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A B S T R A C T

Neuroadaptations caused by chronic methamphetamine (MA) use are likely major contributors to high relapse
rate following treatment. Thus, focusing intervention efforts at pre-empting addiction in vulnerable populations,
thereby preventing MA-use-induced neurological changes that make recovery so challenging, may prove more
effective than targeting chronic users. One approach is studying casual/recreational users, not diagnosed with
substance use disorder. This group may be at high risk for addiction due to their experience with MA. On the
other hand, they may be resilient against addiction since they were able to maintain casual use over the years
and not become addicted. Understanding their neuro-cognitive characteristics during decision-making and risk-
taking would help solve this dilemma and, may help identify intervention strategies. Unfortunately, research on
neuro-cognitive characteristics of casual MA users is currently lacking. In this work we begin to address this
deficit.

This study was part of a larger investigation of neural correlates of risky sexual decision-making in men who
have sex with men. While undergoing functional magnetic resonance imaging, 31 casual MA users and 66 non-
users performed the CUPS task, in which they decided to accept or refuse a series of mixed gambles. Convergent
results from whole brain, region of interest and psychophysiological interaction (PPI) analyses are presented.

Whole brain analysis identified an amygdala-striatal cluster with weaker activation in casual MA users
compared to non-users during decision-making. Activity in that cluster inversely correlated with decisions to
gamble: lower activation corresponded to higher risk taking. Using this cluster as a seed in PPI analyses, we
identified a wide range of neural network differences between casual MA users and non-users. Parametric whole
brain analyses identified clusters in the ventral striatum, posterior insula and precuneus where activations
modulated by risk and reward were significantly weaker in casual MA users than in non-users. The striatal
cluster identified in these analyses overlapped with the amygdala-striatal cluster.

This work identified neural differences in casual MA users' reward processing and outcome learning systems
which may underlie their increased real-world risk-taking. It suggests that while making decisions casual MA
users focus primarily on potential gain unlike non-users who also take the riskiness of the choice into con-
sideration.

1. Introduction

Amphetamine-type stimulants, including methamphetamine (MA),
have become the second (after cannabis) most widely used class of il-
licit drugs (United Nations Office on Drugs and Crime, 2017), affecting
37 million people worldwide. Disorders related to use of amphetamines

are second only to those related to opioids. Moreover, according to the
available data, methamphetamine represents the highest global health
threat among amphetamines (UN Office on Drugs and Crime, 2017). A
growing body of research has identified cognitive deficits characteristic
of MA abuse/dependence (London et al., 2015; Paulus et al., 2002;
Scott et al., 2007; Stewart et al., 2014; Tolliver et al., 2012). However,
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the question whether these differences are pre-existing or caused by
methamphetamine use has not yet been answered. Dean and colleagues
attempted to address this question (Dean et al., 2013) by reviewing
evidence from animal studies, cross-sectional human studies, a twin
study, studies of changes in cognition with abstinence, studies of
changes in brain structure and function with abstinence, and studies
examining how severity of MA abuse relates to levels of cognitive de-
cline. Although the authors reported mixed findings, they found some
evidence of a causal relationship between MA abuse and cognitive
decline. The reported cognitive deficits in the areas of executive func-
tioning (Scott et al., 2007), response inhibition (Monterosso et al.,
2005) and delay discounting (Monterosso et al., 2007) may be the key
contributors to a relapse rate as high as 77% within 5 years from
treatment (Brecht and Herbeck, 2014). Another key change that is
likely to contribute to a high relapse rate is the adaptation of the reward
processing system: in order to handle the high surge of dopamine that
methamphetamine use evokes, the reward system down-regulates its
dopamine receptors and becomes less sensitive to rewards (Volkow
et al., 2004; Volkow et al., 2010). This in turn reduces the salience of
non-drug related rewards, so that they become less rewarding in com-
parison to drug-reward.

Focusing intervention efforts at pre-empting addiction in vulnerable
populations seems a more promising strategy, since it would prevent
MA-use-induced neurological changes that make recovery so challen-
ging. One approach is studying casual/recreational users, not diagnosed
with substance use disorder (SUD). This group may be at high risk for
addiction due to their experience with MA. On the other hand, they
may be resilient against addiction since they were able to maintain
casual use over the years and not become addicted. Understanding their
neuro-cognitive characteristics during decision-making and risk-taking
would help solve this dilemma and, may help identify intervention
strategies. Unfortunately, research on cognitive and neural character-
istics of casual MA users is currently lacking, with the vast majority of
existing research focusing on addicted individuals. In this paper we are
starting to bridge this gap by specifically identifying neurocognitive
differences characteristic of casual MA users compared to non-users.
This knowledge may also help elucidate the extent to which observed
neurocognitive changes in chronic MA users are pre-existing versus
meth-use-induced.

Another challenge when identifying neural patterns specific to
methamphetamine users is the co-occurrence of other risky behaviors
characteristic of this population; specifically, consistently strong asso-
ciations exist among binge drinking, methamphetamine use and risky
sexual behavior (Vosburgh et al., 2012). In this study we employed two
strategies in order to disentangle unique behavioral and neural pro-
cesses related to MA use. First, binge drinkers were excluded from the
study. Second, all participants reported involvement in risky sexual
behavior; thus, when contrasting differences between MA users and
non-user we could isolate unique characteristics of casual MA use.

Understanding neural characteristics of casual MA users, particu-
larly during risky decision-making, may help identify addiction-vul-
nerable phenotypes that could influence treatment response and thus
represent novel therapeutic targets (London et al., 2015). The goal of
this paper is to isolate aspects of the decision process that cognitively
and neurally distinguish casual MA users from non-users, in order to
inform future treatment development.

We conceptualize the decision-making process as consisting of two
phases: the decision phase, where the evaluation and action selection
are performed, and the feedback phase for the outcome processing.
Although neuro-cognitive processes sub-serving each phase are tem-
porally and functionally distinct, they are supported by the same dis-
tributed network, but with its components engaged differently in each
phase: amygdala, insula, ventral striatum (VS), dorsal striatum, pre-
frontal cortex (PFC), anterior cingulate cortex ACC, pre-supplementary
motor area, superior/intraparietal lobule and superior temporal gyrus
(STG) (Bechara and Damasio, 2005; Ernst and Paulus, 2005). We

considered it important to be able to identify the differences in neural
processing found between the groups, specific to each phase of the
decision-making process. To address this, we used a specially designed
decision-making task, the CUPS task (Xue et al., 2010) that allowed us
to separately examine decision and feedback phases. The CUPS task was
similarly used to examine neurocognitive characteristics specific to
individuals with internet gambling disorder (IGD) during the decision
process (Liu et al., 2017). In this work the researchers found weaker
risk-modulated activation in dorsolateral PFC (dlPFC) and inferior
parietal lobule (IPL) in the IGD group during the decision phase and
greater outcome-related activation in the ventromedial PFC (vmPFC),
and VS in the IGD participants during outcome processing.

We hypothesized that risk taking in a laboratory gambling task will
be reflective of real-life sexual risk taking; thus, the differences in
neuro-cognitive processing of decisions during the task would illumi-
nate the neural characteristics of casual MA users that are linked to
their real-life risk-taking behavior.

