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Phenotypic evaluation and efficient utilization of germplasm collections can be time-
intensive, laborious, and expensive. However, with the plummeting costs of next-
generation sequencing and the addition of genomic selection to the plant breeder’s
toolbox, we now can more efficiently tap the genetic diversity within large germplasm
collections. In this study, we applied and evaluated genomic prediction’s potential to a set
of 482 pea (Pisum sativum L.) accessions—genotyped with 30,600 single nucleotide
polymorphic (SNP) markers and phenotyped for seed yield and yield-related
components—for enhancing selection of accessions from the USDA Pea Germplasm
Collection. Genomic prediction models and several factors affecting predictive ability were
evaluated in a series of cross-validation schemes across complex traits. Different genomic
prediction models gave similar results, with predictive ability across traits ranging from 0.23
to 0.60, with no model working best across all traits. Increasing the training population size
improved the predictive ability of most traits, including seed yield. Predictive abilities
increased and reached a plateau with increasing number of markers presumably due to
extensive linkage disequilibrium in the pea genome. Accounting for population structure
effects did not significantly boost predictive ability, but we observed a slight improvement
in seed yield. By applying the best genomic prediction model (e.g., RR-BLUP), we then
examined the distribution of genotyped but nonphenotyped accessions and the reliability
of genomic estimated breeding values (GEBV). The distribution of GEBV suggested that
none of the nonphenotyped accessions were expected to perform outside the range of the
phenotyped accessions. Desirable breeding values with higher reliability can be used to
identify and screen favorable germplasm accessions. Expanding the training set and
incorporating additional orthogonal information (e.g., transcriptomics, metabolomics,
physiological traits, etc.) into the genomic prediction framework can enhance
prediction accuracy.
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INTRODUCTION

Pea (Pisum sativum L.) is a vitally important pulse crop that
provides protein (15.8–32.1%), vitamins, minerals, and fibers. Pea
consumption has cardiovascular benefits as it is rich in potassium,
folate, and digestible fibers, which promote gut health and
prevent certain cancers (Mudryj et al., 2014; Tayeh et al.,
2015). Considering the health benefits of pulse crop, the US
Department of Agriculture recommends regular pulses
consumption, including peas, to promote human health and
wellbeing (http://www.choosemyplate.gov/). In 2019, more
than 446,000 hectares of edible dry pea were planted with
production totaling 1,013,600 tonnes in the USA, making it
the fourth largest legume crop (http://www.fao.org) (USDA,
2020). Growing peas also help maintain soil health and
productivity by fixing atmospheric nitrogen (Burstin et al.,
2015). Recently, the pea protein has emerged as a frontrunner
and showed the most promise in the growing alternative protein
market. The Beyond Meat burger is a perfect example of a pea
protein product gaining traction in the growing market. About
20-g protein (17.5%) in each burger comes from pea (https://
www.nasdaq.com/articles/heres-why-nows-thetime-to-buy-
beyond-meat-stock-2019-12-05). Another product made from
pea, Ripptein, is a non-dairy milk product of pea protein that
is gaining tremendous interest as an alternative dairy product
(https://www.ripplefoods.com/ripptein/). Additionally, peas are
gaining attention in the pet food market as it is grain-free and an
excellent source of essential amino acids required by cats and
dogs (PetfoodIndustry.com; Facciolongo et al., 2014). As the
demand for pea increases, particularly in the growing
alternative protein market, genetic diversity expansion is
needed to hasten the current rate of genetic gain in pea
(Vandemark et al., 2014).

Germplasm collections serve as an essential source of variation
for germplasm enhancement that can sustain long-term genetic
gain in breeding programs. The USDA Pisum collection, held at
the Western Regional Plant Introduction Station at Washington
State University, is a good starting point to investigate functional
genetic variation useful for applied breeding efforts. To date, this
collection consists of 6,192 accessions plus a Pea Genetic Stocks
collection of 712 accessions. From this collection, the USDA core
collection, comprised of 504 accessions, was assembled to
represent ∼18% of all USDA pea accessions at the time of
construction (Simon and Hannan 1995; Coyne et al., 2005).
Subsequently, single-seed descent derived homozygous
accessions were developed from a subset of the core to form
the ‘Pea Single Plant’-derived (PSP) collection. The PSP was used
to facilitate the collection’s genetic analysis (Cheng et al., 2015).
The USDA Pea Single Plant Plus Collection (Pea PSP) was
assembled as well as included the PSP and Chinese accessions
and field, snap and snow peas from US public pea breeding
programs (Holdsworth et al., 2017).

