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Even though the visual cortex is one of the most studied brain areas, the neuronal
code in this area is still not fully understood. In the literature, two codes are commonly
hypothesized, namely stimulus and predictive (error) codes. Here, we examined whether
and how these two codes can coexist in a neuron. To this end, we assumed that
neurons could predict a constant stimulus across time or space, since this is the most
fundamental type of prediction. Prediction was examined in time using electrophysiology
and voltage-sensitive dye imaging in the supragranular layers in area 18 of the anesthetized
cat, and in space using a computer model. The distinction into stimulus and error code
was made by means of the orientation tuning of the recorded unit. The stimulus was
constructed as such that a maximum response to the non-preferred orientation indicated
an error signal, and the maximum response to the preferred orientation indicated a
stimulus signal. We demonstrate that a single neuron combines stimulus and error-like
coding. In addition, we observed that the duration of the error coding varies as a function
of stimulus contrast. For low contrast the error-like coding was prolonged by around
60–100%. Finally, the combination of stimulus and error leads to a suboptimal free
energy in a recent predictive coding model. We therefore suggest a straightforward
modification that can be applied to the free energy model and other predictive coding
models. Combining stimulus and error might be advantageous because the stimulus code
enables a direct stimulus recognition that is free of assumptions whereas the error code
enables an experience dependent inference of ambiguous and non-salient stimuli.
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INTRODUCTION
Since the early days of electrophysiology one goal in neuroscience
has been to find a correspondence between action potentials and
stimulus. Experimental studies show that correspondence is not
perfect. For example repeated presentations of the same stimulus
do not result in the same response amplitude (Schiller et al., 1976;
Heggelund and Albus, 1978; Scobey and Gabor, 1989; Vogels
et al., 1989; Snowden et al., 1992; Softky and Koch, 1993). This
motivates the question why and how action potentials differ from
the mere coding of the stimulus. The discrepancy between stimu-
lus coding and action potentials may be ascribed to spontaneous
fluctuations of ongoing activity (Arieli et al., 1995, 1996; Kenet
et al., 2003). Spontaneous fluctuations could be the result of
predictions (Ringach, 2009).

The most fundamental form of prediction is that a stimu-
lus will repeat in space or in time. If the stimulus is repeating,
the local stimulus can be used to predict a nearby or future
stimulus, respectively. Thus, the error will be small. If neurons
perform error coding the firing rate should drop (Koch and
Poggio, 1999). The opposite is also true, i.e., when the brain is
“surprised” by a stimulus, the activity should be high. For space,
it has been observed that the firing rate drops when a grating

stimulus becomes larger than a certain optimal radius, i.e., the
stimulus repeats across space (Maffei and Fiorentini, 1976; Nelson
and Frost, 1978; Angelucci et al., 2002). This effect is normally
termed contextual suppression. For time, a firing rate decrease
usually occurs when the visual stimulus remains constant for
more than an optimal time span, i.e., the stimulus repeats across
time (Kuffler, 1953). This effect is normally termed adaptation
(Barlow, 1953; Muller et al., 1999; Kohn, 2007). In addition to
those basic response properties, the error coding principle has
explained responses to a range of stimuli such as overlapping grat-
ings, textured surrounds, and apparent motion (Rao and Ballard,
1999; Alink et al., 2010; Spratling, 2010).

Although there is growing evidence for error coding there is
also recent evidence for a true stimulus coding (Benucci et al.,
2009). True stimulus coding means that the luminance pattern of
the currently shown stimulus is represented by the neuronal activ-
ity. This is in contrast to error coding where not only the current
luminance pattern is represented but also a prediction that was
generated from a combination of previously shown stimuli and
the knowledge about the environment. Interestingly, both stim-
ulus and error coding were observed in one and the same visual
area (V1). Models of predictive coding generally assume separate
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error and stimulus units rather than combining them (Rao and
Ballard, 1999; Friston, 2008, 2010; Spratling, 2010). In contrast to
these models, we postulate that both stimulus and error code can
coexist in the same area and in the same neuron and that the error
code can override the stimulus code.

To separate the stimulus from the error signal we have taken
advantage of the orientation preference code of the neurons in the
visual cortex of cats. The stimulus was constructed as such that a
maximum response to the non-preferred orientation indicated an
error signal, and the maximum response to the preferred orien-
tation indicated a stimulus signal. It consisted of two images, the
first image should generate a constant prediction, and the second
image should violate the constancy prediction induced by the first
image. The nature of that violation was that the resulting error
image has an orientation that is orthogonal to that of the stimulus
image.

