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Additive interactions 
of nanoparticulate Zno 
with copper, manganese and iron 
in Pisum sativum L., a hydroponic 
study
Elżbieta Skiba1*, Sylwia Michlewska2, Monika Pietrzak1 & Wojciech M. Wolf1

Widespread occurrence of ZnO nanoparticles in environment follows the growing number of 
applications either in technology or agriculture. The impact of five forms of nanoparticulate ZnO 
on copper, manganese and iron uptake by Pisum sativum L. cultivated in Hoagland solutions was 
investigated. Plants were collected after twelve days of zinc administration. Effect of bulk ZnO has 
also been studied. Initial zinc concentration was 100 mg  L−1. Nanoparticles were characterized by 
the transmission electron Microscopy, Dynamic Light Scattering and Zeta potential measurements. 
Metal contents were analyzed using the Atomic Absorption Spectrometry with flame atomization 
for samples digested in a microwave closed system. Analysis of variance indicated that zinc species 
at either molecular or nanoscale levels altered Cu, Mn and Fe uptake and their further transport 
in pea plants. In particular, significant reduction of Mn and Fe combined with the Cu increase was 
observed. Additive interactions originated by nanoparticles affect the heavy metals uptake and 
indicate pollutants migration pathways in plants. Unfortunately, regulations for the plant cultivation 
were formulated when anthropogenic nanoparticles were not in common use. they underestimate 
complexity of metals interactions in either plant or habitat. Our results indicate that these additive 
interactions cannot be neglected and deserve further investigations.

Green pea (Pisum sativum L.) is one of the most extensively cultivated grain legumes worldwide. Plants are 
well adapted to diverse soil zones in either cool or mild climatic  regions1. Their seeds are rich in proteins, 
carbohydrates, dietary fibers, vitamins as well as minerals and are commonly used as vegetable or important 
protein source. The latter is of particular relevance when animal feed is  concerned2. The global production of 
pea is steadily growing as indicated by the projected Compound Annual Growth Rate (CAGR) of 5.9% and has 
approached 20 million tonnes in  20183.

Pea genetics was thoroughly studied and in combination with better plant breeding methods has led to variety 
of improved plant  species4. Nowadays, pea is an important non model plant widely used in applied system biology 
 studies5. The pea genome has not been completely determined as yet. Nevertheless, it is being frequently applied 
as a model plant with the almost complete transcript  coverage6.

The impact of nanoparticles (NPs) on plants physiology and their nutritional quality is usually assessed 
using two leading methodologies as presented by Jośko and  Oleszczuk7. Initially, the long-term growth in soils 
supplemented with representative concentrations of investigated nanoparticles was  applied8,9. Nowadays, the 
soilless plant cultivation is gaining increasing  popularity10. Hydroponic techniques promote plant growth in 
nutrient solutions. Their usage by far exceeds the laboratory scale and they have found numerous applications 
in commercial crop  production11. Several advantages of hydroponic cultures are highly appreciated, i.e. the soil 
sterilization can be skipped, plant diseases are better controlled, nutrient administration is easier and more 
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accurate while separation of root material is possible without damaging the root hairs. Plant samples harvested 
from liquid solutions are more uniform leading to the statistically sound  results12. Notable, physiological pro-
cesses can be observed in a more comprehensive  way13,14. However, as pointed out by Rastogi et al.15 and Zhao 
et al.16, responses of plants grown in hydroponic media may not be the same as observed in soil conditions.

The influence of ZnO nanomaterials on plants is commonly referred to the direct contact of NPs with plant 
tissues with special emphasis on possible interactions of solvated zinc ions and the reactive oxygen species medi-
ated  processes17. The latter mechanisms are complex and far from being thoroughly understood. As pointed out 
by Abbas et al.18, Dwivedi et al.19 as well as by Judy and   Berstch20, the phytotoxicity of particular nanomaterial 
depends on its physical and chemical properties. The nanoparticles size, their surface topology and dynamics 
of aggregation are among the most  important21. The influence of bare and hybrid ZnO NPs on green pea plants 
as cultivated in soil environment were studied by García-Gómez et al.22 and Mukherjee et al.9,23,24. However, to 
the best of knowledge none investigations on combined, additive interactions of essential heavy metals in Pisum 
sativum plant grown in hydroponic media have been reported so far.