Genomic selection (GS) takes advantage of high-density
genomic data that holds a promise to increase the rate of
genetic gain (Meuwissen et al., 2001). As genotyping costs
have significantly declined relative to current phenotyping
costs, GS has become an attractive option as a selection

decision tool to evaluate accessions in extensive germplasm
collections. A genomic prediction approach could use only
genomic data to predict each accession’s breeding value in the
collection (Meuwissen et al., 2001; Habier et al., 2007; VanRaden,
2008). The predicted values would significantly increase the value
of accessions in germplasm collections by giving breeders a means
to identify those favorable accessions meriting their attention
from the thousand available accessions in germplasm collections
(Longin et al., 2014; Crossa et al., 2016; Jarquin et al., 2016).
Several studies used the genomic prediction approach to harness
diversity in germplasm collections, including lentil (Haile et al.,
2020), soybean (Jarquin et al., 2016), wheat (Crossa et al., 2016),
rice (Spindel et al., 2015), sorghum (Yu et al., 2016), maize
(Gorjanc et al., 2016), and potato (Bethke et al., 2019). A pea
genomic selection study for drought-prone Italian environment
revealed increased selection accuracy of pea lines (Annicchiarico
et al., 2019; Annicchiarico et al., 2020). To the best of our
knowledge, no such studies have been performed using the
USDA Pea Germplasm Collection, but a relevant study has
been conducted using a diverse pea germplasm set comprised
of more than 370 accessions genotyped with a limited number of
markers (Burstin et al., 2015; Tayeh et al., 2015).

To date, methods to sample and utilize an extensive genetic
resource like germplasm collections remain a challenge. In this
study, a genomic prediction approach targeting complex traits,
including seed yield and phenology, was evaluated to exploit
diversity contained in the USDA Pea Germplasm Collection. No
research has been conducted before on genomic prediction for
the genetic exploration of the USDA Pea Germplasm Collection.
Different cross-validation schemes were used to answer essential
questions surrounding the efficient implementation of genomic
prediction and selection, including determining best prediction
models, optimum population size and number of markers, and
impact of accounting population structure into genomic
prediction framework. We then examined the distribution of
all nonphenotyped accessions using SNP information in the
collection by applying genomic prediction models and
estimated reliability criteria of genomic estimated breeding
values for the assessed traits.

MATERIALS AND METHODS

Plant Materials
A total of 482 USDA germplasm accessions were used in this study,
including the Pea Single Plant Plus Collection (Pea PSP) comprised
of 292 accessions (Cheng et al., 2015). The USDA Pea Core
Collection contains accessions from different parts of the world
and represents the entire collection’smorphological, geographic, and
taxonomic diversity. These accessionswere initially acquired from64
different countries and are conserved at the Western Regional Plant
Introduction Station, USDA, Agricultural Research Service (ARS),
Pullman, WA (Cheng et al., 2015).

DNA Extraction, Sequencing, SNP Calling
Green leaves were collected from seedlings of each accession
grown in the greenhouse with the DNeasy 96 Plant Kit (Qiagen,
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Valencia, CA, USA). Genomic libraries for the Single Plant Plus
Collection were prepped at the University of Minnesota
Genomics Center (UMGC) using genotyping-by-sequencing
(GBS). Four hundred eighty-two (482) dual-indexed GBS
libraries were created using restriction enzyme ApeKI (Elshire
et al., 2011). A NovaSeq S1 1 × 100 Illumina Sequencing System
(Illumina Inc., San Diego, CA, USA) was then used to sequence
the GBS libraries. Preprocessing was performed by the UMGC
that generated the GBS sequence reads. An initial quality check
was performed using FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Sequencing adapter remnants
were clipped from all raw reads. Reads with final length <50 bases
were discarded. The high-quality reads were aligned to the
reference genome of Pisum sativum (Pulse Crop Database
https://www.pulsedb.org/, Kreplak et al., 2019) using the
Burrow Wheelers Alignment tool (Version 0.7.17) (Li and
Durbin, 2009) with default alignment parameters, and the
alignment data was processed with SAMtools (version 1.10)
(Li et al., 2009). Sequence variants, including single and
multiple nucleotide polymorphisms (SNPs and MNPs,
respectively), were identified using FreeBayes (Version 1.3.2)
(Garrison and Marth, 2012). The combined read depth of 10
was used across samples for identifying an alternative allele as a
variant, with the minimum base quality filters of 20. The putative
SNPs from freeBayes were filtered across the entire population to
maintain the SNPs for biallelic with minor allele frequency
(MAF) < 5%. The putative SNP discovery resulted in biallelic
sites of 380,527 SNP markers. The QUAL estimate was used for
estimating the Phred-scaled probability. Sites with a QUAL value
less than 20 and more than 80% missing values were removed
from the marker matrix. The rest of the markers were further
filtered out so that heterozygosity was less than 20%. The filters
were applied using VCFtools (version 0.1.16) (Danecek et al.,
2011) and in-house Perl scripts. The SNP data were uploaded in a
public repository and is available at this link: https://www.ncbi.
nlm.nih.gov/sra/PRJNA730349 (Submission ID: SUB9608236).
Missing data were imputed using a k-nearest neighbor genotype
imputation method (Money et al., 2015) implemented in TASSEL
(Bradbury et al., 2007). SNP data were converted to a numeric
format where 1 denotes homozygous for a major allele, -1 denotes
homozygous for an alternate allele, and 0 refers to heterozygous
loci. Finally, 30,646 clean, curated SNP markers were identified
and used for downstream analyses.

