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Electron beam melting in the 
fabrication of three-dimensional 
mesh titanium mandibular 
prosthesis scaffold
Rongzeng Yan1, Danmei Luo2, Haitao Huang1, Runxin Li1, Niu Yu3, Changkui Liu1, Min Hu1 & 
Qiguo Rong2

The study was designed to fulfill effective work-flow to fabricate three-dimensional mesh titanium 
scaffold for mandibular reconstruction. The 3D titanium mesh scaffold was designed based on a 
volunteer with whole mandible defect. (1) acquisition of the CT data; (2) design with computer aided 
design (CAD) and finite element analysis (FEA). The pore size and intervals with the best mechanic 
strength was also calculated using FEA. (3) fabrication of the scaffold using electron beam melting 
(EBM); (4) implantation surgery. The case recovered well, without loosening and rejection. Additionally, 
12 mandibular defect model beagles were used to verify the results. The model was established via 
tooth extraction and mandibular resection surgeries, and the scaffold was designed individually based 
on CT data obtained at 2 weeks after extraction operation. Then scaffolds were fabricated using 3D 
EBM, and the implantation surgery was performed at 2 months after extraction operation. All the 
animals healed well after implantation, and the grafted mandibular recovered well with time. The 
relevant parameters of the grafted mandibular were nearly to the native mandibular at postoperative 
12 months. It is feasible to fabricate mesh titanium scaffold for repairing mandibular defects individually 
using reverse engineering, CAD and EBM techniques.

Reconstruction of mandibular defect should restore the anatomical height and contour of the missing part, mean-
while optimal restoration of function involves mastication, deglutition and the management of oral secretions1–3. 
Surgeons have been trying to reconstruct mandibles for more than a century. Using autologous bone grafting, 
especially a vascularized fibula free flap transfer is a standard surgical procedure representing major treatment 
of mandibular reconstruction4. Autologous grafts have a number of limitations, for instance, limited availability 
and donor site morbidity, including residual pain, serious blood loss and the complicated operative technique5. 
However, with the development of biotechnology, tissue engineering might provide a new clue for the evolution 
of mandibular reconstruction. The restoration of bone tissue defects perhaps have a great potential to enhance 
the feasibility of bone regeneration6,7. In recent years, bone substitutes made by titanium exhibit good mechanical 
strength and biological compatibility which have been widely used as biomedical materials to replace dysfunc-
tional hard tissue in human body. There is a trend in orthopedics implants towards personalized metal implants, 
including porous parts added to dense core implants and also porous “biometals”, to repair bone defects, which 
is being used more and more in the clinic8. None of the present available techniques can meet all these needs, so 
the efforts for a better means of reconstruction should continue to make. With the development of the combina-
tions of computer technology and medical science, more and more methods are used to reconstruct mandible. 
Only a few successful clinical application cases of mandible reconstruction have been published so far, reported 
by Warnke et al.9. To solve the too-low mechanical strength in early period of implanting loaded tissue engineer-
ing bones, our research group proposed a hypothesis of individualized functional repair of mandibular defects 
using a 3D porous internal tissue engineering titanium scaffold. Three-dimensional mesh titanium scaffold was 
combined with osteogenic material, chondrogenic material and bone marrow stromal stem cells in vivo tissue 
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engineering to repair defects. After bone generation with scaffolds is completed in vivo, the patient’s appearance 
and oral functions will be restored.

The scaffolds require various special functions including improvement of mechanical strength to provide 
structural support and to guide tissue regeneration, shape recovering of defect tissues. But, it is very difficult and 
time-consuming to model, analyze and fabricate the whole mesh customized scaffold for all the different range 
of porosities and pore diameters. Currently, the traditional CAD method has been recommended to design scaf-
folds. Compared with that using additive manufacturing processes like EBM, patient-specific titanium cellular 
meshes can be successfully fabricated according to a wide range of designs and modified directly from CAD data, 
which offers the possibility to create complete formed implants as well as 3D mesh scaffolds with regular arranged 
structures10–15. In comparison with previous methods, it offers the advantages to control internal pore architec-
tures and complex cell shapes accurately, consequently it may be widely used in clinical practices.