Nowadays, the growth of nanomaterials production and usage is widespread indeed. The generally acknowl-
edged forecast published by the Allied Market Research predicts that the value of the nanomaterials global market 
will approach 55 billion USD in  202225. Special attention is paid to the metal and metal oxide  nanoparticles26. 
In particular, zinc oxide based nanoparticles exhibit very unique chemical and physical properties and found 
diverse applications as multifunctional  nanomaterials27. Especially, the antibacterial activity of ZnO NPs induced 
numerous applications in pharmaceutical  industry28. Substantial UV radiation absorption ability prompts their 
usage as essential component of various cosmetic  products29. They are also applied in rubber industry as an 
important crosslinking agent mainly for advanced tires  production30. According to the well documented review 
of Piccinno et al.31 nanoparticulate ZnO occupies third position on the market of manufactured metal nano-
particles with production approaching 550 tonnes annually. On the other hand, Keller et al.32 concluded that 
ZnO NPs synthesis is blooming and in 2010 yielded over 30,000 tonnes of ZnO nanomaterials per year. The 
ZnO nanomaterials are mostly produced by large renown manufacturers. Unfortunately, they tend to treat exact 
market data as a classified material. However, the current level of production and usage raises the question of 
possible environmental impact of ZnO nanoparticles at either local or global level. The thorough reviews of the 
subject were recently published by Gupta and  Shwarma33 and Baddar et al.34 who simultaneously pointed out 
the urgent need of extensive studies in the subject.

Zinc deficiency is recognized as a global nutritional and health  problem35. In more than 30% of the world’s 
agricultural land zinc concentration is  insufficient36 with the 17% of the overall human population being 
 affected37. Contemporary breeding and agronomic approaches tend to alleviate this issue. Biofortification of 
zinc requires the thoroughly selected  fertilizers38 with carefully controlled solubility and bioavailability. Nano-
technology offers remarkable opportunities in this area as was recently pointed out by Bala et al.39 in their work 
on zinc fortification in rice cultivated under low Zn concentration. In particular, the ZnO NPs influence on the 
Cd uptake by plants was recognized by Ali et al.40. Strong impact of ZnO NPs on the wheat yield and the Cd 
concentration in grain was identified by Khan et al.41. They discovered that concentration of 100 mg kg−1 ZnO 
NPs was the most effective in curbing the Cd transfer from roots to grain. Substantial additive Zn–Cd effect was 
also recognized for Melissa officinalis. The Zn uptake and accumulation in either roots or above-ground parts in 
this plant was inversely proportional to the cadmium concentration in  soil42.

In this work we investigate several types of nanoparticulate and bulk zinc oxides. Its goal is aimed at foun-
dations of copper, manganese and iron uptake by Pisum sativum L. cultivated in hydroponic solution. Special 
emphasis is put on plant growth parameters and additive interactions originated by above micronutrients. The 
latter effects are rarely acknowledged in agriculture and obviously deserved further studies.

Methods
Zinc compounds. ZnO (99.995%) in a bulk (BU), wurtzite hexagonal structure (as confirmed by the powder 
X-ray diffraction technique) and five types of commercially available zinc oxide nanoparticles were used in the 
experiment. They were obtained from Alfa Aesar, Nanostructured & Amorphous Materials Inc., Intrinsiq Mate-
rials, Sigma Aldrich and Byk, Additives & Instruments and are further abbreviated as AA, NA, IN, AL and NB, 
respectively. The first four formulations were powders while the last one was obtained from the manufacturer as 
a liquid dispersion. All substances were used without further purification. The shape, size and structure of zinc 
oxide nanoparticles were investigated by transmission electron  microscopy43,44. Ten microliters of particular 
sample solution was placed on the 200-mesh copper grid coated with the carbon surface, washed in demineral-
ized water and dried at room temperature. Images were collected with the JEOL-1010 instrument (Fig. 1). The 
ZnO nanoparticles dissolution in growing media was determined by two steps procedure as described by Landa 
et al.45 and Mukherjee et al.24. The appropriate amounts of the zinc oxide (AA, NA, IN, AL and NB) were added 
to 100 mL volumetric flasks in order to obtain 100 mg  L−1 zinc concentration. Suspensions were centrifugated at 
14,000 rpm for 2 h. Supernatants were collected, filtrated through the 0.2 µm filter and zinc concentrations were 
determined using the ICP-OES instrument (Analytik Jena, Jena, Germany). Zeta Potentials and hydrodynamic 
sizes of NPs were collected with Zetasizer Nano (Malvern Instruments Ltd., UK) in raw solutions with zinc con-
centration 100 mg  L−1. All measurements were replicated three times. Average TEM and hydrodynamic particle 
sizes augmented with zeta potentials are summarized in Supplementary Information Table S1.

