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Abstract

Background: In an effort to return actionable results from variant data to electronic health records (EHRs),
participants in the Electronic Medical Records and Genomics (eMERGE) Network are being sequenced with the
targeted Pharmacogenomics Research Network sequence platform (PGRNseq). This cost-effective, highly-scalable,
and highly-accurate platform was created to explore rare variation in 84 key pharmacogenetic genes with strong drug
phenotype associations.

Methods: To return Clinical Laboratory Improvement Amendments (CLIA) results to our participants at the Group
Health Cooperative, we sequenced the DNA of 900 participants (61 % female) with non-CLIA biobanked samples. We
then selected 450 of those to be re-consented, to redraw blood, and ultimately to validate CLIA variants in
anticipation of returning the results to the participant and EHR. These 450 were selected using an algorithm we
designed to harness data from self-reported race, diagnosis and procedure codes, medical notes, laboratory results,
and variant-level bioinformatics to ensure selection of an informative sample. We annotated the multi-sample variant
call format by a combination of SeattleSeq and SnpEff tools, with additional custom variables including evidence from
Clinvar, OMIM, HGMD, and prior clinical associations.

Results: We focused our analyses on 27 actionable genes, largely driven by the Clinical Pharmacogenetics
Implementation Consortium. We derived a ranking system based on the total number of coding variants per
participant (75.2 & 14.7), and the number of coding variants with high or moderate impact (11.5 & 3.9). Notably, we
identified 11 stop-gained (1 %) and 519 missense (20 %) variants out of a total of 1785 in these 27 genes. Finally, we
prioritized variants to be returned to the EHR with prior clinical evidence of pathogenicity or annotated as stop-gain
for the following genes: CACNATS and RYRT (malignant hyperthermia); SCN5A, KCNH2, and RYR2 (arrhythmia); and LDLR
(high cholesterol).

Conclusions: The incorporation of genetics into the EHR for clinical decision support is a complex undertaking for
many reasons including lack of prior consent for return of results, lack of biospecimens collected in a CLIA
environment, and EHR integration. Our study design accounts for these hurdles and is an example of a pilot system
that can be utilized before expanding to an entire health system.
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Background

The Clinical Pharmacogenetics Implementation Consor-
tium (CPIC), both of the Pharmacogenomics Research
Network (PGRN) and Pharmacogenomics Knowledge
Base (PharmGKB [1]), was formed to overcome some
of the barriers to individualized medicine by providing
peer-reviewed, updated, evidence-based, freely accessible
guidelines for gene/drug pairs [2]. One product of this
Network was the PGRN sequence platform (PGRNseq).
The PGRNseq target set contains the coding regions
(exons), UTRs, 2kb upstream, and 1kb downstream for 84
pharmacogenes [3]. This target also includes all SNPs on
the Affymetrix DMET Plus Solution array and the Illu-
mina ADME assay. The Affymetrix DMET Plus array is a
platform that contains ~ 2000 common variants from 231
drug metabolism and transporter genes (Web Resources).
The Illumina ADME assay contains 184 biomarkers in 34
drug metabolism and transporter genes, covering > 95 %
of the PharmaADME Core list (Web Resources).

PGRN charged its sequencing resources to develop a
cost-effective, highly-scalable, and highly-accurate plat-
form of pharmacogenetic genes. The purpose was to
explore rare and known common variation in key phar-
macogenetic genes with strong drug phenotype associa-
tions. The sequencing resources included the Department
of Genome Sciences, University of Washington, the
Genome Institute at Washington University, and the
Human Genome Sequencing Center at Baylor College of
Medicine. Through nomination and multiple rounds of
balloting, the final consensus list included 84 pharmaco-
genes. The final list of genes included three classes: 1.
Drug-metabolizing enzymes; 2. Drug transporters; and 3.
Drug targets. While many of the genes were deemed clin-
ically actionable by CPIC [4], some genes had little known
beyond strong preliminary association data to pharma-
cological traits [3]. To aid in the design and accuracy
testing of the target, 96 samples (32 trios) of diverse ances-
try were utilized through comparisons of orthogonal data
sets, duplicates across resources, and Mendelian inconsis-
tencies. In general, there was > 99.0 % concordance for
these controls using multiple comparison approaches [3].

