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Common genetic variation in 
obesity, lipid transfer genes and 
risk of Metabolic Syndrome: Results 
from IDEFICS/I.Family study and 
meta-analysis
Rajini Nagrani1 ✉, Ronja Foraita1, Francesco Gianfagna2,3, Licia Iacoviello4, Staffan Marild5, 
Nathalie Michels6, Dénes Molnár7, Luis Moreno8, Paola Russo9, Toomas Veidebaum10, 
Wolfgang Ahrens1,11 & Manuela Marron1

As the prevalence of metabolic syndrome (MetS) in children and young adults is increasing, a better 
understanding of genetics that underlie MetS will provide critical insights into the origin of the disease. 
We examined associations of common genetic variants and repeated MetS score from early childhood 
to adolescence in a pan-European, prospective IDEFICS/I.Family cohort study with baseline survey 
and follow-up examinations after two and six years. We tested associations in 3067 children using a 
linear mixed model and confirmed the results with meta-analysis of identified SNPs. With a stringent 
Bonferroni adjustment for multiple comparisons we obtained significant associations(p < 1.4 × 10−4) 
for 5 SNPs, which were in high LD (r2 > 0.85) in the 16q12.2 non-coding intronic chromosomal region of 
FTO gene with strongest association observed for rs8050136 (effect size(β) = 0.31, pWald = 1.52 × 10−5).  
We also observed a strong association of rs708272 in CETP with increased HDL (p = 5.63 × 10−40) and 
decreased TRG (p = 9.60 × 10−5) levels. These findings along with meta-analysis advance etiologic 
understanding of childhood MetS, highlighting that genetic predisposition to MetS is largely driven by 
genes of obesity and lipid metabolism. Inclusion of the associated genetic variants in polygenic scores 
for MetS may prove to be fundamental for identifying children and subsequently adults of the high-risk 
group to allow earlier targeted interventions.

A collection of risk factors, including central obesity, insulin resistance, dyslipidemia, and hypertension, describes 
metabolic syndrome (MetS). Additionally, MetS is a known precursor in cardiovascular disease development1. 
MetS has become a major public health concern globally due to its increasing prevalence and association with 
various chronic diseases2. MetS etiology is quite complex, involving a strong interplay between multiple genetic, 
environmental and lifestyle-related factors. In European ancestry, the heritability of the MetS was estimated to be 
between 13–30%3,4. The early prognosis of MetS is therefore extremely valuable for early detection of individuals 
at high genetic risk of developing the disease later in life and for encouraging change in lifestyle to reduce risk. 
While numerous single nucleotide polymorphisms (SNPs) associated with individual metabolic components and 
diseases have been reported in genome-wide association studies (GWAS)5–8, the effect of these polymorphisms 
on the MetS network and related diseases is not well studied.
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Further, of all MetS components, lipid levels seem under higher genetic determination9. This has also been 
observed in the genetic association studies suggesting that genetic effects on lipid levels are more pronounced 
than for other traits10. Most of the genetic association studies for MetS have been conducted in adult popula-
tion5,10,11 and are limited by the usage of one-point measurements7,12–14. As the prevalence of MetS in children and 
young adults is increasing15, a better understanding of the genetics that underlies MetS throughout childhood and 
adolescence will provide critical insights into the origin of the disease. We performed a longitudinal analysis using 
a repeated measurement design for the effect of genetic variants on a quantitative MetS score from early child-
hood to adolescence. We examined the association between 350 pre-selected variants and the MetS score derived 
from measured waist circumference (WC), high-density lipoprotein (HDL), homeostasis model assessment of 
insulin resistance (HOMA-IR), triglycerides (TRG), systolic blood pressure (SBP) and diastolic blood pressure 
(DBP) in a pan-European children cohort.

Methodology
Study population.  The study population was enrolled in a pan-European, multi-center, prospective 
IDEFICS/I.Family cohort across three-time points. The IDEFICS baseline survey included a population-based 
sample of 16,229 children aged 2 to 9.9 years from eight European countries (Belgium, Cyprus, Estonia, Germany, 
Hungary, Italy, Spain, and Sweden) who were examined the first time in 2007/2008. Follow-up examinations 
were conducted after two (T1) and six (T3, I.Family study) years16,17. In our longitudinal analysis using repeated 
measurement design, both baseline and follow-up data from the IDEFICS and I.Family study were included from 
all countries except Cyprus, for understanding the associations of genetic variants with MetS. In the IDEFICS/I.
Family study, risk factors of lifestyle-related outcomes were investigated in young children and anthropometric 
and clinical examinations were conducted at each survey wave. Additionally, health characteristics and lifestyle 
behaviors were collected and biosamples were taken (Details in Supplementary methods). Parents gave written 
informed consent before study participation and children gave oral consent before the examinations. Ethical 
approval was obtained from the relevant local or national ethics committees by each of the study centers, namely 
from the Ethics Committee of the University Hospital Ghent (Belgium), the Tallinn Medical Research Ethics 
Committee of the National Institutes for Health Development (Estonia), the Ethics Committee of the University 
Bremen (Germany), the Scientific and Research Ethics Committee of the Medical Research Council Budapest 
(Hungary), the Ethics Committee of the Health Office Avellino (Italy), the Ethics Committee for Clinical Research 
of Aragon (Spain), and the Regional Ethical Review Board of Gothenburg (Sweden). We certify that all applicable 
institutional and governmental guidelines and regulations concerning the ethical use of human volunteers were 
followed during this research.