experimental setup. Iłówiecki sugar pea (Pisum sativum L.) quality class A seeds from „PNOS” Co. Ltd., 
Ożarów Mazowiecki were used in the study. Seven series, each constituted of six pots with 26 plants were used. 
Seeds were surface sterilized with 70% ethanol for 10 min, and washed carefully with demineralized water. They 
were placed on a moderately wet filter paper in Petri dishes to germinate in a dark for 3 days at 22 °C. At that 
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point, their mean stage of growth was 09 according to the BBCH  scale46. Next, seedlings were grown for 4 days at 
21 °C in aerated Hoagland solution:  KNO3 (0.51 g  L−1), Ca(NO3)2·4H2O (1.18 g  L−1),  MgSO4·7H2O (0.49 g  L−1), 
 KH2PO4 (0.14 g  L−1),  H3BO3 (0.6 mg  L−1),  MnCl2·4H2O (0.4 mg  L−1),  ZnSO4·7H2O (0.05 mg  L−1),  CuSO4·5H2O 
(0.05 mg  L−1), FeEDTA (10.28 mg  L−1) and  Na2MoO4·2H2O (0.02 mg  L−1) at pH 5.9. The intensity of radiation 
was 170 μE  m−2 s−1, 16/8 h day/night photoperiod was used and the growth medium replacement period was 
48 h.

Later, six series were administered with 750 mL of aerated Hoagland solution per pot and augmented with 
100 mg  L−1 of Zn in the form BU, AA, NA, IN, AL and NB, respectively. The metal dose was adjusted to affect 
plants physiology but not to be lethal for the pea plant. ZnO NPs stock solutions were sonicated for 30 min in 
ultrasonic bath Sono Swiss SW 6H.

The seventh series was a reference administered with initial Hoagland solution. Growing media were being 
replaced every 48 h. Plants were collected after 12 days of zinc administration when (on average) they reached 
growth stage 15 at the BBCH scale. Shoots and roots were isolated. The latter were washed with demineralized 
water, and later dried with a filter paper. The lengths of roots and stems were measured (Fig. 2). Weights of the 
fresh and dry (incubation at 55 °C to the constant weight) shoots and roots were determined (Fig. 3).

Metals determination in plant material. The content of Cu, Mn, Fe and Zn in plant material (roots and 
shoots) was determined by the ContrAA 300 atomic absorption spectrometer (Analytik Jena, Jena, Germany) 
operating in the flame (air-acetylene) mode and equipped with the high resolution continuum radiation source. 
The carefully weighted plant samples (0.6 g—shoots and 0.3 g—roots) were digested in the mixture of concen-
trated  HNO3 and HCl (6:1, v/v) using the Anton Paar Multiwave 3000 closed system  instrument47. Results are 
summarized in Fig. 4.

tolerance index and translocation factor. The tolerance index (TI) is the ratio of mean roots length 
determined for plants grown in zinc triggered stress conditions as related to the relevant roots size in a reference 
 treatment48. Metal distribution inside the plant constituency was represented by translocation factor (TF) which 
is the ratio of element concentration in above ground parts of the plant to that in  roots49,50. Those factors give 
more precise representation of metal migration than the raw metal contents and are to be assessed altogether. 
They were already used by us for the pesticide induced heavy metal uptake and accumulation in  wheat51,52.