Approximately 9000 participants in the Electronic
Medical Records and Genomics (eMERGE) Network are
currently being sequenced with PGRNseq. The eMERGE
Network comprises seven adult, and three pediatric
United States (US) sites with biobanks linked to elec-
tronic health records (EHRs), sponsored by the National
Human Genome Research Institute (NHGRI) [5, 6]. The
main focus of the NHGRI for this project was to pro-
vide eMERGE participants with the PGRNseq platform
in anticipation that Clinical Laboratory Improvement
Amendments (CLIA) [7]-validated actionable results
would be returned to the participant and the EHR, and to
characterize novel variants [8].
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Our study design at the Group Health Research Insti-
tute (GH) was different from most other eMERGE sites.
Most sites’ biobanks, like ours, lacked CLIA compli-
ant samples and/or consent to return genetic results
and needed to resample and/or consent participants.
In our case, rather than redrawing all participants in
a CLIA laboratory prior to running the PRGNSeq, we
found it more efficient to sequence 900 existing non-
CLIA samples from ~6300 eligible biobanked participants
at GH, and then recollect 450 participants of interest.
As such, our goal was to prioritize our 900 sequenced
participants based on potential impact of actionable
results to help make choices around re-sampling and
re-consenting. Here we describe the algorithm we devel-
oped to select participants with the greatest poten-
tial for actionable variants (the “selection algorithm,”)
and the algorithm we developed to rank variants with
highest impact (the “ranking algorithm”). The selection
algorithm was designed to enrich for participants of non-
European ancestry with conditions likely to be due to vari-
ants in the pharmacogenetic (PGx) genes that the ranking
algorithm identified as most likely to be clinically action-
able. The system we developed to deploy these algorithms
will serve as a foundation for identification of potentially
actionable variants and EHR integration. These data will
inform pathogenicity of specific variants and practices for
EHR integration of genomic data.

Methods

Participant selection algorithm

Potential GH participants for the PGx project were
enrolled in the eMERGE Network through the Northwest
Institute of Genetic Medicine (NWIGM) biorepository,
and provided the appropriate consent to receive clinically
relevant genetic results (N ~ 6300). Participants were
eligible if aged 50 — 65 years old at the time of their enroll-
ment into the NWIGM repository, living, enrolled in GH’s
integrated group practice, and had completed an online
health risk appraisal. This age range provided a viable
target range for medication use. The selection algorithm
was based on several data sources from the EHR at GH
(Additional file 1: Figure S1): 1. Demographics - partici-
pants with self-reported race as Asian or African ancestry
were prioritized and selected to enrich for non-European
ancestry genetic variation; 2. Diagnosis and procedure
codes - participants were selected if found to have EHR
evidence of malignant hyperthermia and long QT syn-
drome (LQTS) to enrich for phenotypes related to PGx
decision support. To enrich for phenotypes that could
require medications for PGRNSeq drug targets, partic-
ipants were selected if found to have EHR evidence of
atrial fibrillation (AF), arrhythmia, congestive heart fail-
ure (CHF), or hypertension; 3. Laboratory values - if a
participant had any laboratory event of creatine kinase



Crosslin et al. Genome Medicine (2015) 7:67

(CK) > 1000, and were dispensed statins within 6 months
of the event, then they were selected. High levels of CK
could indicate a statin-related myopathy; and 4. Medi-
cations - participants were excluded if ever prescribed
carbamazepine or had a current regimen of warfarin.
Participants using carbamazepine likely would have been
tested for genotypes in HLA-B prior to this study or have
known tolerance to the drug. Pharmacogenetic variants
in CYP2C9 and VKORCI only affect starting dose for
participants prescribed warfarin, thus patients already on
warfarin would not benefit from these results.

Sequencing, variant calling and annotation

We sequenced 600 participants at the University of
Washington (UW), and sequenced 300 at the Center
for Inherited Disease Research (CIDR). There were 894
sequence data sets that passed quality control, and we
included the BAM files in multisample variant calling
using the Genome Analysis Toolkit (GATK, version 2.6-
5-gba531bd) with target = PGX [9-11]. The genome ref-
erence utilized was assembly BWA 0.7.4/Homo sapiens
assembly19.fasta, and dbSNP137.vcf build. The annota-
tion was standard in discovery mode, emitting variants
only, using the GLM model for SNP 4 INDEL. We used
a minimum base quality allowed of 25. Initially, we anno-
tated the multisample VCF with the SnpEff genetic variant
annotation and effect prediction toolbox [12]. Next, we
annotated the 894 participant multisample .vcf with Seat-
tleSeq (Web Resources), with additional custom variables
including evidence from ClinVar [13], OMIM [14], and
HGMD [15] with hyper-links to prior clinical associations.