Phenotyping
Pea germplasm collections (Pea PSP) were planted following
augmented design with standard checks (“Hampton,”
“Arargorn,” “Columbian,” and “1,022”) at the USDA Central
Ferry Farm in 2016, 2017, and 2018 (planting dates were March
14, March 28, and April 03, respectively). The central Ferry farm
is located at Central Ferry, WA at 46°39′5.1″N; 117°45′45.4″ W,
and elevation of 198 m. The Central Ferry farm has a Chard silt
loam soil (coarse-loamy, mixed, superactive, mesic Calcic
Haploxerolls) and was irrigated with subsurface drip irrigation
at 10 min d−1. All seeds were treated with fungicides; mefenoxam
(13.3 ml a.i. 45 kg-1), fludioxonil (2.4 ml a.i. 45 kg -1), and
thiabendazole (82.9 ml a.i.45 kg -1), insecticide; thiamethoxam

(14.3 ml a.i. 45 kg -1), and sodiummolybdate (16 g 45 kg -1) prior
to planting. Thirty seeds were planted per plot; each plot was
152 cm long, having double rows with 30 cm center spacing. The
dimensions of each plot were 152 × 60 cm. Standard fertilization
and cultural practices were used.

The following traits were recorded and are presented in this
manuscript. Days to first flowering are the number of days from
planting to when 10% of the plot’s plants start flowering. The
number of seeds per pod is the number of seeds in each pod.
Plant height (cm) is defined as when all plants in a plot obtained
full maturity and were measured in centimeters from the collar
region at soil level to the plants’ top. Pods per plant is the
number of recorded pods per plant. Days to maturity referred to
physiological maturity when plots were hand-harvested,
mechanically threshed, cleaned with a blower, and weighed.
Plot weight (gm) is the weight of each plot in grams after each
harvest. Seed yield (kg ha−1) is the plot weight converted to seed
yield in kg per hectare.

Phenotypic Data Analysis
A mixed linear model was used to extract best linear unbiased
predictors (BLUPs) for all traits evaluated using the following
model:

yij � μ + Gi + Ej + (GpE)ij + eij (1)

where yij is the observed phenotype of ith genotypes and jth
environment which is the number of years, μ is the overall mean,
Gi is the random genetic effect (i is number of genotypes), Ej is
the random environments (j is number of years), (GpE)ij is the
genotype by environment interaction, and eij is the residual error.

For the purpose of estimating heritability, we fit the same
model above. The heritability in broad sense (H2) on an entry-
mean basis for each assessed trait was calculated to evaluate the
quality of trait measurements following the equation (Hallauer
et al., 2010):

H2 � σ2G
σ2G + σ2GE/j + σ2e/jr

(2)

where σ2G is the genetic variance, σ2GE is variance due to the
genotype by year interaction, σ2e is the error variance, j is number
of years considered as environments, and r is the relative number
of occurrences of each genotype in a trial (harmonic mean of the
entries). We also calculated heritability proposed by Cullis et al.
(2006) implemented in Sommer package in R (Covarrubias-
Pazaran, 2016).

H2
Cullis � 1 − ( PEV

md*Vg
) (3)

where PEV is the predicted error variance for the genotype, Vg

refers to the genotypic variance, md is the mean values from the
diagonal of the relationship matrix, which is an identity matrix.

The R package, lme4 (Bates et al., 2015), was used to analyze
the data. The trait values derived from the BLUPs were used to
measure correlation with the ggcorrplot using ggplot2 package
(Wickham 2016). All phenotypic and genomic prediction models
were analyzed in the R environment (R Core Team, 2020).
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Genomic Prediction Models
The genomic prediction models were fitted as follows:

y � μ + Zu + ε (4)

where y is a vector of the genotype BLUPs obtained from Eq. 1, μ
is the intercept of the model used for the study, Z is the SNP
marker matrix, u is the vector of marker effects, and ε is a residual
vector.

Five genomic prediction models were evaluated including
ridge regression ridge regression best linear unbiased
prediction approach (RR-BLUP), partial least squares
regression model (PLSR), random forest (RF), BayesCpi, and
Reproducing Kernel Hilbert Space (RKHS).