Subsequently, we reformulated the temporal also into a spatial
prediction stimulus. Using those stimuli we could examine how
the proportion between error and stimulus coding varied across
time and space. We could also observe that the proportion of the
stimulus and error coding was dependent on the stimulus contrast.
Furthermore, the prediction stimuli were used to examine the
behavior of two different predictive coding models. Based on the
comparison between model and experimental data we conclude
that existing predictive coding models may have to be modified
in order to account for a combined stimulus and error code.

METHODS
The study was approved by the ethical committee for animal
experimentation of the Government of Hessen. All experimen-
tal procedures were performed in accordance with the Society for
Neuroscience and the German law for animal protection. Optical
imaging of intrinsic signals and voltage-sensitive dye record-
ings were performed in area 18 of five adult (>1 years) cats.
Extracellular recordings were done in eight animals.

PREPARATION
Anesthesia was initiated by intramuscular injection of ketamine
(10 mg/kg; Ketamin, CEVA Tiergesundheit GmbH, Düsseldorf,
Germany) and xylazine (1 mg/kg, Rompun, Bayer Vital,
Leverkusen, Germany). After tracheotomy the anesthesia was
maintained by artificial ventilation with a gas mixture of N2O
(70%), O2 (30%), and halothane (1.2%, Halothan, Eurim-
Pharm Arzneimittel GmbH, Piding, Germany) supplemented by
intravenous application of a muscle relaxant (pancuronium bro-
mide, 0.25 mg/kg/h, Pancuronium, CuraMED Pharma GmbH,
Karlsruhe, Germany) to prevent eye movements. The ECG,
pulmonary pressure, and CO2 content of the expired air were
continuously monitored. End-tidal CO2 was kept in the range
of 3–4%, and rectal temperature was maintained in the range of
37–38◦C. A craniotomy was performed on one hemisphere, and
a circular stainless steel chamber centered on Horsley–Clarke
AP0 and AL4, 15 mm in diameter, was mounted onto the skull
over the exposed region with dental cement (Paladur, Kulzer,
Wehrheim, Germany).

During recording periods, the level of halothane was low-
ered to 0.8%. For visual stimulation, pupils were dilated and

the nictitating membranes retracted with topical atropine (1%)
and phenylephrinhydrochloride (1%) (Ursapharm, Saarbrücken,
Germany). Corneae were protected by contact lenses with an arti-
ficial pupil of 3 mm diameter and with sufficient power to focus
the retina on the stimulation monitor at a distance of 57 cm.
The average eye drift during 24 h was 1.3◦ ± 0.3◦ (n = 4) (esti-
mated from receptive field mapping during the course of the
experiment).

VISUAL STIMULUS
Visual stimuli were presented on a 21-inch computer screen
(Hitachi, CM815ET, refresh rate, 100 Hz; 640 × 480 pixels resolu-
tion) at a distance of 57 cm. Stimuli were displayed using a stan-
dard graphical board (GeForce 6600-series, NVIDIA, USA) con-
trolled by ActiveStim (www.activestim.com) and custom made
software in LabVIEW.

GRATING AND PRIMING STIMULUS
Two different types of stimuli were used to study near and far
temporal contextual modulation, respectively. For near temporal
contextual modulation a 0, 20, 50, 100, or 250 ms duration prim-
ing image was preceded by a 500 ms gray screen, and followed by a
250 ms grating. For far temporal contextual modulation the prim-
ing image always had a duration of 250 ms. Following the priming
image and preceding the grating there was a blank screen of a
duration of 0, 20, 40, 50, or 100 ms, i.e., a gap of different dura-
tions. The priming and grating pattern had a spatial frequency of
0.3 cyc/deg and the transition (both priming and grating pattern)
were displayed with 16 different angles separated by 22.5◦.

It is important to note here a fundamental difference between
this and the previous study using the same stimulus (Eriksson
et al., 2010). In the former study, the actual stimulus never
happened to be represented by the single unit but, instead, the
error was always represented. The previous study examined fer-
rets anesthetized with isoflurane, which suppresses single unit
activity more than halothane (Villeneuve and Casanova, 2003),
i.e., the anesthesia used in this study. Since firing rates are lower
during stimulus coding than during error coding suppression
by the anesthesia gas might have impaired the later stimulus
representation in the ferret study.