Participant ranking algorithm

We next ranked the 894 participants based on potential
impact of actionable results (Additional file 2: Figure S2).
Our goal was to identify a subset of this group to target
for re-consent, blood redraw, and CLIA validation of vari-
ants in anticipation of returning results to the EHR. Our
analytic pipeline included participant-level variant index-
ing, custom annotation, and R and ITgX scripts. It soon
became apparent that we needed a relational data base
model to organize the data for the analysis presented.

We created separate tables for participant-level
and variant-level data, illustrated in Additional file 3:
Figure S3. To join the two, we created a gene index
variable, which corresponds to the genotype columns
in the participant-level data, and an index vari-
able in the variant-level table. These indices provide
meta-data for the given variant, which allows for
quick extraction of information. Using the example
chrl.pos237754201.refG.altper0.11.geneRYR2 we know
the following about this variant: 1. The variant is found
on chromosome 1; 2. The position on chromosome 1 is
237754201; 3. The nucleotide reference for this allele is
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guanine. 4. The alternative allele frequency is 0.11 %; and
5. This variant is found in gene RYR2. In the participant
level table, IUPAC notation [16] was utilized to represent
genotypes in a single column (Additional file 4: Table S1).
In order to enrich for non-European ancestry and
actionable indications in the 894 sequenced participants,
we selected all non-Europeans using self-identified race
and all with a diagnosis of long QT syndrome. To rank the
remaining participants based on variants, we focused our
analyses on 27 genes (Table 2) deemed either as actionable
by CPIC [4], or as important drug targets based on pre-
liminary association data to pharmacological traits [3]. We
generated three variant-level variables to rank the impact.
The “total variants” and “coding variants” contain the
overall number of variants (minor allele) for a given
participant selected for the 27 genes (Additional file 4:
Table S2), and for coding variants annotated as having
high/moderate impact according to SnpEff, respectively.
Next, we prioritized variants to be returned to the EHR at
GH with prior clinical evidence of pathogenicity or anno-
tated as stop-gain for the following genes: 1. CACNAIS
and RYRI (malignant hyperthermia); 2. SCN5A, KCNH?2,
and RYR2 (arrhythmia); and 3. LDLR (high cholesterol),
as “gh variants”. We then ranked the participant list by
“gh variants”, “coding variants”, and “total variants” to
create an overall ranking beyond the participants already
selected because of ancestry and actionable indications.
Finally, using laboratory data we created flags (1 or 0) to
indicate high median laboratory values based on repeated
measures for participants. The laboratory values cho-
sen could indicate important biological events. The labs
of interest included low-density lipoprotein (LDL) and
triglycerides because of the lipid trait genes found on the
target, including LDLR. High levels of CK could indicate
a statin-related myopathy, among other conditions. High
levels of thyroid stimulating hormone (TSH) could indi-
cate risk for hypothyroidism or suggest an altered rate
of drug metabolism [17]. We included international nor-
malized ratio (INR) because of the risk of bleeding for
participants on anticoagulant therapy and/or the presence
of liver disease. We addressed multiple values for each
participant by considering each person’s median value for
each laboratory assay. We flagged participants if median
vales of repeated measures met the following threshold:

1. LDL > 155 2%; 2. Triglyceride > 288 Z£; 3. CK >
174 %; 4. TSH > 4 %; and 5. INR > 1.5. These thresh-

olds were chosen based on the 90 percentile of observed

distributions (data not shown). We created an overall sum
of the five laboratory flags (1 or 0), and treated the variable
as an element in our ranking algorithm.