MetS Score.  There are no universal definitions of MetS in children, we have, therefore, utilized a continuous 
MetS score as documented in a recent publication on the IDEFICS study. The MetS score was calculated summing 
age and sex-specific z-scores of WC, HOMA-IR, HDL, TRG, SBP, and DBP according to the following formula 
by Ahrens et al.18:

= +
+

+
−

+ −z z z z z zMetS score
2 2WC

SBP DBP TRG HDL
HOMA IR

The components used to calculate the MetS score were based on the same risk factors used in the adult MetS 
definition. A higher score was associated with an unfavorable metabolic profile18. A detailed description of the 
measurements of components of MetS has been published previously18.

Genotyping and quality control of SNP data.  Genomic DNA was extracted either from saliva or blood 
samples. Genotyping was conducted in two batches on 3492 children using the UK Biobank Axiom 196-Array 
from Affymetrix (Santa Clara, USA). We applied extensive quality control metrics to the data following the rec-
ommendations of Weale M19, based on which we excluded the following: SNPs with a call rate of less than 97.5%, 
failure to meet Hardy-Weinberg equilibrium at a p-value of less than 10−4, a minor allele frequency (MAF) of less 
than 0.5% (batch 1) and 0.08% (batch 2), samples with a call rate of less than 98% (batch 1) and 96% (batch 2), 
poor intensity, sex mismatch, anomalous high heterozygosity (cut-off of 3 standard deviations (SD) from mean), 
cryptic relatedness, no phenotypic information or as population outliers with any of a sample’s standardized 
principal component (PC) loading exceeds the interval mean ±3 SD19,20. We did quality control filtering using 
Affymetrix calling software APT and the R packages genABEL21 and SNPRelate22. A sample of 3067 children 
remained for further analyses. Genome-wide imputation was carried out using the Minimac3 v2.0.1 software and 
reference haplotypes from unrelated individuals from the 1000 Genomes Project phase III v5.

To address the issue of population stratification, we performed a principal components analysis using the 
SNPRelate v1.10.2 R package, where the eigenvectors or PCs are sorted in decreasing order of the corresponding 
eigenvalues. The first eigenvector (PC1) has the most variation in the data on the genetic matrix (SNP by sam-
ple); the second eigenvector (PC2) has the second-most, and so on. To account for relatedness in our sample, we 
calculated the genetic relatedness matrix (GRM) from the genotype data using the program EMMAX v20120210 
(https://genome.sph.umich.edu/wiki/EMMAX). The GRM matrix along with relatedness further adjusts for pop-
ulation stratification.

Selection of candidate SNPs.  A custom panel of SNPs were selected for analysis in this study using the fol-
lowing three strategies: (a) SNPs significantly associated in previous GWAS studies (p < 5 × 10−8) with MetS were 
identified using NHGRI-EBI GWAS Catalog23 and PubMed search (n = 29); (b) All SNP from candidate studies 
which were significantly associated (p < 0.05) with MetS were included using SNP curator platform24 (n = 193); 
(c) genes associated with MetS (using DisGenet browser25) and involved in lipid metabolism pathway (CTdbase26) 

https://doi.org/10.1038/s41598-020-64031-2
https://genome.sph.umich.edu/wiki/EMMAX


3Scientific Reports |         (2020) 10:7189  | https://doi.org/10.1038/s41598-020-64031-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

were uploaded into the Candidate gene SNP selection (Genepipe) pipeline of “SNPinfo” a web-based SNP selec-
tion tool27 with European study population. The algorithm used for selecting SNPs from the provided list of genes 
was as follows: five kb upstream and 1 kb downstream of the gene coordinate were included in the selection. SNPs 
showing a MAF of 0.05 or greater were included. Tagging proportion cut-off to filter a gene was kept at 0.8 and the 
linkage disequilibrium (LD) threshold cut off was kept at 0.8. The minimum number of SNPs tagged by a tag SNP 
was set to 3. To ensure that each gene has some coverage a minimum of 1 tag SNP to a maximum of 5 tag SNPs 
per gene were included. Further SNPs were filtered using the functional SNP prediction in “Genepipe” that causes 
an amino acid change or that may alter the functional or structural properties of the translated protein, disrupt 
transcription factor binding sites, disrupt splice sites or other functional sites. A total of 156 SNPs were identified 
using this strategy. Overall, we obtained 371 SNPs after removing duplicates among the three selection strategies, 
out of which we had genotyping data from 357 SNPs. After excluding 4 monomorphic SNPs and 3 SNPs due to 
quality control issues, the final analyses were carried out on 350 SNPs (n = 117 genotyped, n = 233 imputed).