ELECTROPHYSIOLOGICAL RECORDINGS
Arrays of 4 × 4 Tungsten electrodes (1 M�, MicroProbes,
Gaithersburg, MD, USA) with 300 μm inter-lead spacing were
positioned touching the surface of central area 18 by using
Horsley–Clarke coordinates and the retinotopic map (Tusa et al.,
1978, 1979), or by previous identification of the 17/18 border
with optical imaging of intrinsic signals (Rochefort et al., 2007).
The craniotomy was subsequently covered with agar and bone
wax. The electrodes were lowered into the brain by means of a
hydraulic micromanipulator (Narishige, Japan) with a speed of
100 um/h. We stopped moving when there were visual responses
on more than 50% of the electrodes. This was typically the case
after 800–1000 μm. Since the array electrode has many contact
points it is difficult to avoid dimpling of the brain. Therefore,
the depth of the electrode tips was less than 800–1000 μm under
the cortical surface, i.e., supragranular layers or upper layer IV.

Frontiers in Systems Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 26 | 2

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Eriksson et al. Dynamic combination of a stimulus and an error-like signal

Protocols were started earliest 2 h after the electrode descend had
stopped. To focus on hypothetical error units only units with a
transiency index (1-peak/plateau) larger than 0.5 were used for
our protocol (Friston, 2008).

Spiking activity of small groups of neurons (multi-unit activ-
ity) was obtained by amplifying and band-pass filtering (MUA,
0.7–6.0 kHz; LFP, 0.7–170 Hz) the recorded signals with a cus-
tomized 32 channels Plexon pre-amplifier connected to an
HST16o25 headset (Plexon Inc, Dallas, TX, USA). Additional
10× signal amplification was done by onboard amplifiers
(M-series acquisition boards, National Instruments, Austin, TX,
USA). Signals were digitized and stored using a LabVIEW-based
acquisition system developed in the institute (SPASS). Spikes
were detected by amplitude thresholding (typically four stan-
dard deviations above noise level). Spike events and correspond-
ing waveforms were sampled at 32 kS/s (spike waveform length,
1.2 ms).

ANALYZES OF ELECTROPHYSIOLOGICAL RECORDINGS
All analyzes were done using Matlab R13 (The MathWorks,
Natrick, MA, USA). Off-line spike sorting was performed using
an automatic spike sorter with default parameters (Shoham et al.,
2003).

BASIC ANALYSIS
For grating stimuli, an orientation tuning curve for each unit
was derived from the average firing rate during 0–250 ms after
the onset of 16 stationary gratings in steps of 22.5◦. Responses
to gratings separated by 180◦ were added (since the stimulus
is a stationary grating a rotation of 180◦ results in a contrast
reversal and since we couldn’t find a difference between sim-
ple and complex cells). The preferred orientation was defined
as the orientation that generated the highest firing frequency.
We only used a unit if average firing rates (across trials) of pre-
ferred and the non-preferred orientation (90◦ from preferred)
were highly significantly different (p < 10−8). The high signifi-
cance criterion minimized the number of units that responded to
the non-preferred orientation.

STIMULUS FOR VOLTAGE-SENSITIVE DYE IMAGING
For VSD recording, the priming pattern transition was repeated
at two different angles separated by 90◦, i.e., horizontal and verti-
cal. For studying the lateral spreading of VSD signals the pattern
transition was displayed in a localized patch of 10◦ diameter. The
position of the patch in visual space was determined by intrinsic
imaging of retinotopy (see below).

STIMULUS POSITIONING FOR VSD IMAGING USING INTRINSIC
IMAGING
To position the stimuli and to extract an orientation map
for voltage-sensitive dye imaging we did intrinsic imaging.
The light from a halogen light source was passed through a
band pass filter 605 ± 10 nm, and through two external light
guides. Images (256 × 256 pixels) were acquired at 5 Hz with a
12 mm CCD camera (Dalsa 1M60) through a macroscope fit-
ted with a 1× objective (Imager 3001, Optical Imaging Inc.,
New York, USA).

For Fourier imaging (Kalatsky and Stryker, 2003), an elon-
gated bar was cyclically drifting over the screen into one of four
different directions (left, right, up, and down). Each cycle dis-
playing one direction lasted 8 s and was repeated 20 times. Each
20 cycle block of one direction was repeated five times. For each
pixel, the phase of the stimulus induced oscillation was calculated
for the four conditions. The phase in the up condition was sub-
tracted from the phase in the down condition (the same operation
was done for left and right) in order to remove a constant additive
response delay in the intrinsic signals (assumed to be the same
for the two conditions). The resulting time image was scaled by
velocity to deliver the retinotopic positions. A similar procedure
was done in order to estimate the response delay of the intrinsic
signal. We found it to be around five seconds on average.