Statistical analysis. All analyses were replicated six times. The initial hypothesis on equal variances of 
investigated populations were validated with the Bartlett and Hartley  tests53. Normality of the sample distribu-
tions was subsequently proved by the Shapiro–Wilk  test54. A one-way analysis of variance (ANOVA) as imple-
mented in OriginPro 2016 was used to test the influence of ZnO species on plant growth parameters and Cu, 
Mn and Fe contents in plants cultivated in Hoagland solutions. The Tukey’s honestly significant difference (HSD) 

Figure 1.  Transmission electron microscopy (TEM) images of zinc oxide nanoparticles.
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Figure 2.  Root and stem lengths (mm) of sugar pea plants after 12 days of contact with ZnO species. Values are 
means over all plants in particular treatment. Roots are indicated in yellow while shoots are in green. Vertical 
bars represent standard deviations. Distinct letters show the statistically significant difference as calculated with 
the Tukey’s HSD test, roots and stems are treated separately. The significance level α = 0.05 was applied.

Figure 3.  The influence of zinc oxide treatments on fresh (a) and dry (b) weights (mg) of pea plant as 
calculated for an average single pea plant after 12 days of contact with ZnO species. Roots are indicated in yellow 
while shoots are in green. Vertical bars represent standard errors. Distinct letters show the statistically significant 
difference as calculated with the Tukey’s HSD test, roots and shoots are treated separately. The significance level 
α = 0.05 was applied.
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post hoc  test55 was used to compare the differences for mean values in each treatment. Roots and shoots were 
treated separately, α = 0.05 significance level was used in all computations.

Results
Root and stem lengths of pea plants cultivated in Hoagland solutions after 12 days of contact with ZnO species 
are presented in Fig. 2. At the 0.95 probability level, BU and NB treatments yielded the same roots elongation as 
in the reference sample while the decrease for remaining supplementations was observed. The latter are grouped 
in two distinct pairs represented by letters B and C as in Fig. 2. The former represents AA and AL while the latter 
NA and IN supplementations. The TI are organized in a decreasing way: BU = NB > AA = AL > IN = NA (Table 1) 
and clearly support those observations. Divergent view was seen for stems. Their expansion was induced by BU 
and NB. The AA, AL and NA generated the same stem growth as the reference while the lowest elongation was 

Figure 4.  Copper (a), manganese (b) and iron (c) concentrations (µg  g−1) and total metal content per single 
plant (µg  plant−1) (d) in sugar pea upon ZnO administration. Roots are indicated in yellow while shoots are in 
green. Vertical bars represent standard deviation. Distinct letters show the statistically significant difference as 
calculated with the Tukey’s HSD test, roots and shoots are treated separately. The significance level α = 0.05 was 
applied.

Table 1.  Tolerance indices (TI) and translocation factors (TF).

Treatment TI

TF

Cu Mn Fe

REF 1.00 0.76 0.42 0.38

BU 0.99 0.70 1.70 0.37

AA 0.91 0.39 0.93 0.17

NA 0.74 0.46 1.20 0.31

IN 0.78 0.42 1.37 0.18

AL 0.91 0.79 1.77 0.44

NB 0.97 0.88 1.56 0.21
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determined for IN and NA. The fresh weights of roots upon all treatments (Fig. 3a) are not statistically different 
than those determined for the reference sample. The influence of nanoparticles migration within the plant is the 
most clearly visible for the AL which significantly inhibits the stem growth as compared to the reference sample. 
The dry mass of roots is larger than that observed in the reference sample for AA, NA and IN supplementations 
only. However, the dry weights of shoots upon all treatments are not statistically different than that of untreated 
control pea plants.

Zinc contents in roots and shoots as determined for all treatments accompanied by TF are summarized in 
Table 2. The highest concentrations in roots and shoots were determined for AA and AL administrations, respec-
tively. The most efficient Zn translocation was observed for the latter (TF = 0.28). The highest TF was observed 
(TF = 0.81) for the untreated reference sample characterized by low Zn concentration in the Hoagland solution. 
Zinc migration from root to the upper part of plants was inversely proportional to the Zn concentration in roots 
(Supplementary Information Fig. S1). The latter may be induced by defence mechanisms which are responsible 
for the Zn immobilization in vacuoles or cell  walls56–59.

The Cu, Mn and Fe concentrations in pea plants are shown in Fig. 4a–c, roots and shoots were treated sepa-
rately. Those metals accumulation by plants as influenced by ZnO species was evaluated by a one-way ANOVA. 
The null hypothesis was, whether ZnO supplementation had influenced Cu, Mn and Fe uptake from the Hoagland 
solution. Calculations clearly showed that all ZnO forms affected heavy metals transfer (Table 3). Additionally, 
the average metal content as calculated for a whole, single plant is presented in Fig. 4d.