The aim of this study was to discuss the rational work-flow for engineering tissues and a 3D mesh internal 
titanium scaffold by combining 3D reconstruction with EBM technique to repair mandibular defect.

Modeling and Methodology
A whole mandible defect case from the Radiology Department of PLA Hospital was selected to construct the 3D 
Titanium modeling of mandibular reconstruction. In addition, 12 beagles were used to establish the mandibular 
defect animal model to verify the effect of 3D mesh titanium mandibular prosthesis scaffold.

Briefly, 3D reconstruction from CT medical images including the external shape and internal porous struc-
tures were designed with commercial CAD software (Unigraphics NX 8.0, EDS) and CAE software (ANSYS 
14.0 Swanson Analysis System Co., Houston,TX, USA). The CAD data of the structures was converted into ste-
reolithography (STL) data, which was then imported into Materialise’s Magics software and finally converted 
into EBM. The samples were produced by an Arcam’s EBM machine (EBM A2 ArcamAB, Sweden). The study 
procedures were accorded with the Ethic committee of PLA hospital and the Institutional Animal Care and 
Use Committee. The following methods were carried out in accordance with the approved guidelines. With the 
approval of Chinese PLA General Hospital Ethics Committee, written informed consent was obtaining from the 
participants.

3D modeling reconstruction based on CT image.  Medical image acquisition.  In this case, the skull of 
a volunteer with normal occlusion and without temporomandibular joint (TMJ) disease was scanned by spiral 
CT performed with a GE Healthcare Bright Speed instrument (GE Healthcare, Fairfield, CT) at the Radiology 
Department of PLA Hospital. It was implemented under the following conditions: 120 kV, 250 mA, 0.625 mm slice 
thickness, 0.5 mm slice interval, 0.75 s rotation time, and 512 × 512 pixels image resolution. The images of the 
maxillofacial region acquisition yielded 352 slices, which were recorded on a disc in a DICOM (Digital Imaging 
and Communications in Medicine) format files.

Image processing and 3D medical model reconstruction.  After the stack of CT slices was yielded, 
the images were imported and processed with MIMICS (version15.0, Materialise, Leuven,Belgium), which 
was a medical software of a popular commercial platform. This model was constructed semi automatically by 
threshold-based segmentation, contour extraction, and surface reconstruction. A 3D digital model of the mandi-
ble (without soft tissue) was reconstructed. To construct the triangular model of a bone structure from the volume 
data, the following steps were performed: threshold of the Hounsfield value setting, growing region and 3D model 
calculation. To separate the mandible from whole data, the linkage on each image like the TMJ should be erased. 
The selected bones structure was converted into a 3D STL model. The 3D STL model was used to generate an 
anatomic model, which served as the basis for CAD modeling of mandible geometry.

CAD remodeling.  The CAD geometry was constructed by reverse engineering in Geomagic. Mandible STL 
modeling was used as a reference object for the CAD modeling. The reconstructed 3D point cloud bone models 
were then imported in the commercial package reverse engineering software Geomagic Studio v 12.0 (Research 
Triangle Park, NC, USA) and to be processed into 3D surface models. Then through the data points for curve 
reconstruction, surface reconstruction and the external shape of the entity to generate three-dimensional model 
were reconstructed to create geometric models with non-uniform rational B-spline (NURBS) and then converted 
into rapid prototyping system for the STL file. Then the triangular model was established, in which linear inter-
polation was implemented to yield smooth surfaces. The teeth were removed from the model as they made no 
difference to the mandible.

Design of the internal microstructure of mandibular scaffold 3D mesh via finite element anal-
ysis.  Appropriate geometrical structures with specific parameters should be designed and a bio-material 
with appropriate properties ought to be selected to satisfy the requirements of biological, bio-mechanical, and 
bio-material functions. In terms of geometrical structure design, two parameters should be composed with 
porosity and pore size. From previous studies, the porosity has been expected to reach the value ranging from 
50% to 90%, and pore size should be from 100 to 500 μm. The two geometrical properties should be kept within 
an accuracy range of 80–90%, so the mistake could be predicted and compensated in the design phase. The CAD 
geometric model of the human edentulous mandible was imported into the finite element mesh (FEM). By CAD 
and finite element analysis (FEA), we established digital model of bone scaffold with optimal mesh structure. In 
addition, we could also find out the pore size and intervals with the best mechanic strength via FEA. The digital 
design method was adopted directly based on triangular mesh.