VOLTAGE-SENSITIVE DYE IMAGING
The exposed cortical surface was stained for 2 h with the voltage
sensitive dye RH1838 (0.53 mg ml−1) (Optical Imaging, Rehovot,
Israel). The light from a halogen light source was band pass
filtered, 630 ± 10 nm, reflected onto the brain surface with a
dichroic mirror (650 nm), and collected with a high-pass emis-
sion filter (665 nm). Images (256 × 256 pixels) were acquired at
160 Hz with the Imager 3001.

ANALYZES OF VSD RECORDINGS
The VSD signal was low pass filtered in time using a ±6.25 ms
box filter. For the spatial low pass filtering a 200 × 200 μm box
filter was weighted and normalized with a spatial blood vessel
mask hand drawn in Photoshop. In order to study the popula-
tion orientation coding a 800 × 800 μm low pass filter version
was subtracted. Since the orientation coding for our stimuli only
has two possibilities (0 and 90◦) we used spatial correlation to
quantify the encoded orientation. More precisely, the popula-
tion response at a certain time after grating onset was correlated
with the average (across time) population response evoked by that
grating when preceded by a blank screen.

There is evidence that the two VSD and spiking signals may
reflect the same neuronal events, e.g., action potentials. In agree-
ment, both spike and VSD signals are spatially correlated (Tsodyks
et al., 1999). A recent study suggested that the instantaneous fir-
ing rate leaks over to the voltage-sensitive dye signal but that
orientation information also spreads outside the spiking region,
although with a steeper decay than the absolute signal (Sharon
et al., 2007; Chavane et al., 2011). Beyond a distance of one hyper-
column, the space constant of the decay was estimated to be
around 1 mm (Chavane et al., 2011). We expect the space con-
stant to be even larger in our case because our stimulus had a
diameter of 10◦ and thus covered a six times larger area than that
of Chavane et al. who proposed a positive correlation between
space constant and stimulation area. We analyzed the VSD sig-
nal in the most peripheral pixels. This was done along a two step
procedure.

First, the maximum extent of the lateral spreading was
estimated from the VSD signal within a time interval when
the stimulus orientation was encoded, i.e., 150–250 ms after the
priming-actual transition. This time interval likely did not cause
an underestimation (see comment below about a less conservative
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area estimation) of the lateral spreading since the absolute value of
the correlation (see definition above) at 75 ms is almost identical
to that at 170 ms. The extent of the lateral spreading was defined as
those pixels whose neighboring population map (800 × 800 μm)
was significantly correlated with the corresponding region in the
true orientation map (calculated from intrinsic signal in response
to drifting gratings). Since eye movements during the longest
recording period (0.2◦ during 4 h; see Preparation) were smaller
than the lateral spreading in visual space (more than 3◦) we
averaged extensively (181/801 repetitions for animal 1/2 lasted
2/4 h). Furthermore, we used false discovery rate (FDR) statistics
to maximize the detected extent of the lateral spreading. The
FDR was calculated at 5% making no assumptions of the under-
lying P value distribution. The FDR corrected criterion resulted
in around 12% more pixels than obtained with a Bonferroni
corrected threshold. We also tried a lower threshold generated
from c(V) = 1, but this resulted in significant pixels farther away
from the edge of the representation (>4 mm) than the radius of
lateral connections (<3 mm). Furthermore, it did not result in
significant correlations with the averaged population response,
positive as well as negative, during the time of the error encoding,
see second step below.

Second, the correlation values at the edge of the representation
at 50–100 ms after the priming-stimulus transition were tested for
significance for deviation from 0.

DISCRIMINATING BETWEEN STIMULUS SHOWN OR NOT SHOWN
To test if it is possible to decide whether a given spike was evoked
by a stimulus that is currently shown or a stimulus that already
disappeared we did the following analysis. In order to classify all
spikes, not only those during ON and OFF transients, we labelled
spikes according to if a certain orientation was presented or not.
The stimulus set was composed of three different transitions.

(1) Checkerboard like preceding grating,
(2) Grating preceded by a gray screen,
(3) Grating followed by an orthogonal grating.

All the three paradigms were displayed in 16 different angles (with
a resolution of 22.5◦). The instantaneous firing rate was estimated
for one of the angles (Ang) and for its corresponding orthogonal
angle (Ang + 90).

For the two orthogonal stimulus presentations we divided the
time points into two groups: the time points where the stimulus
contained the orientation Ang were assigned to group “ON,” and
the remaining time points were assigned to group “OFF.” The fir-
ing rate during each time point was divided by the average firing
rate of the neuron. For each neuron, the normalized firing rate
was averaged separately for the two ON and OFF groups. Then,
the ratio between the firing rates of two neurons was calculated
separately for both groups, producing one ratio for each group
and each combination.

