 2013.

20. Lin H, Wang Q. Mandarin Rhythm: An Acoustic Study. Journal of Chinese Language and Computing.

2007; 17(3):127–40.

21. Toussaint GT. The Pairwise Variability Index as a Tool in Musical Rhythm Analysis. Proceedings of the

12th International Conference on Music Perception and Cognition and the 8th Triennial Conference of

the European Society for the Cognitive Science of Music; 2012 23.07–28.07; Thessaloniki, Greece.

22. Ratcliffe JM, Jakobsen L, Kalko EKV, Surlykke A. Frequency Alternation and an Offbeat Rhythm Indi-

cate Foraging Behavior in the Echolocating Bat, Saccopteryx Bilineata. Journal of Comparative Physiol-

ogy A. 2011, https://doi.org/10.1007/s00359-011-0630-0

23. Jung K, Kalko EKV, von Helversen O. Echolocation Calls in Central American Emballonurid Bats: Sig-

nal Design and Call Frequency Alternation. Journal of Zoology. 2007(272):125–37.
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