Firstly, original model was the intact and the edentulous mandible was obtained in STL format. Subsequently, 
according to the measurement and location of mandibular defects determined by clinical data, a similar area 
of the dentulous mandible model was regarded as scaffolds design area. When a structure was shaped like the 
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triangle, it would be more strong and stable than other kinds of shapes, so the scaffolds were designed as a series 
of tetrahedral structures. The complete process flow for CAD/CAM generating implants was shown in Fig. 1. 
The design area of the model was divided into uniform 3D tetrahedral element mesh type. A FEM with 10-node 
quadratic tetrahedral elements was built using Ansys 14 (Ansys, Inc, Canonsburg, PA) free meshing. Then, the 
edges of these tetrahedrons were considered as struts within the scaffold. Finally, the scaffold model was designed 
and built completely.

Preparation of Ti6Al4V scaffolds by EBM.  In order to verify the validity of the proposed method and 
manufacturability of the generated scaffold models, a preliminary test of fabrication was conducted. Geomagic 
Studio was used to import the scan as a CAD model and convert it to the STL format. Three different software 
tools were used to prepare a job file: Magics, Arcam Build Assembler and EBM Control Simulator. Magics is used 
for:importing the 3D CAD, drawing and creating an STL representation of the scaffold, modifying and posi-
tioning the part in the build envelope, creating supports exporting the scaffold and the support as STL files. The 
STL format file was inspected using Magics (Materialise; Belgium) for repairing data process. If the STL file was 
generated without mistakes, it was printed using a 3D printer (Electron Beam Melting A2; Arcam AB; Sweden).

These mesh structures were built layer-by-layer using the Ti-6Al-4V medical-grade powder (Arcam AB; 
Sweden) with average diameter 80 μm. As shown in Table 1, the chemical composition of the starting powder 
conformed to the standard for Ti-6Al-4V alloy castings for surgical implants (ASTMF136-98).

EBM Build Assembler was used for importing the STL files, creating volume supports; slicing STL files into 
2D compressed layer files, viewing layer files, assigning as well as assembling layer files into Arcam Build files and 
exporting Arcam Build files.

The shapes were controlled through the three dimensional CAD using an electron beam melting system for 
enhancement of melting and productivity. The implant could be placed in a vacuum chamber for low stress on the 
implant; its performance was superior to implant casting as well as forging, and the beam was able to be close to 
the implant. Printing was performed at the ambient temperature of 750 ℃, and voltage V = 60 kV, electron beam 
current 4–8 mA, Layer thickness 0.05 mm.s

Animal model.  In this study, 12 beagles were used to establish the mandibular defect animal model. The 
mandibular premolar and molar teeth (5 teeth) on the right side were pulled out. The extraction region was more 
than 50 mm. 2 weeks after teeth extraction operation, the beagles were treated with 3% pentobarbital natrium 
(1 ml/kg) for anesthesia, and then performed the spiral CT scanning. According to the CT data, a 40 mm block 
mandibular defect was designed at the right posterior segment of the edentulous area. The 3D mesh titanium 
mandibular prosthesis scaffolds were conducted based on the related parameters of the animal model. The bone 
graft stent was supported by the lower part bone surface of the jawbone, and thickened 0.8 mm inward, to form 
the bracket structure. In the detect area, an extension board with 16 mm in length, 8 mm in width was designed to 
fix the two ends of defects. Furthermore, the extension board on the buccal surface of mandible thickened 0.8 mm 
inward. Thus, the extension plate was completely jointed with the mandible bone surface of the corresponding 
part. A width of 5 mm smooth transition was performed at the bracket-extension plate junction to eliminate 
sharp steps. Finally, the uniformaly distributed mesh with a diameter of 2 mm was designed on the surface of the 
bracket, while the diameter of 1.8 mm fixed nail was designed on the extension plate.