Meta-analysis.  We carried out a meta-analysis to review associations between FTO variants significantly 
associated in the present study (rs8050136, rs1121980, rs1558902, rs9939609, rs1421085) and MetS as the out-
come. We systematically searched PubMed, Web of Science and Scopus and supplemented it by scanning ref-
erence lists of articles identified (including reviews) up to December 2019. The search strategy is detailed in 
Supplementary Methods. Studies were eligible for inclusion if they had met all of the following criteria: (1) pro-
vided additive odds ratios (ORs) or sufficient genotypic information for calculating ORs with 95% confidence 
intervals (CI); (2) were retrospective or prospective in design, and (3) were conducted in humans. Studies report-
ing on components of MetS alone were excluded from the analysis. For each study included, the following infor-
mation was extracted: first author, year of publication, geographical location, study design, sample size, number 
of cases and controls, information on assay performed for genotyping, effect sizes, allele/genotypic frequency in 
cases and controls, and confounders adjusted for in reported associations. The quality of each included study was 
assessed using the Newcastle-Ottawa Scale for case-control studies28 which range from zero points (low quality) 
to nine points (high quality). If multiple publications on the same study data were available, the most up-to-date 
or comprehensive information was used. Methods and results are reported following the Preferred Reporting 
Items for Systematic Review and Meta-Analysis Protocols (PRISMA) guidelines29.

Statistical analysis.  The characteristics of study participants were presented as means (± SD) for continu-
ous variables and as frequencies (percentages) for categorical variables. Associations between SNPs and repeated 
MetS score values of non-independent individuals were analyzed using the Wald t-test with one degree of free-
dom applied on linear mixed models (LMM), using the R package GMMAT30 adjusting for age, sex, country of 
residence and the top five PCs as fixed effects, and using a kinship matrix to define the covariance structure of the 
random effect included in the model.

To account for multiple testing, we corrected the statistical significance level to α = 0.05/350 = 1.4 × 10−4 by 
the Bonferroni correction and false discovery rate (FDR) method for the 350 hypothesis tests. For further analy-
sis, we presented results for only those SNPs that survived the FDR correction. We stratified association models 
by sex, controlling for age, country of residence, first five PCs and kinship matrix. Additionally, we performed 
conditional analyses on the FTO locus rs8050136 as a covariate. To identify the driving factor in the association 
of SNPs and MetS, we recalculated the LMM with each of the MetS components: WC, HOMA-IR, HDL, TRG, 
SBP, and DBP. Throughout, we used r² to report LD between pairs of SNPs. Quantile-quantile (Q-Q) plots and the 
genomic inflation factor (λ) were used to evaluate control of type I error. LocusZoom31 was used to plot regions 
harboring significant signals (p < 1.4 × 10−4) to visualize LD patterns. Statistical analyses were performed using 
R 3.5.3 and Stata 15. All statistical tests were 2- sided.

MetS = metabolic syndrome, SNP = single nucleo�de polymorphism

3067 children considered for analysis
628 children have MetS score informa�on from 3 surveys
1214 children have MetS score informa�on from 2 surveys
911 children have MetS score informa�on from 1 survey
314 children without MetS score informa�on in all surveys but with informa�on on 
MetS score components

425 quality control and 
analy�cal exclusions

3492 children genotyped
2720 children have follow-up informa�on from 3 surveys
770 children have follow-up informa�on from 2 surveys
1 child has only baseline informa�on
1 child has no phenotypic  data

Figure 1.  Flowchart for inclusion/exclusion criteria.
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Characteristics
Mean (±SD)/n 
(%)N = 3067

Girls 1535 (50.05)

No. of children

T0 2987 (35.05)

T1 2907 (34.12)

T3 2627 (30.83)

New children enrolled at T1 80 (2.61)

Age (years) 6.20 (±1.77)

Study Region

Italy 644 (21.00)

Estonia 299 (9.75)

Belgium 214 (6.98)

Sweden 434 (14.15)

Germany 634 (20.67)

Hungary 461 (15.03)

Spain 381 (12.42)

BMI categories by Cole 
et al, 2012

Thinness grade 1–3 305 (9.94)

Normal weight 2162 (70.49)

Overweight/obese 600 (19.56)

SBP (mmHg), n = 2965 100.44 (±9.07)

DBP (mmHg), n = 2966 63.26 (±6.39)

WC (cm), n = 3010 54.44 (±7.03)

HOMA-IR, n = 1946 0.92 (±0.74)

TRG (mg/dL), n = 2636 57.62 (±25.94)

HDL (mg/dL), n = 2640 52.51 (±14.28)

Metabolic Syndrome Score, n = 1845 0.21 (±2.65)

Relatedness

1st degree (sharing ≥ 50% DNA) 141 (4.59)

2nd degree (sharing < 50 to ≥ 25% DNA) 188 (6.12)

Distant relation (sharing < 25 to ≥1% DNA) 2728 (88.94)

Table 1.  Study characteristics at baseline. BMI = body mass index, DBP = diastolic blood pressure, HDL = 
high density lipoprotein, HOMA-IR = homeostasis model assessment of insulin resistance, SBP = systolic 
blood pressure, SD = standard deviation, TRG = triglycerides, WC = waist circumference. n stated in case of 
missingness.