In the current functional magnetic resonance imaging (fMRI) study,
we performed a five-step analysis to identify the neuro-cognitive group
differences during risky decision making and examine how they relate
to risky behavior both during the task and in real life. In step one we
used whole brain analysis to identify areas with differential activation
in casual MA users, compared to non-users, during decisions and
feedback processing. The purpose of step two was to examine whether
the identified differences in activation are related to risk-taking in the
task, thus we performed an independent ROI analysis, and correlated
the average activation in the cluster identified in step one with risk-
taking in the task. The goal of step three was to flush out the larger
network differences between the groups, to see if there are differences
in functional connectivity of the area we identified in step one with the
other neural components key to decision-making. Thus, we utilized a
generalized form of psycho-physiological interaction analysis (McLaren
et al., 2012), using the ROIs resulting from the whole brain analysis
during decisions (step one) as a seed. In step four we wanted to identify
areas where activation was modulated by risk or reward differently
between the groups. In similar work comparing methamphetamine-
dependent individuals with control participants (Kohno et al., 2014)
researchers found differences between the groups in parametric mod-
ulation of the activation by risk during risky decisions: in metham-
phetamine-dependent individuals it was more strongly modulated in VS
and more weakly modulated in dlPFC. We wanted to see if casual meth-
users demonstrate a similar neuro-behavioral profile as methampheta-
mine-dependent individuals during risky decisions. To test this we
performed two whole brain analyses with parametrically modulated
regressors to identify areas where activation modulated by risk or re-
ward differs between the groups. Finally, in step five, we computed a
meth-use index and used it as a regressor in a group level whole brain
analysis to identify neural areas moderated by intensity of meth use.

2. Methods and materials

2.1. Participants

Ninety seven sexually risky men (31 White, 30 Black and 36
Hispanic/Latino; age range 18.2–30 years, M=25.2 years) who have
sex with men (31 casual MA users and 66 non-users), participants in a
larger investigation of neural correlates of risky sexual decision-making
in men who have sex with men, were included in this study. SUD di-
agnoses for any substance other than nicotine, binge drinking (> 2
drinks on a weekday or> 5 on a weekend), and regular use of any illicit
substance except for marijuana were exclusionary (see Table 1 for
substance use characteristics). Data were collected between 2012 and
2014, prior to widespread use of pre-exposure prophylaxis (PrEP) drugs
to inhibit HIV infection, thus unprotected sex carried a serious risk of
HIV infection. Since methamphetamine use is prevalent in this popu-
lation (Shoptaw and Reback, 2006), one goal of the larger project was
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to identify possible neural correlates associated with methamphetamine
use; thus we targeted 33% of the recruited subjects to be MA users. We
recruited 177 participants using internet advertisements, 155 of whom
participated in this task. Three participants were removed because no
valid structural data was collected from them. Along with other mea-
sures, participants reported the number of risky sexual occurrences
(defined as an instance of condomless anal sex) in the past 90 days,
(range=0 to 89 instances); this value was used as their real-world
sexual risk-taking index. Participants were recruited into three groups
based on this real-world sexual risk-taking index and methampheta-
mine use: safe (# risky sex occurrences= 0; N=50), sexually risky (#
risk sex occurrences> 0) non-users (N=66) and sexually risky MA
users (N=37). Since the purpose of the current study was to isolate the
neural mechanisms associated with MA use from those associated with
risky sexual behavior we only included the participants from the two
risky groups. Participants were considered MA users if they self-re-
ported MA use at any point in their life, even if currently abstinent. One
participant originally assigned to the MA group was excluded due to a
contradiction in his MA-use history that made it unclear whether he
was a user or not. Due to our focus on casual MA use, we evaluated MA
group participants in accordance with DSM 5 diagnostic criteria of
substance use disorder (Hasin et al., 2013) that included, in addition to
frequency and length of use, cravings, withdrawal symptoms, impact on
life and overdose history, in order to identify the participants who may
currently suffer from addiction or have suffered in the past and were
not included as casual MA users. Based on these criteria, we excluded 5
participants, leaving 31 participants in the casual MA group. Informed
consent was obtained from each participant before the experiment. The
protocol of the study was approved by the University Institutional Re-
view Board.

3. fMRI CUPS task

While undergoing fMRI, participants performed the modified CUPS
task (Levin et al., 2007; Xue et al., 2010), in which they had to decide
whether to accept or refuse a series of mixed gambles. In each trial
participants were presented with a set of cups (3 to 11). They were
informed that one of the cups contained a gain (amount ranging be-
tween $3 and $8) and the rest of the cups contained a loss of $1, and
they were asked to accept or reject the gamble (Fig. 1). When the
gamble was accepted, the participant was informed of the gain or loss

after a short waiting period. When the gamble was rejected, the parti-
cipant did not win or lose any money. When no selection was made
during the response window, the participant lost $1.

The probability and magnitude of the potential gain were in-
dependently manipulated so that it created three expected value (EV)
based categories: risk equivalent (RE, EV=0, e.g., $6 gain in one cup
and $1 loss in 6 cups), risk advantageous (RA, EV > 0, e.g., $8 gain in
one cup and $1 loss in 6 cups) and risk disadvantageous (RD, EV < 0,
e.g., $6 gain in one cup and $1 loss in 8 cups). Half of the gambles were
RE, one third of the other half of the gambles were RD, and the rest
were RA.

First the gamble was presented for the participant to contemplate,
but no action was expected or accepted. After a variable delay (mean
3 s, ranging from 1.5 to 5 s, drawn from an exponential distribution),
the response options appeared and participants were required to re-
spond within 3 s, otherwise they would lose $1. The position of the
response cue varied from trial to trial to prevent preplanned motor
response at the decision stage. After the response and a variable delay
(2.5 to 6 s, mean 4 s), the participant was informed of the gamble re-
solution (presented for 0.5 s). During the variable inter-trial interval
(mean 2.5 s, ranged from 1 to 4.5 s), the fixation cross was presented.

The accumulated win/loss total was displayed once at the end of the
task. Participants received their winnings at the end of the experiment;
however, participants who ended up with a net loss did not actually lose
money. The task consisted of 72 trials and lasted 12min.

The intervals between the trials, the delays between gamble pre-
sentation and decision acceptance, and gamble resolution delays were
randomly jittered and the sequence was optimized for design efficiency
(Christakou et al., 2009; Rogers et al., 2004) using an in-house pro-
gram.

3.1. Functional imaging procedure

Participants lay supine in the scanner, and viewed visual stimuli
back-projected onto a screen through a mirror attached to the head coil.
Foam pads were utilized to minimize head motion. Stimulus presenta-
tion and timing of all stimuli and response events were controlled by
Matlab (The Mathworks, Inc.) programs based on Psychtoolbox (http://
www.psychtoolbox.org) extensions on a MacBook Pro. Participants'
responses were collected online using an MRI-compatible button box.
Participants completed the CUPS task as part of a larger battery of
structural and functional MRI data collection for approximately 1.2 h of
scanning (task order during the session stayed constant for all the
participants) in a 3 T Siemens MAGNETOM Tim Trio scanner. A T1-
weighted anatomical image, a set of diffusion-weighted images, and
several task-related functional image sequences were collected. Task-
related fMRI data were acquired using T2*-weighted (TR=2000ms,
TE= 25ms, 64× 64 matrix size with a resolution of 3mm2, using 41
3.0-mm axial slices) imaging.

Table 1
Research participants substance use characteristics.

% of participants used in last 90 days Casual Meth-users Non-users

Nicotine 54.83 36.92
Marijuanaa 87.10 62.12
All Other Drugsa 67.74 42.42
Alcohol use, drinks per day* 1.42 1.06

a - Significant difference between the groups, p < .05

Fig. 1. CUPS task.
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3.2. fMRI data preprocessing and statistical analysis

Image preprocessing and statistical analysis were carried out using
FEAT (FMRI Expert Analysis Tool) version 6.00, part of the FSL package
(FMRIB software library, version 4.1.8, www.fmrib.ox.ac.uk/fsl). The
data were temporally filtered using a non-linear high pass filter with a
100 s cut-off, and spatially smoothed using a 5mm full-width-half-
maximum (FWHM) Gaussian kernel. A two-step registration procedure
was used whereby images were first registered to the MPRAGE struc-
tural image, and then into the standard Montreal Neurological Institute
MNI-152 T1 template brain, using affine transformations with FLIRT
(Jenkinson et al., 2002; Jenkinson and Smith, 2001). Registration from
MPRAGE structural images to standard space was further refined using
FNIRT nonlinear registration (Andersson et al., 2007). Statistical ana-
lyses were performed in the native image space, with the statistical
maps normalized to the standard space prior to higher-level analysis.
Melodic ICA was used to de-noise the preprocessed functional data
(Beckmann and Smith, 2004). The FIX software package was used to
automatically identify noise components (Griffanti et al., 2014; Salimi-
Khorshidi et al., 2014).