The RR-BLUP model assumes all markers have an equal
contribution to the genetic variance. One of the most widely
used methods for predicting breeding values is RR-BLUP,
comparable to the best linear unbiased predictor (BLUP) used
to predict the worth of entries in the context of mixed models
(Meuwissen et al., 2001). The RR-BLUP basic frame model is:

y � Zu + ε (5)

where u ∼ N(0, Iσ2u) is a vector of marker effects and Z is the
genotype matrix e.g., (aa, Aa, AA) � (0, 1, 2) for biallelic single
nucleotide polymorphisms (SNPs) that relates to phenotype y
(Endelman, 2011). The RR-BLUP genomic prediction was
implemented using the “RR-BLUP” package (Endelman, 2011).

Partial least square regression is a reduction dimension
technique that aims to find independent latent components
that maximize the covariance between the observed
phenotypes and the markers (predictor variables) (Colombani
et al., 2012). The number of components (also known as latent
variables) should be less than the number of observations to avoid
multicollinearity issues and commonly the number of
components are chosen by cross validation. PLSR was
executed using the “pls” package (Mevik and Wehrens, 2007).

Random forest is a machine learning model for genomic
prediction that uses an average of multiple decision trees to
determine the predicted values. This regression model was
implemented using the “randomForest” package (Breiman,
2001). The number of latent components for PLSR and
decision trees for random forest was determined by a five-fold
cross-validation to have a minimum prediction error.

BayesCpi was used to verify the influence of distinct genetic
architectures of different traits on prediction accuracy. The
BayesCpi assumes that each marker has a probability π of
being included in the model, and this parameter is estimated
at each Markov Chain Monte Carlo (MCMC) iteration. The
vector of marker effects u is assumed to be a mixture of
distributions having the probability π of being null effect and
(1- π) of being a realization of a normal distribution, so that,
uj|π, σ2g ∼ N(0, σ2g). The vector of residual effects was considered
as e ∼ N(0, σ2e). The marker and residual variances were
assumed to follow a chi-square distribution σ2g ∼ χ2(Sb, ]0)and
σ2e ∼ χ2(Sb, ]0), respectively, with ]0 � 5 degrees of freedom as
prior and Sb shape parameters assuming a heritability of 0.5
(Pérez and de los Campos, 2014).

The last model used was the RKHS. The method is a regression
where the estimated parameters are a linear function of the basis
provided by the reproducing kernel (RK). RKHS considers both
additive and non-additive genetic effects (de los Campos et al.,
2013). In this work, the multi-kernel approach was used by
averaging three kernels with distinct bandwidth values. In this
implementation the averaged kernel, �K was given by:

�K � ∑rKrσ2βr ~σ
−2
β , where ~σ2β � ∑

r
σ2βr . Here r � 3 and σ2βr are

interpretable as variance parameters associated with each kernel.
Therefore, for each rth kernel the proportion of sharing alleles
between pairs of individuals (ii′) was given by Kr � exp −hkd2ii’ }{ ,
where hk is a bandwidth parameter associated with rth

reproducing kernel and d2iiC is the genetic distance between
individuals i and i′ computed as follows: d2ii‘ � ∑p

j�1(xij−xiCj)2,
where j � 1, . . . , p markers stated as above. The bandwidth
parameter values for the three kernels were h � 0.5{1/5,1,5, as
suggested by (Pérez and de los Campos, 2014). Those values
were chosen using the rule proposed by de los Campos et al.
(2010).

Genomic prediction models RR-BLUP, PLSR, RF were carried
out using “GSwGBS” package (Gaynor, 2015) while the
BayesianCpi and RKHS were executed with the BGLR package
(de los Campos et al., 2010). We calculated each genomic
prediction model’s predictive ability as the Pearson correlation
between the estimated breeding values from model 1) (obtained
using the full data set) and those of validation set predicted from
the respective model. For that, we used a cross-validation scheme
considering 80% of the observations, randomly selected, as
training and the remaining 20% as validation set. The process
was repeated 20 times for each model. From the predictive ability
values, we estimated the confidence interval for this parameter
using the bootstrap method considering 10,000 samples (James
et al., 2013).

Determining Optimal Training Population
Size
The influence of training population size on predictive ability was
evaluated using a validation set comprising of 50 randomly selected
lines and training sets of variable sizes. The validation set was formed
by randomly sampling 50 lines without replacement. The training
population of size n was formed sequentially by adding 25 accessions
from the remaining accessions such that its size ranged between 50
and 175. We subset the collection into subgroups of 50, 75, 100, 125,
150, and 175 individuals each. The RR-BLUP model was used to
predict each trait. This procedure was repeated 20 times, and
accuracies of each training population size were averaged across
20 replicates. To predict a particular subpopulation with increasing
population size, a similar procedure was followed to using variable
training population size ranged from 50 to 175 with an increment
of 25.