We also tried support vector machines for pairs and triplets but
the supporting plane sometimes (for the cases with best classifi-
cation performance) had a normal such as to classify the overall
firing frequency of the pair or triplet. Although this classification
resulted in a good performance on our stimulus sample, it does

not allow generalizing to stimuli evoking low overall firing fre-
quencies, i.e., of low contrast.

We also tried other—firing rate oriented—population-
decoding approaches selecting more than two optimal recording
channels. Applying this method to data from two cats, we could
not even classify the onset and offset of a grating let alone the
sustained part of the neuronal firing. In one cat, we were able to
classify the onset and offset of a grating. The resulting code could,
however, not be used to classify the responses to the more com-
plex checkerboard-grating transition and also not to the sustained
part of the neuronal firing.

STIMULUS FOR VERIFYING THE SUBTRACTIVE OPERATOR BETWEEN
PREVIOUS AND CURRENT STIMULUS
In order to characterize the encoding of individual cells we dis-
played 20 different image transitions from natural image α to
natural image β. Natural images were used to estimate the oper-
ator since they have a continuum of contrasts. To this end, we
extracted 40 images from collage bitmaps from the Internet.
400 × 400 pixels partial images were cut out from the original
bitmaps. The average luminance of each image was chosen to be
30 cd m−2 in order to maximize the contrast of a set of compos-
ite images (see below) that were used to test different operator
hypotheses. Luminance and contrast of each partial image were
adjusted such that minimum and maximum luminance were 0
and 60 cd m−2, respectively. Different mathematical operators,
such as +, −, were applied pixel wise to the pair of images, α and
β, resulting in the composite images α + β and β − α. Each test
image (α, β, β − α, or α + β) presentation lasted 250 ms and was
preceded by a 250 ms 30 cd m−2 blank screen. For the transition
from α to β, α was preceded by a 500 ms blank screen and both
images α and β lasted 250 ms.

ANALYSIS FOR VERIFYING THE SUBTRACTIVE OPERATOR BETWEEN
PREVIOUS AND CURRENT STIMULUS
For stimulation with natural scenes, we calculated the instanta-
neous firing rate for a certain time point after each image tran-
sition. The resulting 20 element vector from the 20 image
transitions can be viewed as an instantaneous response profile.
The 20 dimensional response profile was correlated (Pearson)
with four different response profiles from four test image-sets,
α, β, α + β and β − α. These test images stand for four different
hypotheses about what kind of image is being encoded after an
image transition from image α to β. The response profile for each
test image-set was calculated from the temporally averaged firing
rate recorded between onset and offset of each test image. Observe
that since α, β, α + β, and β − α, refer to images and not set of
parameters there are no more degrees of freedom in α + β than
in α or β only, and therefore it is fair to compare the correlation
for α + β with that of α for example.

ANALYSIS OF CONTRAST
The time of switch from error to stimulus for different contrasts
was calculated as follows. For each unit the peak activity of the
non-preferred orientation response was calculated. This gave the
amplitude and time of the peak of a Gaussian distribution that
was fitted to the firing rate decay after the peak time. The Gaussian
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was fitted by testing 200 different standard deviations ranging
from 1 to 200 in steps of 1. The standard deviation that min-
imized the squared error was selected. The switching time was
defined as the time when the value of this Gaussian came below
the average firing rate, 0–250 ms after transition, for the preferred
orientation.

The duration of the error signal was calculated by adding
the temporal difference between peak time and peak derivative
time to the standard deviation defined above. The advantage of
the maximal derivative approach over Gaussian fitting to the
response upslope is that the initial firing rate immediately after
the transition, that is above spontaneous, can be ignored.

ANALYSIS OF RAPID SERIAL VISUAL PRESENTATION
For stimulation with alternating orthogonal gratings, we calcu-
lated the ratio between ON- and OFF-responses according to
the following procedure. Latencies of ON- and OFF-responses
varied in different cells and with stimulus contrast. Thus, the
latency dependency was eliminated by extracting the amplitude
information but not the phase information from the Fourier
transformed PSTH. The frequency component that corresponds
to a single stimulation period (one preferred orientation and
one non-preferred orientation) gives the amplitude difference
between ON- and OFF-responses; A1. The first harmonic of
one stimulation period corresponds to the residual amplitude
of ON and OFF responses; A2. The Fourier transform of an
isolated ON response with amplitude rON is A1 = rON, A2 =
rON, and for an isolated OFF response with amplitude rOFF is
A1 = −rOFF, A2 = rOFF. When both rON and rOFF are non-zero;
A1 = rON – rOFF, and A2 = rON + rOFF. Reformulating gives
rON/rOFF = (A2 − A1)/(A2 + A1).