Research conformity to the Helsinki Declaration
GH and the UW are institutions engaged in human
subjects research that have each obtained Federal Wide
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Assurance of Compliance (GH: FWA 00002669; UW:
FWA 00006878) approved by the Office for Human
Research Protection (OHRP). The FWA is a binding writ-
ten agreement that research is guided by statements of
principles to protect the rights and welfare of human
subjects research conducted by these institutions. The
statement of principles include observance with appropri-
ate existing codes in the Declaration of Helsinki, adher-
ence of ethical standards stated in the Belmont Report
and full compliance with the Code of Federal Regulations
Title 45 Part 46. All research activities were reviewed and
approved by GHC'’s institutional review board (IRB), the
Group Health Human Subjects Review Committee, and
all research subjects engaged in the informed consenting
process.

NWIGM participants were informed that their DNA
could be used for future research, which included the
possibility of discovering a medical condition or disease
not previously known. The initial NWIGM samples were
not CLIA compliant, so all participants that we deemed
as having a high potential impact for actionable results,
and that agreed to the future research question that could
affect medical care, were contacted for re-consent. We
did not specifically indicate there were any “interesting”
sequencing results.

Data deposition

These data will be made available to the public through
two resources. The raw data will be deposited in dbGaP,
as both individual BAM files and as a multisample variant
call format (VCF) file (accession #: phs000906 .v1.pl).
The data will also be available through aggregate forms
in the Sequence, Phenotype, and Pharmacogenomics
Integration Exchange (SPHINX) portal (Web Resources).
SPHINX contains secure, deidentified, Web-accessible
repository of genomic variants, searchable by gene, path-
way, and drug [8].

Results and discussion

Participants

We present summary statistics of demographic data by
self-reported sex for the eMERGE participants are found
in Table 1. Roughly 61 % of the 894 participants are
female. While we enriched for non-European ancestry,
84 % of the participants self-identified as white. This
is a lower value than the makeup of GH as a whole,
which is about 98 % European ancestry. The next largest
racial group, 8 %, self-identified as Asian. Other groups
represented self-identified as Black or African Ameri-
can (5 %,) American Indian or Alaska Native (1 %,)
Native Hawaiian or other Pacific Islander (<1 %,) and
Unknown (2 %). For this sample, 3 % of our participants
self-identified as Hispanic. All subjects self-identified as
non-European ancestry (N = 123) were selected to be
re-consented as the highest priority.
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Table 1 Summary statistics of demographic data for the eMERGE
participants with PGRNSeq data by self-reported sex and race

Female Male Combined
(N = 546) (N = 348) (N = 894)
Self-Reported Race
American Indian or 2 9%(9) 1%(2) 19%(11)
Alaska Native
Asian 9 %(50) 5%(19) 8 9%(69)
Black or African American 5%(29) 3%(12) 5%(41)
Native Hawaiian or other 09%(2) 09%(0) 09%(2)
Pacific Islander
Unknown 1%(4) 5%(16) 2 %(20)
White 83 %(452) 86 %(299) 84 %(751)
Ethnicity
No 95 %(520) 94 %(326) 95 %(846)
Yes 4.9%(24) 2 %(6) 3 %(30)
Unknown 0%(2) 59%(16) 29%(18)
Hx? of LQTS 0%(0) 1%(2) 0%(2)
Hx of Hypertension 79 %(429) 80 %(279) 79 9%(708)
Hx of Arrhythmia 48%(264)  53%(186) 50 %(450)
Hx of AF 7 %(38) 14 %(47) 10 %(85)
Hx of CHF 1 %(6) 3%(12) 2%(18)
Median LDL > 155% 9 %(50) 6 %(22) 8%(72)
Median Triglyceride 6 %(33) 11 %(40) 89%(73)
> 2273
Median CK > 1741 1%(4) 7 %(23) 39%(27)
Median TSH > 4% 6 9%(34) 4%(13) 5%(47)
Median INR > 1.5 7 %(36) 11 %(40) 9%(76)
Total PGx Variants 758 £159 743 £128 752 £ 147
(total variants)
Coding PGx Variants 116+42 114 £35 11.5+39
(coding variants)
Group Health PGx Variants 400 £ 9.6 385+387 394493

(gh variants)

The continuous variables total variants, coding variants, and gh variants are
presented in terms of mean and = standard deviation
@Hx = History found in the EHR