Determining Optimal Marker Density
To evaluate the effects of GBS marker selection on predictive
ability, we randomly sampled markers five times with the
following subset: one thousand (1 K), five thousand (5 K), ten
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thousand (10 K), fifteen thousand (15 K), twenty thousand
(20 K), twenty-five thousand (25 K), and thirty thousand
(30 K). A random sampling of SNP was implemented to
minimize or avoid any possible biases on sampling towards a
particular distribution. Using the RR-BLUP model, a five-fold
cross validation approach was used to obtain predictive ability in
each marker subset. This procedure was repeated 20 times and
predictive ability for each subset of SNPs were averaged across 20
replicates.

Accounting for Population Structure Into
the Genomic Prediction Framework
We explored the confounding effect due to population structure
on predictive ability. We investigated subpopulation structure on
482 accessions genotyped with 30,600 SNP markers using the
ADMIXTURE clustering-based algorithm (Alexander et al.,
2009). ADMIXTURE identifies K genetic clusters, where K is
specified by the user, from the provided SNP data. For each
individual, the ADMIXTUREmethod estimates the probability of
membership to each cluster. An analysis was performed in
multiple runs by inputting successive values of K from 2 to
10. The optimal K value was determined using ADMIXTURE’s
cross-validation (CV) error values. Based on >60% ancestry, each
accession was classified into seven subpopulations (K � 7).
Accessions within a subpopulation with membership
coefficients of <60% were considered admixed. A total of eight
subpopulations were used in this study, including admixed as a
separate subpopulation. Principal component (PC) analysis was
also conducted to summarize the genetic structure and variation
present in the collection.

To account for the effect of population structure, we included the
top 10 PC, or the Q-matrix from ADMIXTURE into the RR-BLUP
model and performed five-fold cross-validation repeated 20 times.
Alternatively, we also used the subpopulation (SP) designation
identified by ADMIXTURE as a factor in the RR-BLUP model.
Albeit a smaller population size, we also performed a within-
subpopulation prediction. As stated above, a subpopulation was
defined based on >60% ancestry cut-off. Only three subpopulations
with this cut-off were identified and used with reasonable number of
entries (e.g., N > 40): SP5 (N � 51), SP7 (N � 58), and SP8 (N � 41).
A leave-one-SP-out was used to predict individuals within the
subpopulation with the RR-BLUP model. We also used
increasing population sizes to predict specific subpopulation (e.g.
SP8) using the RR-BLUP model.

Estimating Reliability Criteria and
Predicting Unknown Phenotypes
Nonphenotyped entries were predicted based on the RR-BLUP
model using SNP markers only. The reliability criteria for each of
the nonphenotyped lines were then calculated using the formula
(Hayes et al., 2009; Clark et al., 2012) as follows:

r(PEV) �
�������������(1 − (PEV

σ2
G

))√
(6)

where PEV is the predicted error variance, and σ2G is the genetic
variance.

RESULTS

Phenotypic Heritability and Correlation
Recorded days to first flowering had a wide range of variability
from 60 to 84 days with a mean of 71 days. The estimated
heritability for days to first flowering was 0.90 using Eq. 2 and
0.80 as per Cullis heritability using Eq. 3 (Table 1). For the
number of seeds per pod, the mean was 5.7 with a heritability
estimate of 0.84 (H2

Cullis � 0.66). The heritability for plant height
was 0.81 (H2

Cullis � 0.68), with an average height of 74 cm. The
number of pods per plant had a heritability estimate of 0.50
(H2

Cullis � 0.27) with a mean of 18 number of pods per plant and
ranged from 15 to 23 pods. Days to physiological maturity had a
mean of 104 days with an estimated heritability of 0.51 (H2

Cullis �
0.38). Seed yield per hectare ranged widely from 1734 to
4,463 kg ha−1 with a mean yield of 2,918 kg ha−1 and a
heritability value of 0.67 (H2

Cullis � 0.46). The number of pods
per plant was highly and positively correlated with seed yield.
Correlation estimation also suggested seed yield was positively
correlated with plant height, days to physiological maturity, and
days to first flowering (Supplementary Figure S1).

Predictive Ability of Different Genomic
Prediction Models
No single model consistently performed best across all traits that
we evaluated (Table 2), however Bayesian model BayesCpi,
RKHS, and RR-BLUP, in general, tended to generate better
results. Roughly the predictive abilities from different models
were similar, although slight observed differences were likely due
to variations on genetic architecture and the model’s assumptions
underlying them. For days to first flowering, the highest
predictive ability was obtained from the RR-BLUP (0.60). RR-
BLUP, RF, and RKHS models generated the highest predictive
ability for number of pods per plant (0.28). Number of seeds per
pod was better predicted by RR-BLUP and Bayes Cpi (0.42). For
plant height highest prediction accuracies were obtained from RF
and BayesCpi (0.45). BaysCpi also gave the highest prediction
accuracies for days to physiological maturity (0.47). For seed

TABLE 1 | Heritability and summary statistics for seed yield and other agronomic
traits.

