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Abstract: Graphene-based van der Waals (vdW) heterojunction plays an important role in
next-generation optoelectronics, nanoelectronics, and spintronics devices. The tunability of the
Schottky barrier height (SBH) is beneficial for improving device performance, especially for the
contact resistance. Herein, we investigated the electronic structure and interfacial characteristics
of the graphene/AlN interface based on density functional theory. The results show that the
intrinsic electronic properties of graphene changed slightly after contact. In contrast, the valence
band maximum of AlN changed significantly due to the hybridization of Cp and Np orbital
electrons. The Bader charge analysis showed that the electrons would transfer from AlN to graphene,
implying that graphene would induce acceptor states. Additionally, the Schottky contact nature can
be effectively tuned by the external electric field, and it will be tuned from the p-type into n-type once
the electric field is larger than about 0.5 V/Å. Furthermore, the optical absorption of graphene/AlN is
enhanced after contact. Our findings imply that the SBH is controllable, which is highly desirable in
nano-electronic devices.
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1. Introduction

Due to their fascinating optoelectronic properties, two-dimensional (2D) materials such as
graphene [1,2], transition metal dichalcogenides [3–6], phosphorene [7,8], carbon nitride [9–11],
and III-Nitrides (III-N) [12–16] have attracted extensive attention during the past years. Among these
2D materials, graphene, as a pioneering representative, shows room-temperature mobilities of
~10,000 cm2/V·s [1], which is rather desirable for next generation nanodevices.

However, shown without a gap, graphene itself is rather constrained in practical applications.
Fortunately, the construction of the heterojunction by vertically stacking two 2D materials provides a
new avenue to extend the application possibility of their individual components [17–19]. The underlying
physics is due to the lack of dangling bonds at the interface as well as the weak interactions of two
sublayers [20]. In recent years, more and more work on graphene-based van der Waals (vdW)
heterostructures have been reported [21–26]. These reports prove that the intrinsic optoelectronic
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properties of the individual components are preserved after contacting them. More than that,
some newly novel properties have also been found in the vertical stacking heterojunctions.

AlN is a rather significant wide bandgap semiconductor due to its small or even negative
electron affinity, excellent chemical stability, a superior mechanical strength, and a high thermal
conductivity [27,28]. Furthermore, AlN has also been confirmed as a potential optoelectronic
material in the deep ultraviolet light region [29]. These excellent properties of the bulk phase
AlN have naturally inspired people to explore its various properties in the 2D phase. Recently,
2D AlN few-layer sandwiched between the graphene and Si substrates as well as an ultrathin
aluminum nitride (AlN) nanosheet were successfully fabricated experimentally [16,30]. As is well
known, an excellent electrode to a 2D material-based field-effect transistor (FET) is rather important.
Usually, a conventional metal-semiconductor contact would not only induce a Schottky barrier
height (SBH), but also induce some interfacial states, both of which would degrade the interface
performance [31]. Graphene with metallicity is an ideal electrode for 2D materials due to its lack of
dangling bonds and weak interaction with the semiconductor. Thus, investigating the graphene/AlN
heterojunction is interesting, especially for the graphene/AlN-based nano-FET. Recently, Sciuto et al.
have studied the graphene/bulk-AlN rather than 2D AlN heterojunction properties, and predicted
that the polarity and surface reconstruction of nitride could effectively tune the Fermi-level [32].
In addition, we previously studied how biaxial strain as well as the defects would tune the electronic
properties of the graphene/AlN heterojunction by first-principles calculations [21]. However, for the
vdW heterojunction, modulating the SBH is an effective method to reduce the interfacial resistance.
The external electric field has been proven to be an important approach to tune its SBH [33,34].
Theoretically, people can control the value and direction of the electric field to the heterojunction by
setting a proper parameter in the input file of VASP. In the experiment, when nano-FET based on
graphene/AlN is fabricated, graphene is the electrode, and the electric field can be applied across
the interface by an external voltage. Nevertheless, how the external field would tune the interface
properties of the graphene/AlN interface is still unclear. Thus, motivated by this, in this paper,
we further investigated the graphene/AlN heterojunction properties by applying an external electric
field based on the first-principles calculations. We found that the electric field would effectively
modulate the Schottky barrier height (SBH) of the graphene/AlN heterojunction, which is desired to
degrade the contact resistance between the grapheme (electrode) and AlN (tunnel). Our findings will
provide valuable guidance for researchers to fabricate graphene/AlN-based devices.