Two months after tooth extraction operation, the alveolar mucosa at the extraction region was completely 
healed, and the mandibular resection was performed for the animals to obtain mandibular defect animal mod-
els. Then the prosthesis scaffolds were implanted into the animals. After the implantation, all the animals were 
received penicillin injection, and liquid diet for 7d.

Figure 1.  Work-flow of 3D mesh bone scaffold’s digital design three-dimensional finite element mesh of a 
human mandible.

Element (wt%) Al V C Fe O N H Ti

Powder 6.4 4.0 0.02 0.23 0.09 0.01 0.003 BAL

ASTMF136-98 5.5-6.5 3.5–4.5 <0.08 <0.25 <0.13 <0.05 <0.012 BAL

Table 1.  Composition of the used Ti-6Al-4V starting powder in comparison with the standard for Ti-6Al-4V 
alloy castings for surgical implants (ASTMF136-98).
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Tissues specimens evaluation.  Radionuclide bone imaging was performed at 1, 3 6, and 12 months after 
operation to evaluate the graft. The detailed procedures were according to the previous description16,17. The same 
size in the graft and the opposite side in the native mandible were selected for semi-quantitative analysis. The 
activity was estimated by the counts per image element on the computer matrix for each region. The ratio of activ-
ity between graft and native mandible was used to evaluate the status of graft. The ratio more than 1.03 suggested 
good recovery, while the ratio less than 0.94 indicated poor recovery.

In addition, 3 animals were executed respectively at postoperative 1, 3, 6 and 12 months. The jaws were harvest 
and fixed with 4% paraformaldehyde solution. After tray and soft issues removed, each specimen was divided 
into two parts: one part (about 30 mm) for mechanical test, and the other part (about 10 mm) for micro-CT scan.

Mechanical test was performed with 3-point bending test with a universal testing machine. The parameters 
were set as follows: the distance between the two support points was 20mmm; the cross-head speed of 5 mm/min 
until bone failure. The max loads before bone failure were recorded for further analysis. The native mandible from 
the same animal were employed as controls.

Micro-CT scan: Micro-CT scan was performed for the specimens. The conditions for CT scan were as follows: 
44 mltube_21 m_150 min_ss protocol. MicroView ABA 2.1.2 software was used for imaging analysis. The mor-
phological indexes including bone volume fraction (BVF), tissue mineral density (TMD), structure model index 
(SMI), trabecular number (Tb.N), trabecular thickness (Tb.Tn), trabecular separation (Tb.Sp) were recorded for 
each specimen. The data of native mandible bone were recorded as control.

Statistic analyses.  All the statistic analyses were performed in SPSS18.0 software (SPSS Inc., Chicago, 
IL, USA) and GraphPad Prism version 5.0 (GraphPad, San Diego, CA, USA). Each test was repeated in three 
times, and the data were summarized and shown in mean ± SD. If the data distributions were in accord with 
normality, parametric student’s t test was applied to evaluate the differences between the two groups, otherwise, 
non-parametric Wilcoxon rank sum test was used. P values less than 0.05 were considered statistically significant.

Results
3D modeling reconstruction based on CT image.  The main contents of 3D reconstruction from med-
ical images included inputting of medical image, pre-processing, such as filtering and interpolating, segmenting 
and extracting tissues or organs of body, constructing 3D surface models. As shown in Fig. 2, we got the 3D mod-
eling construction through spiral CT scan.

3D surface models was constructed by CAD.  After we got the 3-D anatomic modeling construction 
of human mandible though spiral CT scan, the anatomic model was changed into CAD model by Geomagic 
software. Then it was used to establish the triangular model where linear interpolation was implemented to yield 
smooth surfaces. The teeth were removed from the model as they made no difference to the mandible. 3D man-
dibular CAD model volume was 79812.04 mm3 and 21664.58 mm2. The reconstructed mandibular models were 
shown in Fig. 3.