Next, we mined the EHR and flagged the subset of the
894 participants with usable PGRNSeq data with diag-
nosis or procedures codes that could provide actionable
indications related to PGRNSeq genes (Table 1). Two
participants had a history of LQTS, and were selected
on that basis in the ranking algorithm. Roughly 80 % of
male and female participants had a diagnosis or proce-
dure code related to hypertension. This proportion was
found in both males and females. Roughly 50 % of the
participants had a diagnosis or procedure code related
to arrhythmia. Again, this approximate proportion was
found in both sex groups. We observed a difference in the
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sexes with respect to history of atrial fibrillation. More
males had a history of AF (14 %) compared to females
(7 %). Only 2 % of the participants had a history of CHFE.
Next, we flagged participants with five median labora-
tory values that could indicate medical conditions that
may require medication, including high lipids, hypothy-
roidism, and being anticoagulated. The laboratory values
included LDL, triglyceride, CK, TSH, and INR (Table 1).
For the most part, the proportion of subjects flagged
for each category was < 10 % with moderate differences
between the groups. The sum of all these laboratory val-
ues produced the weighted laboratory variable. The males
had a mean of 0.397, compared to the female’s 0.288
(data not shown). The three numbers for “total variants,’
“coding variants,” and “gh variants” represent quartiles of
the distributions (25%, 50, and 75"). Both groups had
an approximate median of 74 variants, and an approxi-
mate median of 11 coding variants with high or moderate
impact. We used these variables along with “gh variants”
variable to rank the participants.

For the sample of 894 participants, we identified a
total of 1785 variants in the 27 genes. Overall, the num-
ber of prioritized variants for return of results at GH
(mean = 39.4; standard deviation = =£9.3), the total
number of variants per participant (75.2 + 14.7), and
the number of coding variants with high or moderate
impact (11.5 + 3.9) did not significantly differ between
males and female. These three variables, prioritized, total,
and impact variants, in the respective order presented
were used to prioritize the participants who had not
already been selected on the basis of having non-European
ancestry or a history of LQTS. All three distributions are
summarized in Fig. 1. All three variables approximate a
normal distribution, but there are two outliers each due
to an excess of variants. The number of coding vari-
ants correlates with high or moderate impact variants as
illustrated in Fig. 2. The plot illustrates the correlation
using a Lowess smoothing function, and is annotated by
self-reported race. The two outlier individuals are self-
identified as Asian.

Variants identified
Table 2 shows summary statistics of variant-level data for
the eMERGE participants by annotated impact, whether
high/moderate coding or other. The complete list of vari-
ant effect prediction details can be found on the SnpEff
web site (Web Resources). In general, single nucleotide
variants, structural variation, and copy number variation
are labeled as having high or moderate impact if annotated
as modifying the coding and/or splice regions of a given
gene.

Of the 532 coding variants identified to have high or
moderate impact in our sample, 95 % (506) were labeled
as missense, 2 % (10) as missense-near-splice, 1 % (3)
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PGx Variants by Participant (27 Genes)
- Total PGx Variants (27 Genes)
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Fig. 1 PGx Variants by Participants (27 Genes). Distributions of total
variants, high-moderate impact coding variants, and total variants for
the following genes: 1. CACNATS and RYRT (malignant hyperthermia);
2.SCN5A, KCNH2, and RYR?2 (arrhythmia); and 3. LDLR (high cholesterol)

as splice-acceptor, < 1 % (2) as splice-donor, and 2 %
(11) as stop-gained. Most of the 1253 variants not anno-
tated as having a coding with high/moderate effect were
synonymous (N = 451; 36 %), followed by 3-prime-UTR
(N = 328; 26 %), and 5-prime-UTR, (N = 71; 6 %). There
were also variants annotated as intron-near-splice, mis-
sense, non-coding-exon, and synonymous-near-splice.

For average depth (across all participants), the CADD
score [18], and the GERP score [19], the three numbers
represent quartiles of the distributions (25, 50, and
75). The average read depth was greater than 400 for
both the coding variants with moderate/high impact as
well as other classes of variants. The median GERP score
for the high/moderate group was 3.9, compared to the
other variants at -0.47. The CADD score, which is cor-
related with the GERP, had a median value of 14.36 in
the high/moderate group, compared to the other variants
at 5.37.