Locus Chr SNP ID N
Effect 
allele EAF ß SE p-value

Multiple correction

FDR Bonferroni

FTO 16q12.2 rs8050136 2752 A 0.42 0.31 0.07 1.52 × 10−5 0.002 0.005

FTO 16q12.2 rs1121980 2753 A 0.44 0.31 0.07 1.91 × 10−5 0.002 0.007

FTO 16q12.2 rs1558902a 2751 A 0.43 0.30 0.07 2.78 × 10−5 0.002 0.010

FTO 16q12.2 rs9939609 2749 A 0.42 0.30 0.07 2.98 × 10-5 0.002 0.010

FTO 16q12.2 rs1421085 2752 C 0.43 0.30 0.07 3.36 × 10-5 0.002 0.012

FTO 16q12.2 rs8057044a 2628 A 0.49 0.26 0.07 3.04 × 10−4 0.018 0.106

CETP 16q13 rs708272 2752 A 0.41 −0.25 0.07 4.49 × 10−4 0.023 0.157

FTO 16q12.2 rs8044769 2751 T 0.46 −0.24 0.07 5.91 × 10−4 0.026 0.207

SCG3 15q21.2 rs3764220a 2708 G 0.0004 5.84 1.81 1.26 × 10−3 0.045 0.441

FTO 16q12.2 rs17817288a 2635 A 0.48 −0.23 0.07 1.41 × 10−3 0.045 0.496

FTO 16q12.2 rs8047395a 2540 G 0.47 −0.23 0.07 1.49 × 10−3 0.045 0.523

ACACB 12q24.11 rs2075260 2749 G 0.18 −0.29 0.09 1.63 ×10−3 0.045 0.571

GNPDA2 4p12 rs10938397a 2082 G 0.40 0.26 0.08 1.66 × 10−3 0.045 0.581

Table 2.  Association of markers with longitudinal Metabolic Syndrome score in children of IDEFICS/I.Family 
study. ß = estimated coefficient, Chr = chromosome, EAF = effect allele frequency, FDR = false discovery 
rate, SNP = single nucleotide polymorphism, SE = standard error. The effect allele is the allele corresponding 
to the calculated risk. Adjusted for age, sex, country of residence, first five principal components as fixed effects 
and kinship matrix to define the covariance structure of the random effect. SNPs significant after Bonferroni 
correction are marked in bold. aimputed SNPs.

https://doi.org/10.1038/s41598-020-64031-2


5Scientific Reports |         (2020) 10:7189  | https://doi.org/10.1038/s41598-020-64031-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Functional annotation using existing datasets.  To identify potential causal genes explaining the 
observed genetic associations with MetS, we searched for existing expression quantitative trait loci (eQTL) SNPs 
in the eQTL dataset GTEx V832. We estimated the associations between the identified lead SNP and transcript 
expression levels for genes within a +/− 1 Mb cis window around the transcription start site or a trans-gene.

In-silico functional analysis.  We examined the potential functional significance of the SNPs that reached 
the significance level using the combined annotation-dependent depletion (CADD) method proposed by Kircher 
and colleagues33. CADD produces a single C score to measure the deleteriousness of a given variant, which will 
greatly improve in prioritizing the causal variants while conducting genetic analyses33. We also extracted the 
RegulomeDB score to describe the regulatory potential of these SNPs34.

Meta-analysis Crude ORs and 95% CIs in each study were estimated using a genetic additive model and eval-
uated for the strength of the associations between FTO variants and MetS risk. The study reported additive ORs 
were utilized when sufficient information on genotypic/allelic frequencies were not provided. Study-specific 
risk estimates were pooled by using random-effects meta-analyses and sensitivity analyses were performed 
using fixed-effect meta-analyses. To determine whether the genotypes in the control group deviated from 
Hardy-Weinberg Equilibrium (HWE) we used the R-package HardyWeinberg35. Heterogeneity was assessed 
using the standard χ2 tests and I2 statistic, where I2 > 50% indicated substantial heterogeneity36. Evidence of 
publication bias was sought using the Egger regression test for funnel asymmetry in addition to visual inspection 
of the funnel plots37,38. Two-sided P values <0.05 were considered statistically significant.

Results
After quality control and analytical exclusions, we performed longitudinal analyses with genotypic information 
on 350 SNPs and repeated measures on study calculated MetS Scores from 3067 children at 3-time points (Fig. 1). 
Boys and girls were equally present in the analysis with a mean age of 6.20 (±1.77). Almost 5% of study partici-
pants were first degree relatives (Table 1).

MetS score was not available for 314 study participants in any survey. In total, 2,753 children were utilized for 
the main analysis to test the association between pre-selected candidate SNPs and longitudinal MetS score; how-
ever, we made use of all children to test SNP effects on the components of the MetS score. Details of exclusions 
are shown in the appendix (Supplementary Table 1). A genomic control factor λ of 1.22 in the Q-Q plot of the 
association p-values suggested slight systematic inflation (Supplementary Fig. 1). The first five PCs explain only 
1% of variance suggesting there may be no hidden pattern in the dataset (Supplementary Fig. 2).