The internal microstructure of mandibular scaffold 3D mesh.  The example given in this paper was 
a whole mandible defect case, and the reconstructed scaffold occupied all the mandible area. As shown in Fig. 4, 
meshing model was consisted of 8764 tetrahedrons elements in almost constant size, and scaffold model included 
12316 beams with the same diameter of 0.7 mm. Once the scaffold model was determined, the whole finite ele-
ment model of mandible with scaffold would be established subsequently. Meanwhile, the individual scaffold 

Figure 2.  3-D anatomic modeling construction of human mandible.
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could be fabricated by 3D printing technology after smoothing procedure. Besides, there were many important 
factors in finite element analysis, such as 3D geometrical modeling, proper meshing, configuration of material 
characteristics, and so on. By properly simulating boundary condition and loading condition of chewing, the 
stress distribution on the mandible model was obtained. According to the uniformity principle of stress, the scaf-
fold structure was optimized by bionic optimization method.

After optimization, the structure became more feasible. The strut’s section size could be reduced and scaffold 
structure was able to be better organized. The intact and edentulous mandible model volume was 79812.04 mm3 
and scaffold model (Ti6Al4V) volume was 14864.45 mm3. Then the porosity (Ppractical) of the scaffold was cal-
culated according to the following formula: Ppractical = (Vprosthesis−Vscaffold)/Vprosthesis × 100% = (79812.04–
14864.45)/79812.04 = 81.38%. Vprosthesis and Vscaffold standed for volume of mesh and bulk alloys, respectively.

Preparation of Ti6Al4V scaffolds by EBM.  The STL format file was inspected using Magics for repairing 
data process. Then these mesh structures were built layer-by-layer using the Ti-6Al-4V medical-grade powder 
with average diameter of 80 μm. A fabricated scaffold for mandible repair via EBM system was shown in Fig. 5A 
and the EBM mandibular scaffold samples were shown in Fig. 5B.

Postoperative follow-up investigation.  After the implantation, no numbness and repulsion were 
observed. The wound was healed well, and X-ray demonstrated that the prosthesis was fixed well without loosen-
ing and infection at postoperative 6 months. The facial features of the case were symmetrical, and the the masti-
catory and masticatory functions, as well as language function were restored.

The process work-flow.  Finally, we drew the process workflow: (1) acquisition of the CT data of the 
patients; (2) design with CAD and fabrication of custom EBM porous titanium implant; (3) implantation of the 
patient specific porous implant (Fig. 6).

Animal models.  The mandibular defects were repaired with titanium scaffolds mesh fabricated by EBM.  After 
the implantation, all the animals had good physical and mental health. The wounds were healing well and no 
infection was detected. The transplant was stable in the animals and the mandibular continuity was restored.

Radionuclide bone imaging demonstrated that the ratio between the grafted mandible and the contralateral 
host mandible was highest at postoperative one month, and the ration presented declining trend during the sub-
sequent period, until nearly to 1.0 (Fig. 7).

All the testing data were in accord with normal distribution, and parametric student’s t test was used for sta-
tistical analysis. The results for mechanical testing were shown in Fig. 8. From the figure, we could see that with 

Figure 3.  Reconstructive process of CAD model of human mandible.

Figure 4.  Design of mandibular scaffold 3D mesh internal microstructure.
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Figure 5.  Preparation of Ti6Al4V scaffolds by EBM. (A) The parts are cleaned up to remove lose titanium 
powder lodged within the 3D mesh structure. (B) 3D mesh titanium mandibular prosthesis scaffold fabricate 
using EBM technology (Weight: 107 g; Porosity: 81.38%; Strut size: 0.7 mm).

Figure 6.  The process chain involved from image acquisition to production of a rapid prototype model 
composing three major steps: image acquisition, image post-processing and rapid prototyping.

Figure 7.  The ratio of radionuclide uptake between the grafted mandibular and the native normal mandibular. 
The highest ratio at the early postoperative stage suggested the rich blood supply and active bone metabolism. 
With the postoperative time prolonging, the ratio was nearly to 1.00, suggested that the grafted mandibular 
recovery well, and the blood supply and bone metabolism became stable.
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the postoperative time prolonging, the strength of the grafted mandible was increased, and nearly to the normal 
mandible 12 months after operation.

The data for micro-CT scan suggested that with the postoperative time prolonging, the values of BVF, TMD, 
and Tb.Th were increased, while the values of SMI and Tb.Sp exhibited down-regulated trend. Moreover, the 
values of the detecting indexes were nearly to the values of the normal mandible (Fig. 9).