2. Computation Method

The Vienna ab-initio simulation package (VASP) [35], which has implemented the generalized
gradient approximation (GGA) [36] method was used to carry out the calculations. The Perdew–Burke–
Ernzerhof (PBE) functional was utilized as the exchange-correlation potential and the projector
augmented wave [37] (PAW) method was employed to describe the ion-electron interactions.
The self-consistency total energy difference was set to 10−5 eV, the plane-wave energy cutoff was set to
500 eV, and the maximum Hellmann–Feynman force on each atom was less than 0.01 eV/Å, respectively.
To correct the van der Waals interaction between the AlN and graphene sublayers, the DFT-D3 approach
proposed by Grimme [38] was employed. A 20 Å vacuum thickness was constructed to cancel the
interactions from the periodic images along the z-direction [39,40]. The Γ-centered Monkhorst–Pack [41]
approach was used to sample the reciprocal space, and the grid density was set as 4 × 4 × 1. In order to
cancel the errors of electrostatic potential, the total energy, and the atomic force under the periodic
boundary condition, the dipole correction was considered in this work [42]. The band structure
analysis was conducted by using VASPKIT [43]. The heterostructure was constructed automatically
with our python code heterojunction. To describe the stability of the heterostructure, the binding energy
is defined by Equation (1) [18,44]:

Eb =
(
Egraphene/AlN − Egraphene − EAlN

)
/A (1)
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where Eb is the heterojunction binding energy; Egraphene/AlN represents the total energy of the
heterostructure; Egraphene and EAlN are the total energy of graphene and AlN monolayer, separately.
A denotes the x–y in-plane area of the heterojunction.

3. Results and Discussion

3.1. Structural Properties

We first optimized the graphene and AlN primitive cells, and the lattice constants of graphene and
AlN were a1 = b1 = 2.46 Å, a2 = b2 = 3.08 Å, respectively, agreeing well with that in [33,45]. By using
our python code heterojunction, the graphene/AlN heterojunction was built with a new lattice constant
of a = b = 12.33 Å and the lattice mismatch was lower than 1%. In other words, the heterostructure
was constructed by a 5 × 5 of graphene and a 4 × 4 AlN supercell, as depicted in Figure 1. As the
total energy of the heterojunction is relevant to the interlayer distance, by changing the interlayer
distance from 2.5 to 4.3 Å, we found that the favorably energetic layer distance was 3.5 Å, and the
binding energy of the graphene/AlN interface based on Equation (1) was −14.1 meV/Å2, indicating that
graphene/AlN is a typical vdW heterostructure [18,44].
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Figure 1. (a) The 5× 5 supercell of graphene, (b) the 4× 4 supercell of AlN, (c) the top view (upper)
and side view (lower) of graphene/AlN heterojunction. (d) The energy difference with respect to the
most stable structure of the graphene/AlN system as a function of interlayer distance.

3.2. Electronic Properties

We first calculated the electronic structures of the graphene and monolayer AlN, as shown in
Figure 2.
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The typical Dirac-point of graphene is found to occur at the Fermi level. The conduction band
minimum (CBM) of AlN rides at the Γ point while the valence band maximum (VBM) is found
at the K point, implying an indirect bandgap of 3.1 eV, which agreed well with our previous PBE
calculations [21]. The projected density of states (PDOS) indicates the VBM is mainly contributed by
Np orbital electrons while the CBM is contributed by Ns orbital electrons.