Our results yielded significant associations for 13 SNPs with p-values corrected for FDR (Table 2). With a 
stringent Bonferroni adjustment for multiple comparisons, we obtained significant associations (p < 1.4 × 10−4) 

Figure 2.  Regional association plot of markers with longitudinal metabolic syndrome score in children, 
recombination hotspots, and linkage disequilibrium heatmap for the 16q12.2 locus. −log10 of p values 
(left y-axis) drawn from the study participants of IDEFICS/I.Family cohort for a 500 kb region covering 
the entire FTO gene. The purple circle indicates the query variant (rs8050136). The LD estimates are 
color-coded as a heatmap from dark blue (0 ≥ r2 > 0.2) to red (0.8 ≥ r2 > 1.0). The bottom panel shows the 
genes and their orientation for each region. We based the association analysis on a one degree of freedom 
Wald t-test applied on linear mixed model, adjusted for age, sex, country of residence, first five principal 
components as fixed effects and kinship matrix to define the covariance structure of the random effect. 
The blue line represents the recombination rate (right y-axis) to estimate putative recombination hotspots 
across the region from HapMap.
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Locus Chr SNP ID
Effect 
allele

Boys Girls

EAF ß (SE) p-value EAF ß (SE) p-value

FTO 16q12.2 rs8050136 A 0.42 0.33 (0.10) 0.001 0.42 0.29 (0.10) 0.004

FTO 16q12.2 rs1121980 A 0.44 0.37 (0.10) <0.001 0.45 0.25 (0.10) 0.012

FTO 16q12.2 rs1558902 A 0.43 0.32 (0.10) 0.001 0.43 0.28 (0.10) 0.005

FTO 16q12.2 rs9939609 A 0.42 0.30 (0.10) 0.002 0.42 0.30 (0.10) 0.004

FTO 16q12.2 rs1421085 C 0.43 0.32 (0.10) 0.001 0.43 0.28 (0.10) 0.006

FTO 16q12.2 rs8057044 A 0.49 0.33 (0.10) 0.001 0.49 0.21 (0.10) 0.043

CETP 16q13 rs708272 A 0.41 −0.32 (0.10) 0.002 0.41 −0.18 (0.10) 0.072

FTO 16q12.2 rs8044769 T 0.46 −0.24 (0.10) 0.015 0.46 −0.24 (0.10) 0.014

SCG3 15q21.2 rs3764220 G 0.0004 7.13 (2.42) 0.003 0.0004 3.74 (2.79) 0.180

FTO 16q12.2 rs17817288 A 0.48 −0.29 (0.10) 0.004 0.48 −0.18 (0.10) 0.074

FTO 16q12.2 rs8047395 G 0.46 −0.35 (0.10) 0.001 0.47 −0.13 (0.10) 0.210

ACACB 12q24.11 rs2075260 G 0.17 −0.27 (0.13) 0.045 0.18 −0.33 (0.13) 0.010

GNPDA2 4p12 rs10938397 G 0.39 0.27 (0.12) 0.022 0.42 0.26 (0.11) 0.025

Table 3.  Association of markers with longitudinal Metabolic Syndrome stratified by sex. ß = estimated 
coefficient, Chr = chromosome, EAF = effect allele frequency, FDR = false discovery rate, PVAL = 
p-value, SNP = single nucleotide polymorphism, SE = standard error. The effect allele is the allele 
corresponding to the calculated risk. Adjusted for age, sex, country of residence, first five principal 
components as fixed effects and kinship matrix to define the covariance structure of the random effect. 
The results here are presented for the markers that reached statistical significance after correction for FDR 
in the main analysis in Table 2.

Figure 3.  Flow Diagram of Study Selection Process for Meta-analysis.
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for 5 SNPs, which were highly correlated in the 16q12.2 chromosomal region in the non-coding intronic region 
of the FTO gene. The SNPs located in FTO gene were in high LD (r2 > 0.87), with the strongest association signal 
observed for rs8050136 (Pwald = 1.52 × 10−5) (Fig. 2). In LMMs conditioned on rs8050136, the risk of other var-
iants in 16q12.2 was completely attenuated and non-significant (Supplementary Table 2). We could not replicate 

Figure 4.  Forest plots of random effect meta-analysis of the association of FTO variants (rs8050136, rs1121980, 
rs1558902, rs9939609, rs1421085) with Metabolic Syndrome. CI = confidence interval. Sizes of data markers 
indicate the weight of each study in the analysis. Study-specific odds ratios were pooled using random-effects 
meta-analysis. Col, 2017; Dusatkova, 2013; Liem 2010; Zhao 2014 were conducted in the young population (age 
<18 years). Additive ORs were used as indicated in the study for Liem, 2010; Sjogren, 2008; Zhao; 2014.
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Author
Sample 
Size