Roughly 30 % of the variants for both the coding with
high/moderate impact and lower impact had not been
assigned an rsID. Based on annotation programs, 18 %
(N = 96) of the 543 high/moderate impact variants had a
prior clinical association, while 6 % (N = 72) of the 1253
lower impact variants had one. Less than 1 % of the vari-
ants were found in OMIM for both high/moderate and
lower impact classes. ClinVar annotation was found for
3% (N = 17) of the coding high/moderate variants and
1 % (N = 12) of the other variants. We observed a major
difference in the classes for the HGMD annotation. Thirty
percent (N = 157) of the coding high/moderate variants
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Total Variants vs. Coding Variants
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Fig. 2 Total Variants vs. Coding Variants. Total number of variants versus the number of high/moderate impact coding variants by participant. The
27 genes are listed in Additional file 4: Table S2, and the impact assignment is according to SnpEff annotation tool
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had HGMD annotation vs. 2 % (N = 23) for the other
variants.

We have provided the list of genes with variants
sub-classified by each annotated effect prediction class
(Table 2). As expected, not all genes are represented in
this list, most notably HLA-B. The large gene RYRI had
the most variants 14 % (N = 241) of total variants iden-
tified in our sample, and 19 % (N = 102) of the 532
variants in the coding high/moderate class. CYP2D6 had
11 % (N = 193) of the total variants, with similar results
in both high/moderate and lower impact groups, followed
by RYR2 at 11 % (N = 190) of total variants, and 8 % (41)
of the high/moderate group.

In addition to the algorithm outlined, we identified
variants on a participant level we deemed important for
re-consenting. We identified 20 participants with vari-
ants having ClinVar annotation as pathogenic or likely
pathogenic. Next, we identified 24 participants with vari-
ants annotated as stop-gained according to SnpEff. We
used HGMD annotation to identify 133 participants with
putative disease-causing or frameshift/truncating vari-
ants. Finally, we identified 134 participants with prior clin-
ical evidence as pathogenic or likely pathogenic reviewed
by experts in our Exome Variant Server 6500 participant
project [20]. Many of these variants overlapped for a given

participant, resulting in 134 unique participants identified
through these tools.

We identified 516 coding, 11 stop-gained, and 5 splice
acceptor/donor variants in 27 pharmacogenes in our sam-
ple of 894 participants. For the 20 out of 27 genes listed
in Table 2 with variants identified, there was an average
of 26.6 coding and/or splice variants per gene. Approx-
imately 70 % of these had rsIDs, most likely because of
the inclusion of SNPs from the Affymetrix DMET Plus
Solution array and Illumina ADME assay on the PGRNseq
platform. Eighteen percent of the 532 variants annotated
as having high or moderate impact had a prior clinical
association through HGMD for 15 of the 20 genes listed
in Table 2. Five of the twenty genes did not have variants
annotated as having high/moderate impact.

The majority of these variants (33 % of variants with
high/moderate impact with a prior clinical association)
fall into the sodium channel, voltage-gated, type V, alpha
subunit (SCN5A) gene. This gene contains potential
actionable variants for arrhythmia because it codes for
sodium channels for cardiac electrical signal transmission.
The next two major genes with large numbers of cod-
ing variants were ryanodine receptor 1 (RYRI) at 18 %,
and potassium voltage-gated channel, subfamily H (eag-
related), member 2 (KCNH2) at (11 %). If pathogenic,
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Table 2 Summary statistics of variant-level data for the eMERGE participants by effect prediction, whether coding with high/moderate