The work function is defined as WF = Evac − EF, where Evac and EF are the vacuum energy and
Fermi energy, respectively. Based on the definition, the work function for graphene and AlN are 4.30
and 5.11 eV, respectively. Applying the external electric field is an approach to modulate the electronic
properties of the vdW interface [46]. The projected band structures and density of states (PDOS) of
the heterojunction under different external electric fields were investigated, as shown in Figure 3.
Herein, we applied an external electric field in the direction perpendicular to the x–y plane of the
graphene/AlN heterojunction and defined the positive direction was from graphene to AlN, as shown
in Figure 4f. Compared to Figure 2, it was found that the intrinsic band structure of graphene was
almost preserved due to the weak interaction in the vdW heterojunction, but the VBM of AlN changed
due to the charge redistribution between in the interface, as confirmed by the difference charge density
illustrated in Figure 4. Concerning the PDOS in Figure 3b, we found that the underlying physics
regarding the charge redistribution resulted from the strong hybridization of the Np and Cp orbital
electrons. In contrast, with negligible hybridization around the CBM energy region, the CBM of AlN
was almost unchanged. As shown in Figure 3, with the increase in the negative electric field, more and
more electrons were transferred from AlN to graphene. This was confirmed by the downward shift of
the Dirac-point with respect to the Fermi level. These results prove that graphene induced acceptor
states, as confirmed by the charge density difference and the Bader charge analysis [47] discussed
in the following section. Consequently, the bandgap of the AlN sublayer in the heterostructure is
changed dependently of the external electric field, as shown in Figure 5b.
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Figure 3. (a) The projected band structure of the graphene/AlN heterojunction under external
electric field ranging from −0.4 V/Å to 0.4 V/Å. (b) The projected density of states of graphene/AlN
heterostructure under the corresponding external electric field. Fermi level was aligned to 0 eV.
The Schottky barrier height (SBH) is defined in Figure 3a, where Φn is the n-type SBH, and Φp is the
p-type SBH.
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Figure 4. (a–e) The difference charge density of the graphene/AlN system under a different external
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and the AlN sublayer are marked as brown and blue dashed lines, respectively. The positive external
field direction is denoted by a red arrow.
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The plane-averaged charge density difference (PCDD) between the graphene/AlN interface is
represented by Equation (2) [19,21]:

∆ρ = ρgraphene/AlN − ρgraphene − ρAlN (2)
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where ρgraphene/AlN, ρAlN and ρgraphene are the plane-averaged charge density of the graphene/AlN
interface, AlN monolayer, and graphene monolayer, respectively. As depicted in Figure 4a, the PCDD
results show the interaction and electron transfer between the AlN and graphene sublayers. The results
show that charges were redistributed after contact between the graphene and AlN, that is, both charge
accumulation and depletion mainly occurred in the middle of the interface, as confirmed by the x–y
plane-averaged charge density difference curves along the z-direction (shown in Figure 4f), in which
the positive and negative values represent the charge accumulation and depletion, respectively. Thus,
graphene was found to obtain electrons from AlN, which would result in the formation of an interface
dipole layer and its associated potential step [48,49]. We further investigated the charge transfer
by using Bader’s method, and the results indicate that the charge transfers from AlN to graphene
under an external electric field ranging from −0.5 V/Å to +0.5 V/Å are decreased from 0.23 e to 0.03 e
linearly, as shown in Figure 5c, further indicating that graphene would induce acceptor states, which is
consistent with the band structures.

3.3. Tunability of SBH under the External Electric Field

The Schottky barrier height (SBH) plays a vital role in the metal/semiconductor interfacial system
or Schottky-based devices. In the theory of the Schottky–Mott model [50,51], the n-type and p-type
Schottky barrier are represented by

Φn = CBM− EF (3)

Φp = EF −VBM (4)

separately, where Φn is the n-type SBH; Φp is the p-type SBH; and EF is the Fermi level, which is
referred to as zero during the study. Without an external electric field, the Φn and Φp of graphene/AlN
were found to be 2.3 eV and 0.8 eV, respectively. Hence, a p-type Schottky contact was built at the
graphene/AlN interface.