Data were modeled at the first level using a general linear model
within FSL's FILM module. In the whole brain analysis, four predictors
of interest (2 trial types based on the decision to take risk
(risky= gamble accepted, non-risky= gamble rejected) X 2 phases:
(decision= time from the gamble display to the button press to accept
or reject (2–8 s), feedback= time when gamble resolution was dis-
played (0.5 s)) were modeled separately. We modeled the main effect of
each type of decision for each decision phase by contrasting against
baseline (inter-trial break periods when fixation cross was displayed) as
well as contrasts between risky and non-risky trials for each phase. At
the group level we examined whether any lower-level effects differed
between casual MA users and non-users.

3.3. Generalized psychophysiological interaction (PPI) analysis

Psychophysiological interaction analysis (PPI) can provide in-
formation about functional integration of the brain under certain con-
texts, such as task condition (Friston et al., 1997). Here, we used a
generalized PPI approach [(McLaren et al., 2012)] to identify regions
whose connectivity differs between the groups on the basis of task
conditions. Like other functional connectivity approaches, generalized
PPI computes connectivity between a seed region and other voxels in
the brain, where seed, as in the original PPI, is usually a region sig-
nificantly activated in the task in the same data set (Friston et al., 1997;
McLaren et al., 2012). However, unlike the original method, general-
ized PPI can use all available data in the estimation of connectivity. By
modeling the entire experimental space, this approach provides a better
model fit and achieves greater sensitivity and specificity than the ori-
ginal method of PPI (McLaren et al., 2012). Thus, compared to the
traditional PPI method, the generalized PPI (further referred to as PPI)
can help reduce the probabilities of both false positives and false ne-
gatives.

An amygdala-striatal cluster identified during the whole brain
analysis, where activation during the decisions was attenuated in casual
MA users compared to non-users (Fig. 2), was used as the seed region in
the PPI analyses. In these analyses, we first transformed the PPI seed
region of interest (ROI) into the native space for each participant. The
time course of the seed ROI was then extracted. Next, a PPI model was
set up to explore effective connectivity between the seed ROI and other
voxels in the brain. Nine covariates were included in this model, in-
cluding the same four predictors used in the whole brain analysis (2
trial types based on the decision to take risk: risk/non-risk X 2 phases:
decision and feedback) as the psychological factors, time course of the
seed region as the physiological factor, four interaction covariates be-
tween the psychological and physiological factors. In addition to the
main effect for each phase, two contrasts were set up in the first level

model to examine PPI difference between risky and non-risky trials
during decision and feedback processing.

3.4. Whole brain analyses with risk and reward as parametric modulators

In order to identify brain areas differentially modulated by risk or
potential reward between the groups, we performed two whole brain
analyses with parametric modulators. Four parametric regressors1 (2
trial types based on the decision to take risk X 2 phases, decision &
feedback) were used in each analysis; the risk parameter in analysis 1
was represented by the number of cups, the gain parameter in analysis 2
was represented by the potential win amount. As in the first whole
brain analysis discussed above, we modeled the main effect of each trial
type at each phase by contrasting against baseline as well as computing
the contrasts between risky and non-risky trials for each phase. At the
group level we examined whether any lower-level effects differed be-
tween casual MA users and non-users.

3.5. Meth-use index analysis

We used the following algorithm to compute the meth-use index, a
continuous variable representing individual differences in the severity
of use across participants:

if never used set index to 0, if ever used start with 1, if use initiated
before age of 18 add 1, if current user (used in the last 3 months) add 2,
if used> 10 times in the last 3 month add 2. This resulted in a range of
use from 0 to 6. We used demeaned meth-use index as a covariate in the
group level analysis.

All group analyses (whole brain, PPI and meth-index), were per-
formed using random-effects FLAME (FMRIB's Local Analysis of Mixed
Effects) stage 1 simple mixed effect model (Beckmann et al., 2003;
Woolrich, 2008; Woolrich et al., 2004). Group images were then thre-
sholded using cluster detection statistics with a height threshold of
z > 2.3 and a cluster probability of p < .05, corrected for whole-brain
multiple comparisons using Gaussian Random Field Theory.

4. Results

4.1. Behavioral results

There were no significant differences in the risk taken, response
time, number of misses, amount or number of wins or losses between
the groups. However, casual MA users took marginally more risk in the
task (M=0.54) then non-users (M=0.46), Mdiff=0.08, 95%
CI= [−0.157, 0.004], p= .06 and lost (marginally) more money
(M=27.03) then non-users(M=23.00), Mdiff=4.03, 95%
CI= [−8.66, 0.6.], p= .086. Real-life sexual risk taking, significantly
correlated with risk taking in the laboratory CUPS task (measured as
ratio of risky choices to all trials) across all subjects, r(95)= 0.27,
p= .007. This relationship was driven by participants' behavior on risk-
equivalent trials (EV=0), r(95)= 0.29, p= .004.

4.2. fMRI results – Whole brain analysis

During the decision phase, averaging across all trials, we found
weaker BOLD response in casual MA users (compared to non-users) on
the right side in the amygdala, nucleus accumbens (NAcc), and sur-
rounding ventral regions of the putamen and caudate (or ventral
striatum) (Fig. 2, Table 2). No differences were observed when con-
trasting risky and non-risky trials or examining each type of trial (risky/
non-risky) separately; no differences were found during the feedback

1 A three-column file format was used that contained onset time for each
event, response time and demeaned parameter value (number or cups or gain
amount for the trial).
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phase.

4.3. ROI analysis and decision to gamble

To examine whether the activation in the amygdala-striatal ROI
differentiating casual MA users and non-users during decisions was
related to the choice to gamble or not, we conducted an independent
ROI analysis by extracting the percent signal change for each subject
(N=97). The amygdala-striatal ROI was defined as group difference
(non-users>MA users) during the gamble evaluation (time from the
moment the gamble is displayed till the user presses the button with his
selection) for all trials (both risky and non-risky trials included, so risk
taking is not part of the ROI selection). It was correlated with the
average risk taken in the task (average risk calculated as the ratio of
accepted gambles to number of trials). We found a significant negative
effect (r=−0.31, p= .002), so that the stronger the activation in the
amygdala-striatal ROI was associated with less within-task risk.

5. fMRI results – Generalized PPI analysis

During the decision phase, averaging across all trials, casual MA
users had stronger connectivity between the amygdala-striatal seed
region and the vmPFC than non-users. Non-users on the other hand, had
stronger connectivity between the amygdala-striatal seed region and
the posterior insular cortex (PIC), STG and middle temporal gyrus
(MTG) (Fig. 3, Table 3) than did casual MA users. When isolating the

decisions on which participants subsequently decided to take risk (risky
trials) from those they didn't (non-risky trials), we found no difference
in connectivity with the amygdala-striatal seed region during the trials
when risk was taken. However, during the non-risky trials non-users
had stronger connectivity of seed ROI with PIC, MTG, medial frontal
gyrus (MFG), and inferior temporal gyrus (ITG). Similarity of these
results for non-risky trials with the ones for all trials, suggests that all
trial's results are likely driven by the non-risky trials. When contrasting
non-risky and risky trials, non-users had stronger connectivity between
the seed ROI and clusters in bilateral inferior frontal gyrus (IFG) and
MFG.