impact and lower impact

Impact Other High/Moderate Combined
(N =1253) (N =532) (N =1785)
Variant Function
3-prime-UTR 26 9%(328) 0%(0) 18 %(328)
5-prime-UTR 6%(71) 09%(0) 49%(71)
intron 30 %(377) 0%(0) 21 %(377)
intron-near-splice 2%(19) 09%(0) 1%(19)
missense 0%(3) 95 %(506) 29 %(509)
missense-near-splice 0%(0) 2%(10) 1 %(10)
non-coding-exon 09%(3) 0%(0) 09%(3)
splice-acceptor 09%(0) 1%(3) 0%(3)
splice-donor 0%(0) 09%(2) 09%(2)
stop-gained 09%(0) 2%(11) 19%(11)
Ssynonymous 36 %(451) 09%(0) 25 %(451)
synonymous-near-splice 09%(1) 09%(0) 09%(1)
Prior rsID 67 %(836) 71 %(376) 689%(1212)
Prior Clinical Association 6 %(72) 18 %(96) 9 %(168)
OMIM 0 %(6) 1%(3) 19%(9)
Clinvar 1%(12) 3%(17) 2 %(29)
HGMD 29%(23) 30 %(157) 10 %(180)
Gene List
ABCAT 9%(114) 8 %(44) 9 %(158)
ABCBI1 59%(63) 6%(32) 59%(95)
APOAT 0%(4) 1 9%(6) 1%(10)
CACNATS 4 9%(55) 9 %(46) 6%(101)
CYP2C19 2 %(29) 39%(18) 3 9%(47)
CYP2C9 4.9%(45) 4%(19) 4 %(64)
CYP2D6 11 %(139) 10 %(54) 11 9%(193)
CYP3A4 49%(45) 2 %(8) 39%(53)
CYP3A5 0%(3) 09%(0) 0%(3)
DPYD 4 %(50) 59%(24) 4%(74)
HMGCR 59%(59) 1 %(6) 4 %(65)
KCNH2 7 %(82) 4%(19) 6%(101)
LDLR 7 %(84) 39%(16) 69(100)
NAT2 1%(8) 2%(13) 19%(21)
RYR1 11 9%(139) 199%(102) 14.9%(241)
RYR2 12 9%(149) 8%(41) 11 9%(190)
SCN5A 89%(98) 896(45) 89(143)
SLCO1B1 29%(20) 59%(25) 39%(45)
TPMT 3 %(40) 2 %(8) 3 %(48)
VKORC1 2 %(27) 1 9%(6) 2%(33)
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Table 2 Summary statistics of variant-level data for the eMERGE participants by effect prediction, whether coding with high/moderate

impact and lower impact Continued

Average Depth 295/401/473
GERP —344/ — 047/161
CADD 2.12/537/8.66

347/436/499
201/3.90/482
10.34/14.36/18.59

308/413/480
—231/0.49/3.50
3.10/7.28/11.70

Effect prediction details can be found on the SnpEff web site (Web Resources). In general, single nucleotide variants, structural variation, and copy number variation
annotated as having high or moderate impact modify the coding and/or splice regions of a given gene. For the continuous variables average depth, GERP, and CADD, the

three numbers represent quartiles of the distributions (25, 50, and 75t)

variants found in RYRI indicate clinical actionability for
malignant hyperthermia, and variants found in KCNH2
present actionability for arrhythmia similar to SCNSA.
The high number of novel variants found suggests the
need to classify the pathogenicity of these variants in
order for clinical sequencing to be most useful.

The analytic pipeline we developed for this project,
including participant-level variant indexing, custom
annotation, and R and ITgX scripts, will serve as a foun-
dation for identification of potentially actionable variants
and EHR integration for our site. These data will inform
pathogenicity of specific variants and practices for EHR
integration of genomic data for clinical decision support
(CDS) activities.

The strategy employed here relied on a high confi-
dence that participants who had non-CLIA PGRNSeq
tests would return to provide samples for CLIA testing.
Within two months of beginning re-consent, 450 of 529
(85 %) participants contacted provided consent and blood
samples for Phase II, and validated results are already
being returned to participants. As approved by our IRB,
we specifically included a significant proportion of partic-
ipants with no interesting variants in the recontact so that
the fact of being recontacted did not indicate that there
was an interesting variants. Participants were not given
any indication of whether we had a suggestion of results
of interest or not.

Conclusions

NHGRI’s implementation of the PGRNseq target in 9000
participants in the eMERGE Network and subsequent
implementation into the EHR will be a milestone in
the quest for personalized medicine as it advances the
national electronic health information infrastructure. This
project provided us the unique opportunity to holistically
maximize actionable variants to return to 450 of 894 par-
ticipants through the EHR based on both phenotype data
derived from the EHR and sequence data.

Given our study design at GH, we chose to sequence 900
of our non-CLIA samples from ~6300 eligible biobanked
participants, and then recollect 450 participants of inter-
est for CLIA validation. We felt this process was more
efficient than re-consenting all eligible biobanked partici-
pants. This approach enabled us to gain experience in the

selection and ranking of participants based on potential
impact of clinically actionable PGx results to return to the
EHR.