Usually, a high SBH will seriously increase the contact resistance and further degrade the contact
performance of the field-effect transistor (FET). Thus, the tunability of SBH is rather meaningful for
Schottky devices. The common methods of modulating the SBH include in-plane strain engineering [52],
vertical strain engineering [22,53] as well as the external electric field [24]. In order to identity how
the SBH of the graphene/AlN interface can be tuned by the external electric field, in this study,
we applied serials of electric field values ranging from −0.5 V/Å to +0.5 V/Å in the vertical direction.
The negative sign indicates that the electric field is directed from AlN toward graphene. The CBM,
VBM, and EF shown in Figure 5a, as a function of an external electric field, were increased within the
considered electric field range, but with different degrees. Consequently, as depicted in Figure 5b,
the graphene/AlN was found to be a p-type Schottky contact before the external field was larger than
about +0.5 V/Å, and after that, the interface turned from a p-type into an n-type Schottky contact.
As seen in Figure 5b, the bandgaps of AlN would change dependently on the electric field, due to the
different shift amount of the CBM and VBM under different electric field values. We also calculated the
bandgap of AlN itself under different electric field values, marked by the yellow curves in Figure 5b.
In addition, when the electric field in the negative direction was increased to −0.5 V/Å, the p-type SBH
was only 0.3 eV, implying that the contact resistance was rather small. This indicates that graphene is an
ideal electrode material for AlN. Our findings are helpful in understanding the operation mechanism
of the graphene/AlN-based FET under a vertical electric field.

3.4. The Optical Properties

Finally, we discuss the optical absorption ability of the graphene/AlN heterojunction. It noteworthy
that the traditional optical properties calculation approach for three-dimensional (3D) material needs
to be corrected in the case of a two-dimensional (2D) material [54,55]. This originates from the fact that
the dielectric function is dependent on the vacuum thickness [56]. Thus, in 2D materials, the optical
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conductivity σ2D(ω) is an important parameter to describe the optical properties. Based on the Maxwell
equation, the 3D optical conductivity is defined as [54]

σ3D(ω) = i[1− ε(ω)]ε0ω (5)

where ε(ω) is the complex dielectric function described in [43]; ε0 is the vacuum permittivity; and ω is
the frequency of the incident wave. The in-plane 2D optical conductivity is then determined by

σ2D(ω) = Lσ3D(ω) (6)

where L is the slab thickness in the graphene/AlN heterojunction. Finally, the normalized absorbance
A(ω) is obtained

A =
Reσ̃(ω)∣∣∣1 + σ̃(ω)/2

∣∣∣2 (7)

where σ̃(ω) = σ2D(ω)/(ε0c) is the normalized conductivity; c is the speed of light; and Re stands for
the real part.

Figure 6 illustrates the absorption as a function of the photon energy of the graphene/AlN
heterojunction under various external electric fields. As is well known, the PBE method underestimated
the bandgap but had almost no effect on band shape. Thus, we used our previous hybrid functional
bandgap [57] (~4.04 eV) to analyze the optical properties. That is, based on the bandgap difference
between PBE and the Heyd–Scuseria–Ernzerhof [58,59] (HSE) functional, the photon energy shifted
with a scissor operator. The absorption was averaged in the x- and y-directions. The results show
that the external electric field would affect the optical absorption accordingly, which is because the
bandgap of AlN will change with the variation of the external electric field. With a rather larger HSE
bandgap [57] (~4.04 eV), the monolayer AlN showed a rather weak absorption in the visible region,
indicating that 2D AlN itself is not applicable for the optoelectronic field (i.e., photocatalysis) in the
visible sunlight region. However, after being in contact with graphene, the absorption was significantly
enhanced in the graphene/AlN heterojunction. Thus, we expect that this interface will be promising in
nano-optoelectronic applications in the visible sunlight region.
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4. Conclusions

In conclusion, the structural, electronic, and optical properties of the graphene/AlN interface under
external electric field were investigated through density functional theory. The results of the projected
band structure, the charge density differences, and the Bader charge showed that graphene acts as an
acceptor while AlN acts as a donor. By applying the external electric field from −0.5 V/Å to +0.5 V/Å,
we found that the electrons transferred from AlN to graphene would decrease. When the electric
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field was not applied across the interface, the graphene/AlN heterojunction was shown to be a p-type
Schottky contact with a Φp of 0.8 eV. Additionally, we found that the Schottky barrier height could be
tuned by the electric field effectively, that is, the Φp increased from 0.3 to 1.5 eV, while the Φn increased
from 2.3 to 2.6 eV first, and after decreased to 1.4 eV. As a result, the graphene/AlN contact transforms
from a p-type into an n-type with an electric field larger than about 0.5 V/Å. Furthermore, the optical
calculations showed that the absorption will be enhanced in the visible region after contacting graphene
and AlN. Our findings provide valuable guidance in the fabrication of graphene/AlN-based Schottky
devices and promote the performance of nanodevices in the future.
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