During the feedback phase, stronger connectivity between the
amygdala-striatal seed region and the vmPFC, including the medial
orbitofrontal area, dlPFC and ventrolateral PFC (vlPFC), and IFG was
evident in non-users (Fig. 4, Table 4) compared to casual MA users.
Examining risky and non-risky trials separately we found stronger
connectivity between the amygdala-striatal seed region and the PIC,
vmPFC, and IFG during non-risky trials and stronger connectivity be-
tween the amygdala-striatal seed region and the vmPFC, vlPFC and IFG
during risky trials in non-users compared to casual MA users.

5.1. Post-hoc behavioral analysis

Stronger connectivity of the amygdala-striatal ROI in casual MA
users with the vmPFC, an area responsible for value calculation
(O'Doherty, 2004), and in non-users with the insula, a region implicated
in risk processing (Droutman et al., 2015), during decision, suggested
the possibility that casual MA users were more focused on the potential
gains and non-users were more attuned to possible risks, represented in
the task by the number of cups. Therefore, we conducted additional
analyses of the behavioral data to explore this idea further. We ran
logistic regression with repeated measures using the glmer function
from the lme4 package in R, fitting a general linear model using the
maximum likelihood method. We regressed the decision to accept the
gamble (risk) on group (casual MA users vs. non-users), number of cups,
potential gain, trial type and all interactions. To ensure that adding the
interaction terms significantly improves the model, we also fitted a
model without interaction terms and compared the two models using a
log likelihood ratio test (using the ANOVA function in R). Akaike In-
formation Criterion (AIC; Akaike, 1974) values as well as Bayesian

Fig. 2. Whole brain analysis, results of the decision phase where non-users' activation is higher than casual meth-users'.

Table 2
Whole brain analysis results during evaluation phase where activation for non-
users was higher than for meth-users. The value in the “max” column is the
maximum z-stat in each local maxima. X, Y, and Z are x, y, and z coordinates in
MNI-152 space in mm. Cluster size is 260 voxels.

Z-MAX Z-MAX X Z-MAX Y Z-MAX Z Notes

3.91 12 −2 −16 R Amygdala
3.46 10 22 2 R Caudate
3.32 14 14 −4 R Caudate/Putamen
2.98 12 8 −14 R Putamen
2.83 18 8 −16 R Ventromedial Prefrontal Cortex

(vmPFC)

V. Droutman et al. NeuroImage: Clinical 21 (2019) 101643

5



Information Criterion (BIC; Schwarz, 1978) were used along with chi
square to identify the model with a better fit. This revealed the super-
iority of the model with interaction terms, since it had lower AIC/BIC
and p (chi square) < 0.001 (Table 5). We were particularly interested
in the interactions between group and the potential gain and between
group and the number of cups. The interaction of group and number of
cups turned out to be significant (p < .001). We proceeded with

stratifying by group and found that while for non-users both potential
gain and number of cups were significant predictors of risk, for casual
MA users only potential gain but not the number of cups was a predictor
(Table 6).

5.2. Whole brain analyses with risk and reward as parametric modulators

To examine the full spectrum of neural differences in processing risk
and potential reward between the groups, we performed two para-
metrically modulated fMRI analyses, one identifying activation modu-
lated by risk (number of cups) and one identifying activation modulated
by potential reward. It revealed that during the decision phase, on non-
risky trials, non-users had higher risk-modulated and gain-modulated
activation in the ventral striatum (a cluster within the amygdala-striatal
ROI differentiating non-users and casual MA users during the decision
phase), posterior cingulate cortex (PCC), PIC, precuneus and cuneal
cortex (Tables 7,8, Figs. 5,6). Similar differences were evident when
contrasting non-risky and risky trials.

5.3. Meth-use Index effect

During the decision phase, averaging across all trials, we found
significant negative correlation of the meth-use index (more intense use
corresponding to weaker activation) with activation levels in a cluster
in the ventral striatum (Table 9, Fig. 7).

6. Discussion

This study examined neural-network differences between casual MA
users and non-users in the decision-making process in order to identify
characteristics of casual MA users that may be responsible for real-life
risk. The observed significant correlation of the amount of risk parti-
cipants took during the experimental task and real-life sexual risk
(measured by amount of condomless anal sex over the previous
90 days) suggests that our findings may generalize to real-life risk-
taking behavior. An examination of the behavioral and neuroimaging
findings suggests that casual MA users may have a lower risk sensitivity
compared to non-users. Specifically, both groups considered the mag-
nitude of the potential win but only non-users consider the chances of
winning while making their decisions.

Fig. 3. Psycho-physiological interaction analysis results during decision phase.

Table 3
Psycho-physiological interaction analysis results during evaluation phase. Each
row refers to activity related to one cluster. The value in the “max” column is
the maximum z-stat in each cluster. X, Y, and Z are x, y, and z coordinates in
MNI-152 space in mm. The number of voxels in the cluster is recorded in the
“voxels” column.

Z-MAX Voxels Z-MAX X Z-MAX Y Z-MAX Z Notes

All trials Meth > NonMeth
3.27 132 −18 46 16 L Ventromedial Prefrontal

Cortex (vmPFC)

All trials NonMeth > Meth
3.96 700 66 −26 8 R Superior Temporal

Gyrus/Posterior Insular
Cortex (PIC)

3.68 298 64 −48 12 R Middle Temporal Gyrus
(MTG)

3.80 104 52 −72 −16 R Lateral Occipital Cortex

Safe trials NonMeth > Meth
4.37 1713 36 −24 10 R PIC
3.49 318 58 −36 −12 R MTG
4.81 253 52 −68 −16 R Lateral Occipital Cortex
3.85 179 56 32 16 R Inferior Frontal Gyrus

(IFG)
4.07 126 −46 −38 −18 L Inferior Temporal Gyrus
3.48 108 −54 −64 −20 L Lateral Occipital Cortex
3.20 91 30 8 54 R Medial Frontal Gyrus
3.71 87 30 −66 62 R Lateral Occipital Cortex

Safe-Risky NonMeth > Meth

3.78 190 44 −8 48 R Precentral Gyrus/Medial Frontal Gyrus
3.25 151 56 32 18 R IFG
3.16 112 −44 4 54 L Precentral Gyrus/Medial Frontal Gyrus
3.42 74 −50 20 −10 L IFG
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Our research suggested that an amygdala-striatal cluster could be
the key to the neural differences underlying risk related decisions in
casual MA users. This cluster emerged as a group differentiator during
the decisions in a whole brain analysis with weaker activation in casual
meth-users. In light of previous findings suggesting this area's role in

reward evaluation (O'Doherty, 2004; Elliott et al., 2003; Baxter and
Murray, 2002), reward prediction and error computation (Hare et al.,
2008; Knutson et al., 2001; Pagnoni et al., 2002), the current findings
may suggest that casual MA users' behavior during the task arises from

Fig. 4. Psycho-physiological interaction analysis results during feedback phase.

Table 4
Psycho-physiological interaction analysis results during feedback phase. Each
row refers to activity related to one cluster. The value in the “max” column is
the maximum z-stat in each cluster. X, Y, and Z are x, y, and z coordinates in
MNI-152 space in mm. The number of voxels in the cluster is recorded in the
“voxels” column.

Z-MAX Voxels Z-MAX X Z-MAX Y Z-MAX Z Notes

All trials NonMeth > Meth
4.21 714 52 32 2 R Inferior Frontal Gyrus

(IFG)/Ventrolateral
Prefrontal Cortex
(vlPFC)

4.51 509 −4 30 −12 L Ventromedial PFC
3.35 320 −30 48 32 L Dorsolateral PFC

Safe trials NonMeth > Meth
4.36 733 56 −20 20 R Posterior Insular

Cortex
3.90 292 52 32 4 R IFG
3.16 211 −64 −12 16 L Postcentral Gyrus
4.01 161 −10 24 −20 L vmPFC

Risky trials NonMeth > Meth
3.91 512 40 38 −4 R vlPFC, IFG
4.15 404 −4 30 −12 L vmPFC

Table 5
Parameters for model fit evaluation for post hoc logistical regression analysis.