Our approach did have limitations. While we were inter-
ested in and over-selected for non-European participants,
that did not necessarily translate into a greater poten-
tial for clinically actionable PGx variants. By sequencing
first and ranking, we placed great confidence that the GH
participants would return to provide blood samples for
CLIA testing. This approach relied heavily on a moti-
vated cohort, and may not be appropriate for all health
system cohorts if not the case. Prospectively enrolling
participants, as was the study design for many other
eMERGE sites participating in this project, would have
provided more precision in identifying actionable results
to be returned to the participant and the EHR. Multi-
ple eMERGE sites used a predictive algorithm to estimate
risk of of receiving drugs like simvastatin, clopidogrel, or
warfarin [8]. The selection of our list of 27 genes from
the platform could be considered subjective. We started
with a list of actionable variants identified by CPIC, and
added disease genes of interest for our cohort. Finally,
while mining participant data from EHRs does provide
excellent potential for phenotyping, there are limitations
to its granularity.

The incorporation of genetics into the EHR for CDS is
a complex undertaking for many reasons including lack of
prior consent for return of results, lack of biospecimens
collected in a CLIA environment, and EHR interfacing
and integration. Many institutions will have to pilot sys-
tems such as the one presented in this manuscript to
understand and account for these hurdles before expand-
ing to an entire health system population.

Variants found in PGx genes are obvious candidates
for CDS activities. As biotechnology advances to iden-
tify new genomic variation and the field of bioinformatics
advances to identify novel function, the research area of
genomic integration into the EHR for CDS will become
more important.

The PGRNSeq data will be the basis for PGx studies in
the eMERGE network, and will lead ultimately to clinical
implementation. We plan to identify variants associated
with medication adverse events and efficacy to determine
associated variants. In addition, we are analyzing lipid
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traits for ~9000 eMERGE participants based on candidate
genes, including LDLR, for single and multiple variant
gene-based association discovery work.

Web resources
e ClinVar: http://www.ncbi.nlm.nih.gov/clinvar/
e CPIC: http://www.pharmgkb.org/page/cpic
e dbGaP: http://www.ncbi.nlm.nih.gov/gap
e DMET+: http://www.affymetrix.com/catalog/
131412/AFFY/DMET-Plus-Solution#1_1

HGMD: http://www.hgmd.cf.ac.uk/ac/index.php

Group Health Research Institute (GHRI): http://

www.grouphealthresearch.org/

e Illumina ADME: http://support.illumina.com/array/
array_kits/veracode_adme_core_panel/
documentation.html
IXTEX: http://www latex-project.org/

OMIM: http://www.ncbi.nlm.nih.gov/omim
PharmaADME.org: http://www.pharmaadme.org/
joomla/

e Pharmacogenomics Research Network (PGRN):
http://pgrn.org/display/pgrnwebsite/PGRN+Home
PharmGKB: https://www.pharmgkb.org/

R Statistical Computing: http://www.r-project.org/
R Hmisc library: http://cran.r-project.org/web/
packages/Hmisc/index.html

e SeattleSeq Annotation: http://snp.gs.washington.edu/
SeattleSeqAnnotation138

e SnpEff: Genetic variant annotation and effect
prediction toolbox: http://snpeff.sourceforge.net/
index.html
SPHINX: https://www.emergesphinx.org/

SQLite Database: https://sqlite.org/

Additional files

Additional file 1: Figure S1. Selection algorithm for the prospective
participant selection and ranking to maximize actionable pharmacogenetic
variants and discovery in the eMERGE Network. (PDF 43.9KB)

Additional file 2: Figure S2. Ranking algorithm for the prospective
participant selection and ranking to maximize actionable pharmacogenetic
variants and discovery in the eMERGE Network. (PDF 73.0KB)

Additional file 3: Figure S3. System desgin for the prospective participant
selection and ranking to maximize actionable pharmacogenetic variants
and discovery in the eMERGE Network; T=IUPAC notation. (PDF 94.5KB)

Additional file 4: Table S1.IUPAC Ambiguity Codes; Table S2. PGx Gene
List. (PDF 74.9KB)
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