All treatments led to the significant reduction of Mn contents either in roots or shoots as compared to the 
reference sample. Following the Tukey’s HSD test BU, NA, IN, AL and NB treatments yielded the same Mn levels 
in roots while the AA prompted higher values. Similarly, in shoots the highest Mn content was observed for the 
reference sample. The decrease of Mn levels upon the BU and AL supplementations was clearly observed. How-
ever, the lowest values were determined for AA, IN, NB and NA treatments. The Fe behaved in a more ambiguous 
way. The AA and NB did not affect iron levels in roots while substantial decrease was observed for BU, NA and 
AL supplementations. The more diverse pattern was seen in shoots. The Fe migration for upper parts of plants 
was hampered by either BU and AL or AA and IN groups of ZnO species. The opposite situation was for the 
Cu which uptake is stimulated by all ZnO formulations applied. The only exception was observed for shoots of 
plants treated with AA as well as NA. This picture is also reflected by Cu, Mn and Fe contents as calculated for a 
single plant and averaged over all species in the pot (Fig. 4d). All values clearly indicate that Mn and Fe uptake 
are hampered while the Cu uptake is prompted by all forms of ZnO applied.

Migrations of Cu, Mn and Fe from roots to green parts of the plant are represented by translocation factors 
as summarized in Table 1. The AL and NB treatments prompted the metal accumulation in shoots while reverse 

Table 2.  Zinc concentrations (µg  g−1) in roots and shoots of sugar pea (mean ± SD; n = 6) accompanied by 
translocation factors.

Treatment

Zn concentrations (µg  g−1)

TFRoots Shoots

REF 92.6 ± 7.0 75.1 ± 8.7 0.81

BU 17,494 ± 859 2,017 ± 97 0.12

AA 49,854 ± 1,270 950 ± 70 0.02

NA 35,841 ± 2,607 1,101 ± 60 0.03

IN 26,968 ± 2,377 847 ± 55 0.03

AL 14,602 ± 1,069 4,033 ± 497 0.28

NB 21,046 ± 3,033 1,250 ± 198 0.06

Table 3.  ANOVA parameters for metal content in Pisum sativum L. across seven treatments (a) roots and (b) 
shoots.

Metal SStotal MSbetween MSwithin F p-value Test F

(a)

Cu 748.2372 119.0105 0.976409 121.8858 5.78E−22 2.371781

Mn 53,924.7 8,913.534 12.67143 703.4357 5.8E−35 2.371781

Fe 97,655.6 14,665.9 276.0059 53.13618 3.88E−16 2.371781

Zn 9.29E9 1.53E9 3,594,200 425.065 3.52E−31 2.371781

(b)

Cu 154.4547 23.86973 0.321036 74.35208 1.89E−18 2.371781

Mn 2,793.593 433.6063 5.484422 79.06144 7.01E−19 2.371781

Fe 18,071.14 2,910.531 17.37018 167.559 2.81E−24 2.371781

Zn 58,593,022 9,671,712 16,078 601.532 8.74E−34 2.371781
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effect was observed for Cu and Fe upon AA, NA and IN administrations. Additionally, the manganese transloca-
tion from roots to shoots was substantially increased after addition of all applied ZnO species. The Mn uptake 
by roots was extensively hampered in all those treatments. The latter may follow from the well-recognized Zn/
Mn  antagonism60,61. Manganese is an important cofactor of proteins involved in water splitting. This reaction 
is crucial for the photosynthesis system  II62. Therefore, increasing demand for Mn in green parts of the plant 
accelerates internal Mn transport from roots to shoots.

Discussion
Interactions of plant roots with nanomaterials are complicated processes and several mechanisms responsible 
for NPs uptake and further translocation have been  identified63–67. It is widely accepted that nanoparticulate 
ZnO may be better absorbed by plants than the bulk  form68. However, this picture is far from being exhausted 
and opposite view has also been published by Milani et al.69.