Model AIC BIC

Model1 - without interaction terms 8344.3 8385.4
Model2 - with interaction terms 8238.5 8355.0

Model1 regresses decision to accept the gamble (risk) on group (cMU vs. NU),
number of cups, potential gain and trial type. Model2 regresses decision to
accept the gamble (risk) on group (cMU vs. NU), number of cups, potential gain,
trial type and all interactions.

Table 6
Results of logistical regression of decision to accept the gamble (risk) on po-
tential gain, number of cups and EV category stratified by group.

GROUP METH NON-USERS

Predictors Estimate [95%CI]/z/p Estimate [95%CI]/z/p

PayOff 0.47 [0.10, 0.85]/2.37/
0.02

0.30 [0.02, 0.56]/2.14/0.03

NumCups 0.06[−0.24, 0.38]/
0.38/ns

−0.60 [−0.82, −0.39]/-5.37/< 0.001

Trial Type 2.40 [0.99, 4.01]/2.96/
0.003

2.05 [0.98, 3.15]/3.69/< 0.001

Table 7
Whole brain analysis with risk (number of cups) as parametric modulator
during evaluation phase. Each row refers to activity related to one cluster. The
value in the “max” column is the maximum z-stat in each cluster. X, Y, and Z are
x, y, and z coordinates in MNI-152 space in mm. The number of voxels in the
cluster is recorded in the “voxels” column.

Z-MAX Voxels Z-MAX X Z-MAX Y Z-MAX Z Notes

Safe trials NonMeth > Meth
3.72 157 6 −38 46 R Posterior Cingulate

Cortex (PCC)
3.37 140 10 −54 18 R Precuneus
2.96 81 −16 −62 30 L Precuneus
2.94 68 4 −78 32 R Cuneal Cortex
2.87 67 14 12 −4 R Caudate/Putamena

3.25 64 −46 −16 10 L Posterior Insular Cortex

Safe-Risky NonMeth > Meth
3.70 98 14 12 −4 R Caudate/Putamena

3.59 86 10 −56 18 R Precuneus
3.48 74 14 −14 6 R Thalamus
3.12 70 34 −58 68 R Superior Parietal Lobe

a This cluster is within amygdala-striatal ROI identified by whole brain
analysis as differentiating cMU and NU during decision phase.
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a deregulated reward processing system.
Weaker striatal activation is consistent with the neuroadaptation

characteristic of chronic MA users (Volkow et al., 2004, 2010). Since
MA users in our study are casual users there are two possible ex-
planations of this finding: (1) adaptation of the reward system happens
rapidly enough with methamphetamine use so that it manifests itself
even in casual users, and (2) weaker neural response to reward may be
a pre-existing characteristic of methamphetamine users. Correlational
whole brain analysis of meth use intensity also revealed a cluster in the
ventral striatum where higher intensity of use corresponded to weaker
activation during decisions, thus providing support for the first ex-
planation. This explanation also aligns well with prior research that
found a disruption of value-related signals after a single MA challenge
(Bernacer et al., 2013).

Our parametrically modulated analyses also supports the

deregulation of reward-system hypothesis: it identified a striatal cluster
(overlapping with the amygdala-striatal cluster found in the whole
brain analysis) where risk- and reward-modulated activation was
stronger in non-users compared to casual MA users during decisions
that resulted in safe choices (as contrasted with risky choices or base-
line, Fig. 8). Interestingly these results differ from the prior work that
examined differences in risk-modulated activation between metham-
phetamine-dependent individuals and controls (Kohno et al., 2014),
that reported no difference in risk-modulation between the groups
during safe events (cash outs in Balloon Analog Reward Task, BART). On
the other hand, they found higher risk-modulated activation in VS and
weaker risk-modulated activation in dlPFC in methamphetamine-de-
pendent group on risky trials (active balloon pumps in BART), where we
found no group difference on risky trials. Although it is difficult to draw
conclusions when comparing the results from two such differently de-
signed studies, these findings point to possible differences between
casual meth-users and methamphetamine-dependent individuals that
can be tested in future studies.

Novel to the current investigation, the activation in the amygdala-
striatal cluster during decisions significantly predicted how much risk
participants took in the task, such that higher activation corresponded
to less risk taking. This finding is somewhat paradoxical, since it shows
that lesser activation in the reward area led to higher gambling. One
possible explanation may be that people with lower phasic levels of
dopamine (Grace, 1991), resulting in lower activation in striatal areas,
are more reward-seeking in order to elicit homeostatic compensation
and increase overall dopaminergic activity, which results in a generally
higher level of risk taking.

To further examine this possible reward system deficit we per-
formed a generalized PPI analysis using this cluster as the seed region.
This analysis uncovered further neural-network differences between the
groups. Specifically, during the decisions the connectivity of the
amygdala-striatal cluster was stronger in casual MA users with the
vmPFC and in non-users with the insular cortex (IC), IFG and MFG. We
theorize that these connectivity differences may reflect different cog-
nitive processes underlying decision-making. Since the vmPFC has been
implicated in value calculation (O'Doherty, 2004), the greater vmPFC-
amygdala-striatal connectivity in casual MA users during decision-
making could reflect a focus on the value of choices; this increased
connectivity may also be a compensatory measure that balances the
weaker amygdala-striatal activation in casual MA users.

In contrast, the IC has been implicated in risk assessment and risk
prediction error calculation (Droutman et al., 2015), the IFG in risk
related inhibition of the suboptimal choices (Stewart et al., 2013) and
MFG in response inhibition (Batterink et al., 2010), suggesting that the
increased connectivity among these regions in non-users may reflect a
greater focus on the risk of a choice, as represented by the likelihood of
potential outcomes, and inhibition of reward seeking response. Con-
verging evidence for this hypothesis comes from the parametrically
modulated analysis, which revealed risk-modulated activation in insula
during safe trials was stronger in non-users than casual MA users. The
behavioral analysis supports this as well, since the potential gain
amount equally strongly predicted the gambling decisions for casual
MA users and non-users whereas the risk represented by the number of
cups was only a significant predictor for non-users.

The somatic marker hypothesis [SMH, (Bechara and Damasio,
2005)] considers the vmPFC a repository of the linkage between factual
knowledge and bioregulatory states and a substrate for learning the
association between a complex situation and an emotional state during
our experiences (Bechara et al., 2000). When similar situations are
encountered, these somatic markers are invoked and the emotional
responses are re-enacted, providing for optimal decision-making. SMH
is operative during the feedback phase of decision-making, since the
function of this phase is to learn the actual values of options for the goal
of adaptive behavior (Ernst and Paulus, 2005). Weaker connectivity of
the amygdala-striatal cluster with the key neural components necessary

Table 8
Whole brain analysis with gain (potential win amount) as parametric modulator
during evaluation phase. Each row refers to activity related to one cluster. The
value in the “max” column is the maximum z-stat in each cluster. X, Y, and Z are
x, y, and z coordinates in MNI-152 space in mm. The number of voxels in the
cluster is recorded in the “voxels” column.