Discussion
The clinical goal of mandibular implants is to provide a substitute for muscles and loading, during either normal 
activities or trauma, which recreates the skeleton’s original stress-strain trajectories5. There is a need to fully 
stimulate the morphology and bio-mechanical properties of the mandibular bone, and use the tissue engineering 
to make a substitute for it. So it is necessary to explore new bionic design and manufacturing methods for man-
dibular prosthesis. A new technical solution for guiding surgery to repair mandibular defects is proposed, based 
on general popular tools in medical image processing including 3D model reconstruction, digital design, and 
fabrication via 3D printing18,19. 3D is printed in titanium with desirable strength, lightness, and bio-compatibility, 
therefore it’s possible to scan a patient and use the information to create a CAD file, and then print replacement 
joints and bones which are a perfect fit. Titanium is characterized by low density, high strength as well as corro-
sion resistant and bio-compatible ideal so as to be used in implant industries.

Several studies over the last decade have focused on CAD/CAM scaffold construction using various scaffold 
materials. In previous studies, the CAD programs were created by Materialise/Magics software for the reticulated 
mesh structures and CT scan for the stochastic foam structures. Hollister et al. proposed a simulation scheme 
for regularly repeating architectures and using constitutive equations relating20. However, the conditions of the 
mandible must be firstly known in order to do bionic design. Our study described a novel protocol that can be 
used to produce custom-made mesh scaffolds for mandibular bone regenerative medicine. Moreover, the scaf-
folds must be compatible with the anatomical defect and possess mechanical properties capable of bearing the 
loads encountered in vivo. It is a new approach, called tissue engineering (TE), that combines the advantages of 
titanium scaffold with internal 3D mesh structures, and eliminates problems such as donor site scarcity, immune 
rejection and pathogen transfer. However, the optimal 3D mesh structure is still not defined. Therefore, it is nec-
essary to investigate the digital design and fabrication of these mesh scaffold to the utmost considering biological 
outcome21,22. Subsequently, the production of scaffolds with high controllability and repeatability in terms of 
mechanical and morphological parameters is strongly demanded. First, computerized tomography (CT) images 
are processed to reconstruct the 3D model of the mandible bone. Then the defect area is replaced by healthy con-
tralateral bone to create the repaired model. With the repaired model as a reference object, the graft shape and 
cutline can be designed. Eventually, the physical model is fabricated via 3D printing.

CT is routinely used in current clinical practice to obtain a stack of two-dimensional (2D) slices of bone struc-
tures. As many biomechanical analyses and designs rely on the development of a reliable FEM or 3D model15, 3D 
surface reconstruction from these slices has been extensively studied. In this paper, the mandible was analyzed 
by three-dimensional finite element modeling, with regard to the bio-mechanical properties and stress distri-
bution, which can provide a reference object for designing mandibular prosthesis. With sufficient communica-
tion between engineers and surgeons, an optimal porous structure can be designed via some common software 
platforms23. Murr et al. fabricated the Ti-6Al-4V cellular meshes and foams with numerous design elements by 
AM using EBM12. Heinl et al. has reported that cellular Ti6Al4V structures with interconnected macro poros-
ity fabricated by EBM might have favorable long-term stability and were suitable for orthopedic applications24. 
Under such circumstance, designers can take advantages of the flexibility that is offered by 3D printing. Parts 
can be geometrically optimized for a high strength-to-weight ratio, designed to include functional components. 
Additionally, when it comes to orthopedic implants, custom is made to fit individual patients.