Trait Mean Range SD CV(%) H2 H2
Cullis

DFF (days) 71 60–84 4.8 6.7 0.90 0.80
NoSeedsPod (Nos.) 5.7 4.4–6.9 0.5 8.5 0.84 0.66
PH (cm) 74 37.6–108.3 11.5 15.5 0.81 0.68
PodsPlant (Nos.) 18 15–23 1.5 8.3 0.50 0.27
DM (days) 104 99–112 2.4 2.3 0.51 0.38
SeedYield (kg ha−1) 2,918 1734–4,463 451 15.4 0.67 0.46

DFF is days to first flowering; NoSeedsPod is the number of seeds per pod, PH is plant
height, PodsPlant is the number of pods per plant, DM is days to physiological maturity,
SeedYield is seed yield per hectare, SD is the standard deviation, CV is coefficient of
variance, H2 is heritability in the broad sense.
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yield, RKHS had slight advantages over other models (0.42). As
mentioned above, some differences between the model’s
accuracy were only marginal and cannot be a criterion for
choosing one model (Table 2). For example, among the tested
models, the highest difference in predictive accuracy,
considering number of seeds per pod, had a magnitude of
0.02, a marginal value. The lack of significant differences
among genomic prediction models can be interpreted as
either a good approximation to the optimal model by all
methods or there may be a need for further research (Yu
et al., 2016). Unless indicated otherwise, the rest of our results
focused on findings from the RR-BLUP model.

Determining Optimal Number of Individuals
Increasing the training population size led to a slight increase in
the predictive ability overall for all traits. Across all traits except
days to first flowering and plant height, predictive ability
reached a maximum with the largest training population size
of N � 175 (Figure 1). A training population comprised of 50
individuals had the lowest predictive ability across all traits. For
days to first flowering, and plant height predictive ability did
steadily increase up at N � 150, and prediction ability reached
the maximum for most traits at highest training population size
with N � 175. Regardless of population size, predictive ability
was consistently higher for days to first flowering, whereas
predictive ability was consistently lower for pods per plant
(Figure 1). However, while predicting subpopulation 5

highest predictive ability was obtained for plant height
(Supplementary Figure S3).

Determining Optimal Marker Density
The different marker subsets had insignificant differences on
predictive ability for all the traits evaluated in this study. In
general, however, predictive abilities were higher between 5K and
15K SNPs and reached a plateau with increasing number of SNPs
(Supplementary Figure S2). For seed yield, plant height, and
days to maturity, highest predictive ability were 0.38, 0.39, and
0.42 respectively. The highest predictive ability for days to first
flowering was 0.61 using a SNP subset of 15K.

Accounting for Population Structure in the
Genomic Prediction Model
Population structure explained some portion of the phenotypic
variance, ranging from 9 to 19%, with the highest percentages
observed for plant height (19%) and seed yield (17%). Using
either ADMIXTURE or PCA to account for the effect due to
population structure, we improved the predictive ability. We
observed a 6% improvement for days to first flowering and
32% for seed yield compared over models that did not
account for population structure.

We also performed within subpopulation predictions.
Presented here are the predictive abilities for subpopulations 5,
7, and 8, as they had at least 40 entries. Subpopulation 8 had the

TABLE 2 | Predictive ability for seed yield and agronomic traits using five genomic prediction models.

Traits RR-BLUP PLSR RF BayesCpi RKHS

DFF (days) 0.60 (0.57–0.63) 0.57 (0.53–0.61) 0.55 (0.52–0.58) 0.59 (0.55–0.63) 0.54 (0.5–0.58)
NoSeedsPod 0.42 (0.37–0.48) 0.41 (0.36–0.46) 0.40 (0.35–0.45) 0.42 (0.38–0.46) 0.40 (0.34–0.48)
PH (cm) 0.39 (0.33–0.44) 0.42 (0.38–0.48) 0.45 (0.4–0.5) 0.45 (0.41–0.48) 0.43 (0.39–0.48)
PodsPlant 0.28 (0.22–0.33) 0.25 (0.2–0.31) 0.28 (0.22–0.34) 0.23 (0.17–0.29) 0.28 (0.23–0.34)
DM (days) 0.42 (0.36–0.47) 0.44 (0.39–0.5) 0.41 (0.35–0.46) 0.47 (0.43–0.5) 0.45 (0.4–0.48)
SeedYield (kg ha−1) 0.38 (0.34–0.42) 0.31 (0.27–0.36) 0.39 (0.35–0.44) 0.35 (0.31–0.39) 0.42 (0.37–0.48)

DFF is days to first flowering; NoSeedsPod is the number of seeds per pod; PH is Plant height in cm, PodsPlant is the number of pods per plant; DM is days to physiological maturity; within
parentheses are ranges of predictive ability.