Z-MAX Voxels Z-MAX X Z-MAX Y Z-MAX Z Notes

All trials NonMeth > Meth
3.6 264 −58 −18 14 L Posterior Insular

Cortex (PIC)
3.3 124 4 −78 36 R Cuneal Cortex
3.28 80 −44 −14 48 L Precentral Gyrus

Safe trials NonMeth > Meth
3.72 2521 12 −88 4 R Intracalcarine Cortex
3.93 647 −58 −18 14 L PIC
4.49 403 6 −40 46 R Precuneus/Posterior

Cingulate Cortex
3.25 210 0 18 44 Paracingulate Gyrus/

Anterior Cingulate
Cortex

3.34 185 44 0 2 R PIC
3.75 184 48 −10 52 R Precentral Gyrus
3.78 132 34 −12 6 R PIC
3.11 128 6 −12 2 R Thalamus
3.56 128 64 −18 42 R Supramarginal Gyrus
3.71 125 34 −4 54 R Middle Frontal Gyrus

(MFG)
3.79 103 36 −74 12 R Lateral Occipital
3.27 98 −46 −76 2 L Lateral Occipital
3.74 95 12 10 4 R Caudate*
3.83 89 −22 −64 −10 L Lingual Gyrus
2.86 86 −50 6 44 L MFG
3.43 86 30 −58 60 R Lateral Occipital
3.91 75 18 2 74 R Superior Frontal

Gyrus
2.96 72 −42 −4 4 L PIC
3.16 70 −18 −88 40 L Lateral Occipital
3.54 67 0 −32 26 Posterior Cingulate

Cortex
3.01 65 −44 −14 38 L Precentral Gyrus

Safe - Risky NonMeth > Meth
4.43 4109 −12 −78 50 L Lateral Occipital
3.81 840 20 −90 −6 R Occipital Pole/

Fusiform Gyrus
4.21 323 4 −40 46 R Precuneus/Posterior

Cingulate Cortex
3.51 301 −28 −98 −4 L Occipital Pole
3.57 283 16 −58 24 R Precuneus
4.04 253 14 −14 8 R Thalamus
3.62 230 36 −2 54 R MFG
3.85 172 −22 −66 −10 L Occipital Fusiform

Gyrus
3.11 119 24 12 −4 R Putamena

3.34 105 −48 −62 −6 L Lateral Occipital

a This cluster is within amygdala-striatal ROI identified by whole brain
analysis as differentiating cMU and NU during decision phase.
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for successful somatic marker association (Bechara, 2005; Verdejo-
Garcia and Bechara, 2009), the vmPFC, working memory processing
(dlPFC), and somato-emotional processing (IC), in casual MA users
during feedback processing may suggest deregulation of the critical
learning mechanism that impacts sub-optimal choice during following
decisions.

7. Concluding remarks

The current paper employed a network-based approach to isolate
several key differences that may contribute to drug use in casual MA
users. First, a dysregulation of the reward processing system was evi-
dent during the decision phase. We identified an amygdala-striatal
cluster with attenuated activation in casual MA users compared to non-

Fig. 5. Whole brain analysis with risk modulated regressors during decision phase.

Fig. 6. Whole brain analysis with reward modulated regressors during decision phase.

Table 9
Meth-use index whole brain analysis results during decision phase where more
intense use corresponds to weaker activation. The value in the “max” column is
the maximum z-stat in each local maxima. X, Y, and Z are x, y, and z co-
ordinates in MNI-152 space in mm. Cluster size is 160 voxels.

Z-MAX Z-MAX X Z-MAX Y Z-MAX Z Notes

3.35 −22 16 10 L Putamen
3.05 −14 20 12 L Caudate
2.96 −10 18 14 L Caudate
2.75 −10 24 8 L Caudate
2.62 −8 10 4 L Caudate
2.49 −14 32 20 L Paracingulate Gyrus/Anterior

Cingulate Gyrus
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users during decisions in general, and, the striatal portion of this cluster
had attenuated risk and reward modulated activation. Moreover, acti-
vation in this cluster was predictive of risk taking so that higher acti-
vation related to lesser risk taking. Our analysis suggests that when
making decisions, non-users took into consideration both the potential
gain and riskiness of the gambles, whereas casual MA users focused
primarily on potential gain. On a neural level these behavioral findings
are supported by stronger risk modulated activation in IC in non-users
and higher functional connectivity of the amygdala-striatal cluster with
the IC, MFG and IFG in non-users and the vmPFC in casual MA users.
Second, during the feedback phase, weaker connectivity of the

amygdala-striatal region with the vmPFC, dlPFC and PIC in casual MA
users could indicate a suboptimal feedback processing and outcome
learning mechanisms. Finally, the correlation of risk taking in the task
with real-life self-reported sexual risk taking suggests that these un-
covered differences in reward processing and outcome learning may
also underlie real-life risky behavior in casual MA users.

Acknowledgements

Funding: This work was supported by the National Institutes of Drug
Abuse [R01DA031626] and National Institute of General Medical

Fig. 7. Meth-use index correlational analysis results (across all subjects) during decision phase.

Fig. 8. Combined results of 3 whole brain analyses during decision phase where activation in non-users was greater that in casual meth-users, from Figs. 2, 5 & 6)
identifying the overlapping areas: (1) - All trials contrasted with baseline, (2) – risk-modulated activation in safe trials contrasted with risky trials, (3) – reward-
modulated activation in safe trials contrasted with risky trials.

V. Droutman et al. NeuroImage: Clinical 21 (2019) 101643

10



Science [R01GM109996].

Compliance with ethical standards

The work described has been carried out in accordance with The
Code of Ethics of the World Medical Association (Declaration of
Helsinki) for experiments involving humans. Informed consent was
obtained for all experimentation with human subjects. The privacy
rights of human subjects were observed.

References

Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Autom.
Control 19 (6), 716–723. https://doi.org/10.1109/TAC.1974.1100705.

Andersson, J.L., Jenkinson, M., Smith, S., 2007. Non-linear Registration, Aka Spatial
Normalisation FMRIB Technical Report TR07JA2. FMRIB Analysis Group of the
University of Oxford.

Batterink, L., Yokum, S., Stice, E., 2010. Body mass correlates inversely with inhibitory
control in response to food among adolescent girls: an fMRI study. NeuroImage 52
(4), 1696–1703. https://doi.org/10.1016/j.neuroimage.2010.05.059.

Baxter, M.G., Murray, E.A., 2002. The amygdala and reward. Nat. Rev. Neurosci. 3 (7),
563–573. https://doi.org/10.1038/nrn875.

Bechara, A., 2005. Decision making, impulse control and loss of willpower to resist drugs:
a neurocognitive perspective. Nat. Neurosci. 8 (11), 1458–1463. https://doi.org/10.
1038/nn1584.

Bechara, A., Damasio, A.R., 2005. The somatic marker hypothesis: a neural theory of
economic decision. Games Econ. Behav. 52 (2), 336–372. https://doi.org/10.1016/j.
geb.2004.06.010.

Bechara, A., Damasio, H., Damasio, A.R., 2000. Emotion, decision making and the orbi-
tofrontal cortex. Cereb. Cortex 10 (3), 295–307. https://doi.org/10.1093/cercor/10.
3.295.

Beckmann, C.F., Smith, S.M., 2004. Probabilistic independent component analysis for
functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23 (2), 137–152.
https://doi.org/10.1109/TMI.2003.822821.

Beckmann, C., Jenkinson, M., Smith, S.M., 2003. General multilevel linear modeling for
group analysis in FMRI. NeuroImage 20 (2), 1052–1063. https://doi.org/10.1016/
S1053-8119(03)00435-X.

Bernacer, J., Corlett, P.R., Ramachandra, P., McFarlane, B., Turner, D.C., Clark, L., ...
Murray, G.K., 2013. Methamphetamine-induced disruption of frontostriatal reward
learning signals: relation to psychotic symptoms. Am. J. Psychiatr. 170 (11),
1326–1334. https://doi.org/10.1176/appi.ajp.2013.12070978.

Brecht, M.-L., Herbeck, D., 2014. Time to relapse following treatment for methamphe-
tamine use: a long-term perspective on patterns and predictors. Drug Alcohol
Depend. 139, 18–25. https://doi.org/10.1016/j.drugalcdep.2014.02.702.

Christakou, A., Brammer, M., Giampietro, V., Rubia, K., 2009. Right ventromedial and
dorsolateral prefrontal cortices mediate adaptive decisions under ambiguity by in-
tegrating choice utility and outcome evaluation. J. Neurosci. 29 (35), 11020–11028.
https://doi.org/10.1523/JNEUROSCI.1279-09.2009.