In our study, the rule of full stress is the most direct and effective method of the optimal design for shape 
truss. Combined with finite element theory, the general program is studied by the optimal theory of the rule 

Figure 8.  Mechanical testing for the grafted mandibular and native normal mandibular. After operation, the 
mechanical strength of the grafted mandibular was increased. At postoperative 12 months, the strength of the 
grafted mandibular was nearly to the normal native mandibular (P > 0.05). **Suggested P < 0.01; *suggested 
P < 0.05.
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of full stress. Through this program, the truss with different kinds and shapes in various load cases is designed 
automatically. After the FEA analysis of the network supporting structure, the structure is feasible. The upper and 
lower of supporting structure is coordinated, the frame beam section size is able to be reduced and mesh support 
in structure will be better fabricated. The structural mechanics of the mandibular truss implants are designed to 
distribute loads across the entire endplate and throughout the device. The truss implant designs have a distinc-
tive open architecture, which accounts for up to 75% of the implant to be filled with graft material to maximize 
bone incorporation. Research in topological dimension theory led to the discovery of a novel geometry to create 
high-strength, lightweight web structures. 3D-printed technology utilizes engineering principles, such as struc-
tural mechanics and adjacent material reaction to produce innovative mandibular implants, that may actively 
participate in stimulating the healing process. A study carried out by Shan et al. demonstrated that maxillary and 
mandibular defects could be reconstructed by printed titanium meshes using computer-assisted surgery (CAS), 
moreover, no skin inflammation or titanium mesh exposure occurred in the follow-up25.

Figure 9.  The data of micro-CT scan for the grafted and native mandibular. The data of BVF, TMD, and 
Tb.Th were increased, while the values of SMI and Tb.Sp exhibited decreased trend. All the parameters values 
were nearly to the normal native mandibular 12 months after operation. The data revealed that the grafted 
mandibular recovery normal. BVF: bone volume fraction; TMD: tissue mineral density; SMI: structure model 
index; Tb.N: trabecular number; Tb.Tn: trabecular thickness; Tb.Sp: trabecular separation. ***Suggested 
P < 0.001; **suggested P < 0.01; *suggested P < 0.05.
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This study was carried out on the prosthesis structure optimization, guaranteed under the premise of strength, 
ease of construction redundant part, in the meanwhile the stress distribution was more uniform, bone graft mate-
rial was more conducive to the growth of the stress environment and promoted the growth of bone graft material 
survival26,27. Some mechanical strength studies indicate the fabricated structures with 70% porosities satisfy the 
mechanical strength requirements needed for craniofacial applications28. We used 3D printing technology to 
print complete microfilament 0.7 mm diameter analog mandible defect bracket with the initial design proved 
feasible.

Although there is definitely a promising future for engineered grafts, their regular clinical application is still 
hard to implement successfully. Many studies assume that first of all a method was designed to fulfill the clinical 
effects; then the model would be refined considering a fixed prosthesis, dental implant area setting and other 
issues; finally optimization methods should be further improved. Nevertheless, everything has two sides, no 
exception to this study. For instance, the design included very narrow internal channels and excess material could 
get trapped during production, hence, it would become much more difficult to be removed. In addition, supports 
that some parts need hold them in place during the build process would also be difficult to be removed.

In this study, we also performed mandibular defect models to confirm the effects of titanium scaffolds mesh 
fabricated by EBM. After the implantation of titanium scaffolds mesh fabricated by EBM in the mandibular defect 
animal models, all the animals were healed well. Radionuclide bone imaging demonstrated that the blood supply 
was rich and bone metabolism was active at postoperative 1 months, suggesting the grafted mandibular recovered 
well, and no necrosis was observed. Micro-CT was performed to evaluate the remodeling and corticalization of 
the particle cancellous bone graft. The results demonstrated that the morphological parameters of the grafted 
mandibular were nearly to the normal native mandibular, suggesting the good recovery. All these results indicated 
the mandibular defects could be repaired with the titanium scaffolds mesh fabricated by EBM.

Conclusions
In this article, our group’s present clinical protocol in which a innovative workflow was performed based on a 
complete CAD/CAE/CAM digital design plan combined the data from a computed tomography scan and fabri-
cate 3D mesh Ti6Al4V scaffold. Using the novel software flow decreased the design time in comparison to other 
traditional CAD software flow. At the same time, the new EBM production process reduced the production time 
in comparison to conventional production processes. Besides, the titanium scaffolds mesh fabricated by EBM 
exhibited good biocompatibility. The option of designing a custom implant makes surgeons feel much easier to 
perform an operation, which results in reduction of the time needed in the surgery. The proposed methods have 
been adopted and their feasibility and validity have been verified.
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