FIGURE 1 | Predictive ability with increasing training population size using the RR-BLUP model, DFF is days to first flowering, DM, is days to physiological maturity,
NoSeedsPod is number of seeds per pod, PH is plant height in cm, PodsPlant is the number of pods per plant, SeedYield is seed yield in kg ha−1.
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highest predictive ability for days to first flowering (0.68), plant
height (0.33), days to maturity (0.43), and seed yield (0.37). The
highest predictive abilities for the number of seeds per pod (0.40)
and pods per plant (0.12) were obtained from subpopulation 7
(Table 3). Notably, predictive ability was generally higher when
all germplasm sets or subpopulations were included in the model
compared to when predictions were made using a subset of
germplasm.

Predicting Genotyped but Nonphenotyped
Accessions
The genomic prediction model was then used to predict
nonphenotyped entries based on their SNP information. Based
on the distribution of GEBV, none of the predicted phenotypes
for nonphenotyped accessions exceeded the top-performing
observed phenotypes for seed yield (Figure 2). The mean seed
yield of predicted entries (2,914 kg ha−1) was not significantly
different from the mean seed yield of observed genotypes
(2,918 kg ha−1). The mean of observed and predicted entries
were non-significant for the other five traits (Supplementary
Table S1). The GEBV for number of pods per plant, number of
seeds per pod (Supplementary Figures S4, S5), days to first
flowering, and days to maturity all fall within the range of
observed phenotypes (Similar Figures not added).

Reliability Estimation
We obtained reliability criteria for all traits, including seed yield
and phenology, for 244 nonphenotyped accessions. The average
reliability values ranged from 0.30 to 0.35, while the highest values
for evaluated traits ranged from 0.75 to 0.78. The higher reliability
values were distributed in the top, bottom, and intermediate
predicted breeding values (Supplementary Tables S2–S7). For
seed yield (kg ha−1), the highest reliability was obtained from the
bottom 50 (Figure 3). Higher reliability criteria are primarily
distributed among the intermediate and top GEBV for days to
first flowering. Predicted intermediate plant height showed the
highest reliability, as presented in Figure 3.

DISCUSSION

Widely utilized plant genetic resources collections, such as the
USDA pea germplasm collection, hold immense potential as diverse
genetic resources to help guard against genetic erosion and serve as
unique sources of genetic diversity from which we could enhance
genetic gain, boost crop production, and help reduce crop losses due
to disease, pests, and abiotic stresses (Jarquin et al., 2016; Crossa
et al., 2017; Holdsworth et al., 2017; Mascher et al., 2019). As the
costs associated with genotyping on a broader and more accurate
scale continue to decrease, opportunities increase to evaluate and
utilize these collections in plant breeding. Relying on phenotypic
evaluation alone can be costly, rigorous, and time-intensive.
However, by incorporating high-density marker coverage and
efficient computational algorithms, we can better realize the
potential for utilizing these germplasm stocks by reducing the
time and cost associated with their evaluation (Yu et al., 2016;
H. Li et al., 2018; Yu et al., 2020). In this study, we evaluated the
potential of genotyping-by-sequencing derived SNPs for genomic
prediction. We found that it holds promises for extracting useful
diversity from germplasm collections for applied breeding efforts.

In this study, predictive ability was generally similar among
methods, and there was no single model that worked across traits,
consistent with results obtained by other authors (Burstin et al.,
2015; Spindel et al., 2015; Yu et al., 2016; Azodi et al., 2019). For
example, considering only the punctual estimates, RR-BLUP
model was the best for days to first flowering, however for
plant height, days to physiological maturity, and seed yield,
the best models were BayesCpi and RF, BayesCpi and RKHS,

TABLE 3 | Predictive ability within and across subpopulations using RR-BLUP and all SNP markers.

Sub pops DFF NoSeedsPod PH PodsPlant DM SeedYield

Sub pop 5 (51) 0.27 0.26 0.08 -0.01 0.02 0.18
Sub pop 7 (58) 0.34 0.40 0.22 0.12 -0.01 0.01
Sub pop 8 (41) 0.68 0.35 0.33 0.07 0.43 0.37
SP- 0.50 0.45 0.47 0.25 0.51 0.34
SP+ 0.53 0.35 0.42 0.25 0.48 0.45
SP PC10 0.51 0.41 0.44 0.18 0.20 0.43
Var exp (R2) 0.13 0.09 0.19 0.15 0.15 0.17

DFF is days to first flowering, NoSeedsPod is the number of seeds per pod, PH is plant height, PodsPlant is the number of pods per plant, DM is days to physiological maturity, SP- does
not account for population structure, SP+, refers to the population structure addressed in the model, SP PC10 addresses population structure with 10 PC, Var exp (R2) refers the variance
explained by population structure after fitting a regression model, within parenthesis represent the number of entries in each subpopulation.