Dean, A.C., Groman, S.M., Morales, A.M., London, E.D., 2013. An evaluation of the evi-
dence that methamphetamine abuse causes cognitive decline in humans.
Neuropsychopharmacology 38 (2), npp2012179. https://doi.org/10.1038/npp.2012.
179.

Droutman, V., Bechara, A., Read, S.J., 2015. Roles of the different sub-regions of the
insular cortex in various phases of the decision-making process. Front. Behav.
Neurosci. 9. https://doi.org/10.3389/fnbeh.2015.00309.

Elliott, R., Newman, J.L., Longe, O.A., Deakin, J.F.W., 2003. Differential response pat-
terns in the striatum and orbitofrontal cortex to financial reward in humans: a
parametric functional magnetic resonance imaging study. J. Neurosci. 23 (1),
303–307.

Ernst, M., Paulus, M.P., 2005. Neurobiology of decision making: a selective review from a
neurocognitive and clinical perspective. Biol. Psychiatry 58 (8), 597–604. https://
doi.org/10.1016/j.biopsych.2005.06.004.

Friston, K.J., Buechel, C., Fink, G.R., Morris, J., Rolls, E., Dolan, R.J., 1997.
Psychophysiological and modulatory interactions in neuroimaging. NeuroImage 6
(3), 218–229.

Grace, A.A., 1991. Phasic versus tonic dopamine release and the modulation of dopamine
system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41
(1), 1–24.

Griffanti, L., Salimi-Khorshidi, G., Beckmann, C.F., Auerbach, E.J., Douaud, G., Sexton,
C.E., ... Smith, S.M., 2014. ICA-based artefact and accelerated fMRI acquisition for
improved resting state network imaging. NeuroImage 95, 232–247. https://doi.org/
10.1016/j.neuroimage.2014.03.034.

Hare, T.A., O'Doherty, J., Camerer, C.F., Schultz, W., Rangel, A., 2008. Dissociating the
role of the orbitofrontal cortex and the striatum in the computation of goal values and
prediction errors. J. Neurosci. 28 (22), 5623–5630. https://doi.org/10.1523/
JNEUROSCI.1309-08.2008.

Hasin, D.S., O'Brien, C.P., Auriacombe, M., Borges, G., Bucholz, K., Budney, A., ... Grant,
B.F., 2013. DSM-5 criteria for substance use disorders: recommendations and ratio-
nale. Am. J. Psychiatr. 170 (8), 834–851. https://doi.org/10.1176/appi.ajp.2013.
12060782.

Jenkinson, M., Smith, S., 2001. A global optimisation method for robust affine registra-
tion of brain images. Med. Image Anal. 5 (2), 143–156. https://doi.org/10.1016/

S1361-8415(01)00036-6.
Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Improved optimization for the

robust and accurate linear registration and motion correction of brain images.
NeuroImage 17 (2), 825–841. https://doi.org/10.1006/nimg.2002.1132.

Knutson, B., Adams, C.M., Fong, G.W., Hommer, D., 2001. Anticipation of increasing
monetary reward selectively recruits nucleus accumbens. J. Neurosci. 21 (16),
RC159.

Kohno, M., Morales, A.M., Ghahremani, D.G., Hellemann, G., London, E.D., 2014. Risky
decision making, prefrontal cortex, and mesocorticolimbic functional connectivity in
methamphetamine dependence. JAMA Psychiatry 71 (7), 812. https://doi.org/10.
1001/jamapsychiatry.2014.399.

Levin, I.P., Weller, J.A., Pederson, A.A., Harshman, L.A., 2007. Age-related differences in
adaptive decision making: sensitivity to expected value in risky choice. Judgm. Decis.
Mak. 2 (4), 9.

Liu, L., Xue, G., Potenza, M.N., Zhang, J.-T., Yao, Y.-W., Xia, C.-C., ... Fang, X.-Y., 2017.
Dissociable neural processes during risky decision-making in individuals with
Internet-gaming disorder. NeuroImage 14, 741–749. https://doi.org/10.1016/j.nicl.
2017.03.010.

London, E., Kohno, M., Morales, A., Ballard, M., 2015. Chronic methamphetamine abuse
and corticostriatal deficits revealed by neuroimaging., chronic methamphetamine
abuse and corticostriatal deficits revealed by neuroimaging. Brain Res. 1628 (Pt A),
174–185. https://doi.org/10.1016/j.brainres.2014.10.044.

McLaren, D.G., Ries, M.L., Xu, G., Johnson, S.C., 2012. A generalized form of context-
dependent psychophysiological interactions (gPPI): a comparison to standard ap-
proaches. NeuroImage 61 (4), 1277–1286. https://doi.org/10.1016/j.neuroimage.
2012.03.068.

Monterosso, J.R., Aron, A.R., Cordova, X., Xu, J., London, E.D., 2005. Deficits in response
inhibition associated with chronic methamphetamine abuse. Drug Alcohol Depend.
79 (2), 273–277. https://doi.org/10.1016/j.drugalcdep.2005.02.002.

Monterosso, J.R., Ainslie, G., Xu, J., Cordova, X., Domier, C.P., London, E.D., 2007.
Frontoparietal cortical activity of methamphetamine-dependent and comparison
subjects performing a delay discounting task. Hum. Brain Mapp. 28 (5), 383–393.
https://doi.org/10.1002/hbm.20281.

O'Doherty, J.P., 2004. Reward representations and reward-related learning in the human
brain: insights from neuroimaging. Curr. Opin. Neurobiol. 14 (6), 769–776. https://
doi.org/10.1016/j.conb.2004.10.016.

Pagnoni, G., Zink, C.F., Montague, P.R., Berns, G.S., 2002. Activity in human ventral
striatum locked to errors of reward prediction. Nat. Neurosci. 5 (2), 97–98. https://
doi.org/10.1038/nn802.

Paulus, M.P., Hozack, N.E., Zauscher, B.E., Frank, L., Brown, G.G., Braff, D.L., Schuckit,
M.A., 2002. Behavioral and functional neuroimaging evidence for prefrontal dys-
function in methamphetamine-dependent subjects. Nature 26 (1), 53–63. https://doi.
org/10.1016/S0893-133X(01)00334-7.

Rogers, R.D., Ramnani, N., MacKay, C., Wilson, J.L., Jezzard, P., Carter, C.S., Smith, S.M.,
2004. Distinct portions of anterior cingulate cortex and medial prefrontal cortex are
activated by reward processing in separable phases of decision-making cognition.
Biol. Psychiatry 55 (6), 594–602. https://doi.org/10.1016/j.biopsych.2003.11.012.

Salimi-Khorshidi, G., Douaud, G., Beckmann, C.F., Glasser, M.F., Griffanti, L., Smith, S.M.,
2014. Automatic denoising of functional mri data: combining independent compo-
nent analysis and hierarchical fusion of classifiers. NeuroImage 90, 449–468. https://
doi.org/10.1016/j.neuroimage.2013.11.046.

Schwarz, G., 1978. Estimating the dimension of a model. Ann. Stat. 6 (2), 461–464.
Scott, J.C., Woods, S.P., Matt, G.E., Meyer, R.A., Heaton, R.K., Atkinson, J.H., Grant, I.,

2007. Neurocognitive effects of methamphetamine: a critical review and meta-ana-
lysis. Neuropsychol. Rev. 17 (3), 275–297. https://doi.org/10.1007/s11065-007-
9031-0.

Shoptaw, S., Reback, C.J., 2006. Associations between methamphetamine use and HIV
among men who have sex with men: a model for guiding public policy. J. Urban
Health 83 (6), 1151–1157. https://doi.org/10.1007/s11524-006-9119-5.

Stewart, J.L., Flagan, T.M., May, A.C., Reske, M., Simmons, A.N., Paulus, M.P., 2013.
Young adults at risk for stimulant dependence show reward dysfunction during re-
inforcement-based decision making. Biol. Psychiatry 73 (3), 235–241. https://doi.
org/10.1016/j.biopsych.2012.08.018.