MetS 
cases 
(n)

Controls 
(n) FTO variants

Criteria for 
MetS Ethnicity/Study Location Population Type

Study 
Quality, 
NOS

Ahmad, 2010 21674 4775 16899 rs8050136 modified 
NCEP ATP III White women Health professionals from 

an RCT 9

Al-Attar, 2008 2121 474 1647 rs9939609 IDF, NCEP 
ATP III

Canadians of multi-ethnic 
origin General 7

Armamento-Villareal, 2016 165 53 112 rs8050136 JIS Caucasians Obese older adults 6

Attaoua, 2009b 119 34 85 rs1421085 NCEP ATP III Caucasians Obese women 7

Attaoua, 2008 207 75 132 rs1421085 NCEP ATP III Caucasians Patients of PCOS 6

Baik, 2012 4590 1487 3103 rs9939609 AHA/NHLBI Korean General 9

Chedraui, 2016 192 103 89 rs9939609 AHA/NHLBI Ecuador postmenopausal women 9

Cheung, 2011 1446 225 1221 rs8050136 JIS Hong Kong General 9

Col, 2017a 100 60 40 rs9939609 NCEP ATP III Caucasians in Turkey Obese adolescents 6

Cruz, 2010 936 389 547 rs9939609 AHA/NHLBI Mexico Blood donors without a 
family history of diabetes 7

de Luis, 2013 457 186 271 rs9939609 NCEP ATP III Caucasians Obese females 6

Dusatkova, 2013a 1443 111 1332 rs9939609 IDF Czech adolescents
underweight, normal, 
overweight and obese 
adolescents

9

Elouej, 2016 685 340 345 rs9939609, rs1421085 IDF Tunisian General 9

Fawwad, 2015 296 194 102 rs9939609 IDF, NCEP 
ATP III Pakistan Patients of Type 2 diabetes 7

Freathy (NBFC1966), 2008 4423 293 4130 rs9939609 NCEP ATP III European General 8

Freathy (Oxford Biobank), 
2008 1149 169 980 rs9939609 NCEP ATP III European General 8

Freathy (Caerphilly), 2008 1046 216 830 rs9939609 NCEP ATP III European General 8

Freathy (UKT2D GCC 
Controls), 2008 1858 299 1559 rs9939609 NCEP ATP III European General 8

Freathy (BWHHS), 2008 3191 1449 1742 rs9939609 NCEP ATP III European General 8

Freathy (InChianti), 2008 888 250 638 rs9939609 NCEP ATP III European General 8

Guclu-Geyik, 2016 1967 923 1044 rs1421085, rs9939609 NCEP ATP III Turkish General 9

Hotta, 2011 1677 1096 581
rs1121980, rs1421085, 
rs1558902, rs8050136, 
rs9939609

study-specific Japanese Hospital based 5

Hu, 2015 489 245 244 rs1421085, rs9939609 IDF Kazakh adults of Xinjiang, 
china General 9

Khella, 2017 197 92 105 rs9939609 IDF Egyptian Hospital based 7

Liem, 2010a 1275 886 389 rs9939609 IDF Dutch General 9

Liguori, 2014 1000 372 628 rs1121980, rs1421085, 
rs9939609 AHA/NHLBI Italy morbidly obese 6

Malgorzata, 2018 425 162 263 rs9939609 IDF Polish General 8

Petkeviciene, 2016 1020 360 660 rs9939609 IDF Lithuanian General 9

Phillips, 2012 1753 877 876 rs9939609 NCEP ATP III French General 9

Ramos, 2015 199 49 150 rs8050136, rs9939609 JIS Caucasians Patients of PCOS 6

Ranjith, 2011 485 295 190 rs9939609 IDF, NCEP 
ATP III Asian Indian Patients of AMI 7

Reynolds, 2013 179 93 86 rs9939609 IDF Irish/British Caucasian Chronically treated patients 
with Schizophrenia 6

Rodrigues, 2015 146 114 32 rs9939609 AHA/NHLBI Multiethnic Bariatric surgery patients 6

Rotter, 2016 272 144 128 rs9939609 IDF Caucasian Volunteers from primary 
health care centres 6

Sedaghati-khayat, 2018 746 341 405 rs1121980, rs1421085, 
rs1558902, rs8050136 JIS Iran General 7

Sikhayeva, 2017 697 208 489 rs8050136, rs9939609 NCEP ATP III Ethnic Kazakhs Hospital-based 9

Sjogren, 2008 14996 3843 11153 rs9939609 study-specific Swedish General 8

Ślęzak, 2018 191 100 91 rs1421085, rs1558902, 
rs9939609 NCEP ATP III Poland Not given 5

Steemburgo, 2012 236 192 44 rs9939609 JIS Brazil Patients of Type 2 diabetes 7

Tabara, 2009 2043 333 1710 rs9939609 modified 
NCEP ATP III Japanese General 6

Vankova, 2012 164 16 148 rs9939609 WHO Bulgarian Centrally obese and normal 
volunteers 5

Wang, 2010 236 108 128 rs1421085, rs8050136, 
rs9939609 IDF Han Chinese Outpatients of 

endocrinology unit 6

Zhao, 2014a 3477 431 3046 rs9939609 modified 
NCEP ATP III Chinese General 9
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previously reported GWAS SNPs of MetS conducted on adults in the present children cohort (Supplementary 
Table 3). The allele frequencies reported in this study were comparable to those reported for European samples 
(Supplementary Table 4).