DYNAMIC EXPECTATION MAXIMIZATION (DEM) MODEL
We have used the DEM model to study the most fundamental
form of temporal prediction and how the model handles a com-
bined stimulus and error code. Matlab code for the DEM model
is freely available under the SPM 8 library and the figures we have
made can be reproduced with code on the following server:

http://www.brain.mpg.de/fileadmin/user_upload/Documents/
Download/Singer_Emeritus_Group/eriksson.zip

In its most general form the model uses generalized coordi-
nates to perform temporal prediction (Friston et al., 2008). The
idea with generalized coordinates is that a signal, A, is easier to
predict if we have the derivative of the signal, A’, in addition to
the signal A. The more different orders of derivatives the better
the prediction. In many cases derivatives up to the sixth order suf-
fice. This set of derivatives is fed into the model. The generation
of the generalized coordinates was modified such that the model
became causal. This was done by making sure that the derivative
of the n’th order at time t was calculated using only time points
equal or less than t.

Below are the equations for the model:

˙̃μ(i)v = Dμ̃(i)v − ε̃
(i)T
v ξ(i) − ξ(i+1)v

˙̃μ(i)x = Dμ̃(i)x − ε̃
(i)T
x ξ(i)

ξ(i)v = μ̃(i−1)v − g (μ̃(i)) − �(i)zξ(i)v

ξ(i)x = Dμ̃(i)x − f (μ̃(i)) − �(i)wξ(i)x

(1)

(i) denotes level i in the hierarchy. The set of derivatives intro-
duced above is injected to the model at level 1 and is represented
by the variable μ(1)v (see second equation). This stimulus input
is compared to the predicted input g(μ(1)) and �(i)zξ(i)v and the
result is assigned to the error unit ξ(i)v . The prediction of the stim-
ulus input is based on the activity in higher levels, i.e., a feedback
signal. v and x stands for prediction across hierarchical levels and
within hierarchical levels across time, respectively. The resulting
error ξ(i)v is used to update the prediction μ(i)v in the upper two

equations. If the error is zero, i.e., ε(i)Tv ξ(i) + ξ(i+1)v = 0, it means
that the prediction neurons higher up in the hierarchy represents
the stimulus. As such the prediction wouldn’t have to be updated.
But what if the error is zero and the stimulus changes from one
moment to the next? In this case the representation of the stim-
ulus will have to change as well. The first term Dμ(i)v handles
this. D is a matrix that shift the dimensions in μ(i)v such the first
derivative becomes the second derivative, second becomes third,
etc., in the generalized coordinates. This shift in derivative order
of μ(i)v on the right-hand side is mirrored on the left-hand side
where, μ(i)v , is differentiated, as indicated by the dot over μ(i)v .
Thus, assuming that the generalized coordinates are continuous
in time they can be used to predict future values of the stimulus
signal.

Although the free energy treatment is complex, the Laplace
method (which we assume corresponds to a second order mul-
tivariate Taylor approximation), and the elimination of the
Jacobian inversion for the update of the generalized coordinates
(Friston, 2008), makes the DEM model surprisingly similar to the
model of Rao and Ballard (Rao and Ballard, 1999).

To introduce an additional stimulus signal in the error unit we
did the following. Since traditional predictive doing models strive
to explain away the error signal one cannot just inject a stimulus
signal to the error unit. The model will in this case just remove the
stimulus signal. Therefore, a cumulative summed stimulus was
injected into the error neuron:

ξ(t) = ξ(t) + K

∫ t

0
s(τ)dτ,

where s(t) is the stimulus signal and K is a constant defining the
strength of the stimulus signal relative to the error signal.

To handle combined error and stimulus the original Equations
1 can be re-arranged to Equations 2.

˙̃μ(i)v = Dμ̃(i)v − ε̃
(i)T
v (r(i) − kμ̃(i)) − (r(i+1)v − kμ̃(i+1)v)

˙̃μ(i)x = Dμ̃(i)x − ε̃
(i)T
x (r(i) − kμ̃(i))

r(i)v = μ̃(i−1)v − g(μ̃(i)) − �(i)z(r(i)v − kμ̃(i)v) + kμ̃(i)v

r(i)x = Dμ̃(i)x − f (μ̃(i)) − �(i)w(r(i)x − kμ̃(i)x) + kμ̃(i)x

(2)

where r(i)v , r(i)x , and r(i) are vectors containing the “new error”
units, and k is a constant that determines the proportion between
stimulus (prediction unit μ) and error (error unit ξ).