Stewart, J.L., Connolly, C.G., May, A.C., Tapert, S.F., Wittmann, M., Paulus, M.P., 2014.
Striatum and insula dysfunction during reinforcement learning differentiates ab-
stinent and relapsed methamphetamine-dependent individuals: striatum dysfunction
associated with relapse. Addiction 109 (3), 460–471. https://doi.org/10.1111/add.
12403.

Tolliver, B.K., Price, K.L., Baker, N.L., Larowe, S.D., Simpson, A.N., McRae-Clark, A.L., ...
Brady, K.T., 2012. Impaired cognitive performance in subjects with methampheta-
mine dependence during exposure to neutral versus methamphetamine-related cues.
Am. J. Drug Alcohol Abuse 38 (3), 251–259. https://doi.org/10.3109/00952990.
2011.644000.

United Nations Office on Drugs and Crime, 2017. World Drug Report 2017. United
Nations.

Verdejo-Garcia, A., Bechara, A., 2009. A somatic marker theory of addiction.
Neuropharmacology 56 (Suppl. 1), 48–62. https://doi.org/10.1016/j.neuropharm.
2008.07.035.

Volkow, N.D., Fowler, J.S., Wang, G.-J., 2004. The addicted human brain viewed in the
light of imaging studies: brain circuits and treatment strategies. Neuropharmacology
47, 3–13. https://doi.org/10.1016/j.neuropharm.2004.07.019.

Volkow, N.D., Wang, G.-J., Fowler, J.S., Tomasi, D., Telang, F., Baler, R., 2010. Addiction:
decreased reward sensitivity and increased expectation sensitivity conspire to over-
whelm the brain's control circuit. BioEssays 32 (9), 748–755. https://doi.org/10.
1002/bies.201000042.

Vosburgh, H.W., Mansergh, G., Sullivan, P.S., Purcell, D.W., 2012. A review of the

V. Droutman et al. NeuroImage: Clinical 21 (2019) 101643

11

https://doi.org/10.1109/TAC.1974.1100705
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0010
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0010
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0010
https://doi.org/10.1016/j.neuroimage.2010.05.059
https://doi.org/10.1038/nrn875
https://doi.org/10.1038/nn1584
https://doi.org/10.1038/nn1584
https://doi.org/10.1016/j.geb.2004.06.010
https://doi.org/10.1016/j.geb.2004.06.010
https://doi.org/10.1093/cercor/10.3.295
https://doi.org/10.1093/cercor/10.3.295
https://doi.org/10.1109/TMI.2003.822821
https://doi.org/10.1016/S1053-8119(03)00435-X
https://doi.org/10.1016/S1053-8119(03)00435-X
https://doi.org/10.1176/appi.ajp.2013.12070978
https://doi.org/10.1016/j.drugalcdep.2014.02.702
https://doi.org/10.1523/JNEUROSCI.1279-09.2009
https://doi.org/10.1038/npp.2012.179
https://doi.org/10.1038/npp.2012.179
https://doi.org/10.3389/fnbeh.2015.00309
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0075
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0075
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0075
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0075
https://doi.org/10.1016/j.biopsych.2005.06.004
https://doi.org/10.1016/j.biopsych.2005.06.004
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0085
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0085
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0085
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0090
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0090
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0090
https://doi.org/10.1016/j.neuroimage.2014.03.034
https://doi.org/10.1016/j.neuroimage.2014.03.034
https://doi.org/10.1523/JNEUROSCI.1309-08.2008
https://doi.org/10.1523/JNEUROSCI.1309-08.2008
https://doi.org/10.1176/appi.ajp.2013.12060782
https://doi.org/10.1176/appi.ajp.2013.12060782
https://doi.org/10.1016/S1361-8415(01)00036-6
https://doi.org/10.1016/S1361-8415(01)00036-6
https://doi.org/10.1006/nimg.2002.1132
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0120
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0120
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0120
https://doi.org/10.1001/jamapsychiatry.2014.399
https://doi.org/10.1001/jamapsychiatry.2014.399
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0130
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0130
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0130
https://doi.org/10.1016/j.nicl.2017.03.010
https://doi.org/10.1016/j.nicl.2017.03.010
https://doi.org/10.1016/j.brainres.2014.10.044
https://doi.org/10.1016/j.neuroimage.2012.03.068
https://doi.org/10.1016/j.neuroimage.2012.03.068
https://doi.org/10.1016/j.drugalcdep.2005.02.002
https://doi.org/10.1002/hbm.20281
https://doi.org/10.1016/j.conb.2004.10.016
https://doi.org/10.1016/j.conb.2004.10.016
https://doi.org/10.1038/nn802
https://doi.org/10.1038/nn802
https://doi.org/10.1016/S0893-133X(01)00334-7
https://doi.org/10.1016/S0893-133X(01)00334-7
https://doi.org/10.1016/j.biopsych.2003.11.012
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1016/j.neuroimage.2013.11.046
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0185
https://doi.org/10.1007/s11065-007-9031-0
https://doi.org/10.1007/s11065-007-9031-0
https://doi.org/10.1007/s11524-006-9119-5
https://doi.org/10.1016/j.biopsych.2012.08.018
https://doi.org/10.1016/j.biopsych.2012.08.018
https://doi.org/10.1111/add.12403
https://doi.org/10.1111/add.12403
https://doi.org/10.3109/00952990.2011.644000
https://doi.org/10.3109/00952990.2011.644000
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0215
http://refhub.elsevier.com/S2213-1582(18)30391-7/rf0215
https://doi.org/10.1016/j.neuropharm.2008.07.035
https://doi.org/10.1016/j.neuropharm.2008.07.035
https://doi.org/10.1016/j.neuropharm.2004.07.019
https://doi.org/10.1002/bies.201000042
https://doi.org/10.1002/bies.201000042


literature on event-level substance use and sexual risk behavior among men who have
sex with men. AIDS Behav. 16 (6), 1394–1410. https://doi.org/10.1007/s10461-011-
0131-8.

Woolrich, M., 2008. Robust group analysis using outlier inference. NeuroImage 41 (2),
286–301. https://doi.org/10.1016/j.neuroimage.2008.02.042.

Woolrich, M.W., Behrens, T.E.J., Beckmann, C.F., Jenkinson, M., Smith, S.M., 2004.

Multilevel linear modelling for FMRI group analysis using Bayesian inference.
NeuroImage 21 (4), 1732–1747. https://doi.org/10.1016/j.neuroimage.2003.12.
023.

Xue, G., Lu, Z., Levin, I.P., Bechara, A., 2010. The impact of prior risk experiences on
subsequent risky decision-making: the role of the insula. NeuroImage 50 (2),
709–716. https://doi.org/10.1016/j.neuroimage.2009.12.097.

V. Droutman et al. NeuroImage: Clinical 21 (2019) 101643

12

https://doi.org/10.1007/s10461-011-0131-8
https://doi.org/10.1007/s10461-011-0131-8
https://doi.org/10.1016/j.neuroimage.2008.02.042
https://doi.org/10.1016/j.neuroimage.2003.12.023
https://doi.org/10.1016/j.neuroimage.2003.12.023
https://doi.org/10.1016/j.neuroimage.2009.12.097

	Neurocognitive decision-making processes of casual methamphetamine users
	Introduction
	Methods and materials
	Participants

	fMRI CUPS task
	Functional imaging procedure
	fMRI data preprocessing and statistical analysis
	Generalized psychophysiological interaction (PPI) analysis
	Whole brain analyses with risk and reward as parametric modulators
	Meth-use index analysis

	Results
	Behavioral results
	fMRI results – Whole brain analysis
	ROI analysis and decision to gamble

	fMRI results – Generalized PPI analysis
	Post-hoc behavioral analysis
	Whole brain analyses with risk and reward as parametric modulators
	Meth-use Index effect

	Discussion
	Concluding remarks
	Acknowledgements
	Compliance with ethical standards
	References