Using data for additional covariates, we performed sex-specific analyses for SNPs that reached statistical sig-
nificance (Table 3). The associations were stronger in boys compared to girls. We further went ahead to analyze 
the repeated measures of components of the MetS score as the outcome to understand which of the components 
drove the observed association. The variants in FTO were associated with higher SBP and larger WC whereas 
the variant A of rs708272 in CETP was strongly associated with decreased TRG levels and increased HDL levels 
(Supplementary Table 5).

A CADD-scaled C score of more than 10 for SNP rs8047395 (Supplementary Table 6) was observed in 
in-silico analyses. Similarly, a RegulomeDB score of four for three SNPs (rs8050136, rs1121980, and rs8044769; 
Supplementary Table 6) in the FTO gene was observed. Using existing eQTL datasets, we found that the 
rs8050136-A allele in muscle-skeletal tissue was associated with higher FTO gene expression based on the linear 
regression model.

Meta-analysis.  We screened 193 records (Fig. 3) and identified 38 eligible studies39–77 for 5 FTO variants 
(8, 3, 3, 32, 10 studies for rs8050136, rs1121980, rs1558902, rs9939609 and rs1421085, respectively) on 80856 
participants with 22462 cases and 58394 controls (Table 4). Including the present study there were 29760, 6343, 
5532, 59411 and 9908 participants for rs8050136, rs1121980, rs1558902, rs9939609 and rs1421085 respectively. 
The control populations of the included studies were in HWE. In addition to ours, only 4 studies were conducted 
on children or adolescents. A forest plot of association of FTO variants with MetS is provided in Fig. 4. The OR 
for MetS and rs8050136, rs1121980, rs1558902, rs9939609 and rs1421085 was 1.17 (95% CI: 1.09–1.26), 1.14 
(95% CI: 1.00–1.31), 1.26 (95% CI: 1.11–1.43), 1.14 (95% CI: 1.09–1.19) and 1.21 (95% CI: 1.08–1.35) respec-
tively. The degree of between-study heterogeneity was least with I2 = 20.3% (P = 0.263) for rs8050136 and high-
est for rs1421085 with I2 = 53.5% (P = 0.018). Sensitivity analyses that used fixed-effect meta-analysis (rather 
than random-effects meta-analysis as in the primary analysis) yielded similar OR as random effect meta-analysis 
(Supplementary Fig. 3). There was no evidence for publication bias, as indicated by funnel plot analyses and Egger 
test for asymmetry (Supplementary Fig. 4).

Discussion
Over the past decade, common genetic loci have been reported to be associated with MetS in different studies, 
mostly at a single time-point using a cross-sectional or a case-control approach7,76,78. Our study took a step ahead 
in investigating 350 pre-selected loci for their longitudinal association with a continuous MetS score during the 
transition from childhood to adolescence in a pan-European cohort of children with a follow-up period of up 
to seven years. We observed a strong association between common genetic variants in the FTO and longitudinal 
MetS score after Bonferroni correction for multiple comparisons. We observed stronger associations in boys as 
compared to girls. The effect sizes observed in our study on children were much larger than those reported in 
adults further suggesting greater genetic predisposition and lower influence from environmental and behavioral 
factors in youth.

The FTO gene codes for a nuclear protein of the non-haem iron and 2-oxoglutarate-dependent oxygenase 
superfamily, which is involved in posttranslational modification, DNA repair, and fatty acid metabolism79. FTO 
which is primarily expressed in the hypothalamus, plays a key role in energy homeostasis and regulation of food 
intake80. Even DNA methylation studies have shown an association with many pathological conditions including 
obesity81,82. FTO may thus play a role in metabolic regulation by altering gene expression in metabolically active 
tissues83. While the exact mechanism remains to be unraveled, it has been shown that genetic variants within 
the FTO gene are linked functionally to another obesity-related gene called IRX3, which promotes browning of 
white adipocytes, maybe a connecting link between FTO variants and obesity-related disorders76,84,85. Further, 
previous studies have observed that individuals homozygous for the risk alleles in FTO have impaired metabolic 
profile86–88. Similarly, our findings of the FTO association with MetS score may be related to its association with 
obesity89,90, T2DM91 and/or lipid abnormalities92,93. This is supported by the associations we observed between 
FTO variants and components of the MetS, particularly with WC and SBP. Various candidate gene studies have 
observed association between FTO variants and MetS in adults71,73,77,93 across different ethnicities73,76,93,94. Our 
results confirm the association of FTO variants and MetS in children and adolescent populations via its implica-
tion in the regulation of body fatness.