FIGURE 2 | Distribution of phenotyped and predicted nonphenotyped
accessions within the USDA pea germplasm collection for seed yield and plant
height.
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respectively. In recent work, Azodi et al. (2019) compared 12
models (6 linear and 6 non-linear) considering 3 traits in 6
different plant species, and they did not find any best
algorithm for all traits across all species. Newer statistical
methods are expected to boost prediction accuracy; however,
the biological complexity and unique genetic architecture of traits
can be regarded as the root cause for getting zero or slight
improvement on prediction accuracy (Valluru et al., 2019; Yu
et al., 2020). As data collection accelerates in at different levels of
biological organization (Kremling et al., 2019), genomic
prediction models will expand and nonparametric models,
including machine learning, may play an essential role for
boosting prediction accuracy (Azodi et al., 2019; Yu et al., 2020).

A related work in pea has been published but only based on a
limited number of markers (Burstin et al., 2015). This work assessed
genomic prediction models in a diverse collection of 373 pea
accessions with 331 SNP markers and found no single best
model across traits, which is consistent with our findings. In this
work, the authors reported that traits with higher heritability, such as
thousand seed weight and flowering date, had higher prediction
accuracy. We also verified days to first flowering as having the
highest heritability and predictive accuracies through all the models.
Interestingly, yield components like the number of seeds per pod and
pods per plant showed lower predictive accuracy, regardless of
prediction models used. Consistent with our results, Burstin et al.
(2015) also found yield components like seed number per plant as
having lower predictive accuracy and higher standard deviation for

prediction. These traits are highly complex and largely influenced by
the environment.

The predictive ability increased for all traits except plant height
when we increased the model’s training population size, suggesting
that adding more entries in the study can boost predictive ability. By
accounting population structure into genomic prediction framework,
we observed an improved prediction accuracy for some traits—seed
yield and days tofirstflowering—but not for other traits. Although the
population structure explained 9–19% of the phenotypic variance, we
cannot fully and conclusively answer the effect of population structure
in prediction accuracy due to smaller population size. In addition,
accounting for the relatedness among individuals in the training and
testing sets can potentially boost prediction accuracy (Riedelsheimer
et al., 2013; Lorenz and Smith, 2015; Rutkoshi et al., 2015); it was
outside the scope of this research but deserves further study. Adding
more environments (year-by-location combination) can also
potentially improve prediction accuracy using genomic prediction
frameworks that account for genotype-by-environment interactions
and/or phenotypic plasticity (Jarquin et al., 2014; Crossa et al., 2017; X.
Li et al., 2018; Guo et al., 2020). In general, we observed that predictive
ability slightly increased and plateaued after reaching certain subset of
SNPs. Such a plateau on prediction ability maybe due to overfitting of
models (Hickey et al., 2014; Norman et al., 2018), presumably due to
extensive linkage disequilibrium in the pea genome (Kreplak et al.,
2019).

Previous studies have indicated the importance of considering
reliability values when using predictive ability values to select

FIGURE 3 | Reliability criteria for nonphenotyped lines: the top 50 of genomic estimated breeding values are blue, and bottom 50 are in red, intermediates are in
green. (A) reliability estimates for seed yield (kg ha−1), (B) days to first flowering, (C) plant height, (D) number of seeds per plant.
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genotypes (Yu et al., 2016). We found higher reliability estimates
were spread across all GEBVs rather than clustering around higher
or lower extreme of GEBVs. Those accessions with top predicted
values and high reliability estimates maybe selected as candidate
parents for increasing seed yield and/or germplasm enhancement.
However, for a trait such as days to flowering in pea, even low or
intermediate predicted values maybe suitable candidates when
paired with high reliability values. We found the means of GEBV
for nonphenotyped entries were non-significantly different with
phenotyped accessions, and almost none of nonphenotyped
accessions were expected to exceed seed yield of phenotyped
accessions. Several accessions in the USDA pea germplasm
collection can be readily incorporated into breeding programs for
germplasm enhancement by incorporating above-average accessions
with high or moderately high reliability values (Yu et al., 2020).

CONCLUSIONS AND RESEARCH
DIRECTIONS

The research findings demonstrated that the wealth of genetic
diversity available in a germplasm collection could be assessed
efficiently and quickly using genomic prediction to identify
valuable germplasm accessions that can be used for applied
breeding efforts. With the integration of more orthogonal
information (e.g., expression, metabolomics, proteomics, etc.)
into genomic prediction framework (Kremling et al., 2019;
Valluru et al., 2019) coupled with the implementation of more
complex genomic selection models like a multivariate genomic
selection approach (Rutkoski et al., 2015), we can considerably
enhance predictive ability. This research framework could greatly
contribute to help discover and extract useful diversity targeting
high-value quality traits such as protein and mineral
concentrations from a large germplasm collection in the future.
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