V1 MODEL
To examine if error and stimulus coding can be dynamically allo-
cated to different model units we used a model of the primary
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visual cortex (Spratling, 2010). The model was chosen because
it explains the single unit responses of the primary visual cortex
to a number of different stimuli. The model has two important
parameters; number of iterations and a tolerance parameter e1.
In mimicking the response properties of the primary visual cor-
tex the number of iterations was varied between 6 and 30 with a
mean number of parameters equal to 13 (Spratling, 2010). Here,
we used the average number of iterations, i.e., 13. The results pre-
sented in this paper become clearer with increasing number of
iterations.

The tolerance parameter e1 defines the amount of spatial sup-
pression. Here, we tested two different values of e1, i.e., 1e-4
(Spratling, 2010) and 1e-5 (de Meyer and Spratling, 2009). Both
values generate size tuning curves and suppression indices that
can be found experimentally.

We adjusted the model such that the number of different spa-
tial phases that were represented was equal to the number of pixels
of one period of the grating, i.e., six different phases and six
pixels per period. This ensures that the response curve remains
continuous across the model units/pixels.

For code see: http://www.brain.mpg.de/fileadmin/user_upload/
Documents/Download/Singer_Emeritus_Group/eriksson.zip

RESULTS
SEPARATING A STIMULUS- AND AN ERROR-LIKE SIGNAL
According to our hypothesis that the neuron might combine a
stimulus and error code we first ought to separate those codes.
This separation was done in terms of the orientation preference
for the recorded unit. If the largest response was evoked by the
preferred orientation we assumed that the neuron coded for stim-
ulus. If the largest response was evoked by the non-preferred
orientation we assumed that the neuron coded for error. This dis-
tinction was the result of our stimulus. We displayed a transition
from a priming pattern to a grating pattern (see Figure 1A, left).
The difference/error image between the priming and the grating
pattern has an orientation that is orthogonal to that of the grat-
ing pattern (see Figure 1A, right). This orthogonality facilitated
the classification into error and stimulus. Our assumption was
that the neurons predicted the priming image better the longer
it would be displayed. If neurons predicted the priming pattern
there would be an error when the grating pattern were displayed.
The error image would then have an orthogonal orientation to the
grating image which means that the response would be maximal
to the non-preferred instead of to the preferred orientation.

Responses of a spike-sorted unit in area 18 of an anesthetized
cat to a grating which was presented at eight different orien-
tations are depicted in Figure 1B. The maximal firing rate was
achieved for horizontal orientation (preferred orientation, P). For
a priming-grating transition the response of the same unit is
shown in Figures 1C,D. Fifty milliseconds after the transition, the
maximum firing rate was achieved for vertical orientation (non-
preferred orientation, NP). Only later on, after around 100 ms,
the maximum firing rate was achieved for the preferred orien-
tation. The average of all 60 units is shown in Figure 1E. In the
interval between 40 and 90 ms after transition, the average firing
rate was larger for the non-preferred than for the preferred ori-
entation (p < 1e−5, n = 60, Bonferroni corrected), whereas the

firing rate between 90 and 250 ms revealed the opposite rela-
tion between preferred and non-preferred (p < 1e−6, n = 60,
Bonferroni corrected). Since the results were similar for sim-
ple (n = 5) and complex cells (n = 55), the two cell types were
pooled (Figure 1F).

Using the transition stimulus we examined whether the
same neuron could code for error and stimulus. To this end,
extracelullarly recorded waveforms of one spike-sorted neuron
were divided into two orientation groups. One group consisted of
spikes recorded when the grating orientation matched the pref-
erence of the neuron and the other group consisted of spikes
recorded when the grating orientation was orthogonal to it. We
extracted the time point in the spike waveform where the ampli-
tude difference between preferred and non-preferred waveforms
was largest. If the difference at this time point was significant we
concluded that the waveforms belonged to two different units (see
Figures 1G and H for the example unit shown in B–D). Only
four out of 60 units (6.7%) had significantly different waveforms.
Since this percentage is in the range of what would be expected by
chance (5%), we conclude that the same unit coded for error and
stimulus.

CAN THE STIMULUS BE EXTRACTED FROM THE ERROR?
The post-synaptic membrane potential has been suggested to rep-
resent the true stimulus (Bialek et al., 1991), i.e., the membrane
potential would not code for the error signal. More precisely,
the linear deconvolution-transformation used to reconstruct the
stimulus in the early visual system might be similar to the trans-
formation from the pre-synaptic spike to the post-synaptic mem-
brane potential (Bialek et al., 1991; Stanley et al., 1999; Butts et al.,
2007). Thus, we studied also how our stimulus transitions would
be represented in the voltage sensitive dye (VSD) signal.