Though the CETP variant did not survive conservative Bonferroni correction, we observed a strong associ-
ation of rs708272 with increased HDL (ß = 4.03, p = 5.63 × 10−40) and decreased TRG (ß = −2.43, p = 9.60 × 
10−5) levels. Consistent to our observations previous literature has shown that some variants in the CETP gene, 

Table 4.  Characteristics of studies included in the meta-analysis. AMI = acute myocardial infarction; IDF = 
International Diabetes Federation; JIS = Joint Interim Statement of the International Diabetes Federation 
Task Force on Epidemiology and Prevention, National Heart, Lung, and Blood Institute, American Heart 
Association, World Heart Federation, International Atherosclerosis Society and International Association for 
the Study of Obesity, 2009; MetS = metabolic syndrome; NCEP ATP II = the National Cholesterol Education 
Program Adult Treatment Panel III; NOS Newcastle - Ottawa Quality Assessment Scale; PCOS = polycystic 
ovarian syndrome; RCT = randomized controlled trials. aStudies conducted in the young population (age < 18 
years),bsub-sample of the study was utilized. Genotypic frequency from NCEP ATP III was utilized in studies 
reporting both IDF and NCEP ATP III definitions of MetS.
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an essential protein of reverse cholesterol transport process are associated with decreased plasma CETP pro-
tein activity and protein levels, culminating in higher concentrations of HDL95,96 and reduced concentrations of 
TRG13. Similarly, meta-analyses have shown that carriers of the T allele, associated with lower CETP, have higher 
HDL concentrations than CC homozygotes97 and thereby showing an inverse association with MetS. Further, 
rs708272 of the CETP gene was moderately correlated (r2 = 0.47, MAF = 0.41) with the GWAS-identified SNP 
rs17353910, a less common SNP (MAF = 0.30) which could not be detected in the present study given the mod-
erate sample size. We observed a significant association of rs708272 with MetS score after adjusting for BMI 
z-scores (Supplementary Table 7), suggesting that the association may partly be driven by lipid metabolism in 
addition to obesity.

In-silico examinations of the possible functional significance of SNPs found in our sample suggested that the 
FTO gene had a CADD C score of over 10 for one SNP. Likewise, the RegulomeDB score of 4 in the FTO gene 
for three SNPs suggests that transcription factor binding could be impaired by these SNPs., thus indicating that 
one or more variants in the FTO gene are likely to have a functional effect. Analysis of the eQTL showed that the 
rs8050136-A allele may upregulate the level of FTO gene expression in the muscle-skeletal tissue. However, to 
establish the biological function of these variants of susceptibility, more functional work is needed.

To further assess whether the MetS score association results vary by sex, we performed stratified analysis. The 
associations remained significant for both boys and girls with slightly stronger associations observed in boys. 
This is obvious as MetS is more common in adult males as compared to adult females in Europeans and other 
high-income countries98. A possible explanation could be due to the sex-modulated fat distribution interactions 
with the dynamics of cardiometabolic risk99.

In recent years there has been no meta-analysis on the FTO variants and MetS94,100–102, therefore the present 
meta-analysis provides an updated overview of the risk associated with variants in 16q12.2 involving data from 38 
studies on 80856 participants plus the present IDEFICS/I.Family study. Pooled estimates from the meta-analysis 
further confirmed our findings for rs8050136, rs1121980, rs1558902, rs9939609, rs1421085 and MetS risk. Again, 
most of the studies in the meta-analysis were conducted on adults which may not be an appropriate extrapolation 
to children, given its greater impact in children compared to adults103.

Strengths of our study include the design (samples derived from a well-phenotyped cohort of children), an 
accurate and highly standardized outcome measurement, and the ability to include several important covariates. 
To our knowledge, this is the first study to report common genetic variation conferring MetS risk with longitudi-
nal analysis in children104. The study could have benefitted further by in-depth laboratory functional assays, but 
this was beyond the scope of this paper. We therefore conducted an in-silico functional analysis. Though the study 
was adequately powered to detect associations with common genetic variations, we couldn’t replicate the previ-
ously identified GWAS SNPs conducted in adults, which could be for example attributable to absence of power to 
detect less common SNPs or SNPs with small effects, to differences in linkage disequilibrium, age group structure 
or the analytical methods across studies105. However, the greater impact of FTO variants in children as compared 
to adults is well known106,107, and therefore the association of the FTO variants in childhood MetS etiology, not 
observed by GWAS of the adult population, implies the involvement of different SNPs at different age groups.

In conclusion, the results from the present study along with the comprehensive meta-analysis advance eti-
ologic understanding of childhood MetS, highlight that the genetic predisposition to MetS is largely driven by 
genes of obesity and lipid metabolism. Future work on functional characterization will further help in under-
standing the biological underpinnings underlying long-term MetS regulation. Our observation of distinct 
associations of variants of FTO and CETP for different component traits of MetS in children, suggests devising 
polygenic scores for MetS which may prove to be fundamental for identifying children and subsequently adults of 
the high-risk group to allow earlier targeted interventions.

Data availability
The authors declare that the data supporting the findings of this study are available within the article and its 
Supplementary Information files.
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