There are evidences that the uptake of nanoparticulate ZnO involves dissolution and ionization which may be 
prompted by the acidic root  exudates70. However, the direct absorption of pristine NPs cannot be  neglected26,71,72. 
For a long time, the relatively low values of size exclusion limits, as determined for plant roots, indicated that 
large NPs can hardly enter root tissues in a raw form. This statement was challenged by Nair et al.73 who pointed 
out that NPs may induce destruction of the cell wall and enlarge the pore size. The cell wall is a complex cellulose 
and hemicelluloses matrix stabilized by pectins which are pivots located in the hollow open  spaces74,75. They are 
important targets for reactive oxygen  species76. The latter are harmful by products of stress processes induced 
by nanomaterials. Wounds in plant roots may be also avenues for large NPs  uptake77.

Our results indicate that the elevated concentrations of zinc in roots were accompanied by its relatively low 
contents in upper parts of plants. The dissolved zinc concentrations in Hoagland solutions as determined by 
the centrifugation–filtration procedure of Landa et al.45 and Mukherjee et al.24 were below 10% of the total zinc 
supplementation as ZnO to the growing media [100 mg(Zn)  L−1]. Notable, the reference, raw solution contained 
only 0.01 mg(Zn)  L−1. We therefore hypothesize that to a large extent the ZnO is absorbed by roots in a nano-
particulate form through variety of cell pores. On the contrary to mobile ionic  Zn78, those nanoparticles are 
stabilized in root tissues and are not fully available to green parts of the pea plant.

All investigated NPs exhibit a natural propensity to form aggregates in the Hoagland solution. This is indicated 
by a substantial hydrodynamic diameter as determined by the Dynamic Light Scattering (DLS) measurements 
and further supported by the low zeta potential values (Supplementary Information Table S1). Similarly to results 
of Kim et al.79, Liu et al.80, Lizunova et al.81, Cao et al.82 the NPs TEM sizes are significantly smaller than those 
of DLS and suggest soft, dynamic character of micelle aggregation which could easily adopt to pore diameter in 
the root surfaces and cell walls.

The nonselective apoplastic or selective symplastic pathways are involved in metal uptake by plant roots in 
either ionic or nanometric  forms83,84. The latter mechanism strongly depends on transmembrane metal trans-
porting  proteins85. Opposite, the apoplastic route is correlated with the  transpiration86. In this study we observed 
decrease of Mn and Fe contents combined with the Cu level increase in the plant body. We speculate that the 
former metals are transported via symplastic pathway and compete with  Zn2+ for similar carriers. On the contrary 
Cu is accumulated via nonselective apoplastic route. Those mechanisms depend on the carriers concentrations 
which follow the rate of particular proteins  synthesis87–89. In particular, the low accumulation of Fe can be related 
to down regulation of IRT1 and IRT2 iron regulating genes induced by the zinc  toxicity90. Similar mechanisms 
as developed by plants to avoid the harmful effects of nanoparticles and involving genes of the IRT family for 
Cd, Cu, Zn, Co and Mn were also  reported91.

conclusions
Our results unequivocally show that zinc compounds at either molecular or nanoscale levels alter Cu, Mn and 
Fe uptake and their further migration in Pisum sativum L. On the contrary to the last two metals, the Cu con-
tent increased in roots upon all treatments applied. Unfortunately, the picture for shoots is not so clear with AA 
reducing the Cu levels. Additive interactions which either restrain or enhance heavy metals uptake are important 
indicators of the pollutants migration mechanisms. They are of special value when environmental effects induced 
by zinc species as present in wastes, urban low emissions and food chain components are to be concerned. Our 
results are in line with recent publications which report that the nanoparticle activity is a complex issue and 
extends beyond the well recognized mechanisms of metal ion uptake. Unfortunately, the detailed mechanism 
of this process has not been fully recognized as yet. Investigations of Adamczyk-Szabela et al.42 clearly indicate 
that nutrients affect zinc uptake but the reverse process i.e. the nutrients uptake upon zinc presence cannot be 
neglected. In this study we firmly confirm that the latter is important for the plant development.

The steadily increasing abundance of nanomaterials in either water or soil environment may also affect bio-
chemical processes responsible for metal and nutrients uptake by agricultural plant species. This effect deserves 
more attention and should not be neglected when either hydroponic solutions or soil fertility are at stake. Unfor-
tunately, existing regulations for the plant cultivation originate from the times when anthropogenic nanoparticles 
were not in a common use. Legislators and their advisors often look at nanomaterials impact on agriculture in 
an oversimplified way and neglect complexity of metals interactions in either plant or habitat.

Received: 26 February 2020; Accepted: 27 July 2020
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