Four animals entered this analysis. A typical voltage-sensitive
dye signal for one animal in response to a grating stimulus is
illustrated in Figure 2A. The same orientation columns are acti-
vated throughout the stimulation (p < 0.05, t-test across trials, for
each of the four animals). When presenting the stimulus transi-
tion, the represented orientation changed over time (Figure 2B).
The population activity was initially significantly anti-correlated,
and later significantly correlated with the population activity in
response to the grating (p < 0.05, t-test across trials, for each of
the four animals). Similar to the instantaneous firing rate, domains
responding to the orientation orthogonal to the presented one
were stronger activated after the stimulus transition than domains
which would normally respond to that stimulus. The correlation
time course (Figure 2C) and the history dependency of the VSD
signal was also similar to that of the spiking activity.

To minimize the risk that the spiking activity is leaking into
the voltage-sensitive dye signal we studied the lateral spread of
the VSD signal, in two additional animals. To this end, we posi-
tioned a grating patch in cortical space such that we maximized
the visible lateral extent of the spread in the posterior direc-
tion (Figure 2D). The evoked response for a grating patch with
a diameter of 10◦ was spatially confined to an area of 8–12 mm²
(Figure 2E). The most peripheral pixels whose fluorescence value
was significantly modulated by the stimulus orientation are illus-
trated in Figure 2F. In order to not underestimate the spatial
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FIGURE 1 | Combination of a stimulus and an error-like signal across

time. (A) Transition from priming to grating pattern (left). The difference
(error) pattern between priming and grating pattern has a horizontal
orientation (right). (B) The instantaneous firing rate for a horizontally
preferring complex cell when the stimulus is rotated and displayed at eight
different orientations separated by 22 1/2◦ (y-axis). Grating onset at 200 ms
and offset at 450 ms (x-axis). (C) The response of the same unit as in B, but
for the priming to pattern transition (see A). The blue (green) rectangle outline
indicates when the test grating matches the preferred (non-preferred)
horizontal orientation of the cell. Note that the non-preferred grating
orientation now generates the largest response at around 550 ms.
(D) Peri-stimulus time histogram (PSTH) of the instantaneous firing rate for

stimulation with, in this example, horizontal (P: preferred, blue
line, stimulus) and vertical (NP: non-preferred, green line, error) gratings after
the stimulus transition (at 0 ms). The transparent field around each curve
denote the standard deviation of the mean. (E) Same as (D) but the average
of all 60 units. (F) Scatter plot of all units. The x-coordinate is the average
firing rate during 40–90 ms after transition onset for the non-preferred
orientation minus the average firing rate during 40–90 ms after transition
onset for the preferred orientation. The y-coordinate is like the x-coordinate
but for 90–250 ms instead of 40–90 ms. (G) Spike raster plot for the preferred
and non-preferred orientations for the unit shown in B–D. (H) Extracellularly
recorded spike waveform from unit in G for stimulus (blue) and error (green)
spikes.

extent of the lateral spread we have used extensive averaging
(see methods) and false discovery rate statistics (see methods).
Even the most peripheral pixels exhibited an activation pattern
anti-correlated to that evoked by the grating stimulus presented
alone (p < 0.05 for both animals) (Figure 2G). Pixels outside
this region were not significantly modulated by stimulus orien-
tation.

To summarize, the voltage-sensitive dye signal combines a
stimulus and an error-like code. It seems unlikely that the

conversion from error to stimulus can be done within V1
because the ambiguous and non-linear transformation from sim-
ple to complex neurons renders the above hypothesized linear
de-convolution difficult (Benucci et al., 2007). A de-convolution
could be implemented in a presumably more linear feed forward
pathway from layer three (complex cells) to layer four (simple
cells) of a higher area.

Another way to eliminate the error from the stimulus sig-
nal could be to detect spikes that code exclusively for the
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FIGURE 2 | Voltage-sensitive dye signal after a stimulus transition. (four
animals) (A) Cortical activation pattern as a function of time (upper row). VSD
signal evoked by the transition from a 250 ms blank screen to a 250 ms
horizontal grating. Population responses after 81 ms and 143 ms are similar.
Icons on the x-axis denote stimulus sequence. Encoded orientation as a
function of time (middle row). Trial by trial correlation of the population
response at a certain time after grating onset with the average (across time)
population response evoked by that grating when preceded by a blank screen
(lower row). The correlation raises around 40 ms and stays high. (B) Same as
in A, but with a 250 ms priming pattern preceding the 250 ms horizontal
grating. Interestingly, the population response after 81 ms is orthogonal to
that at 143 ms. (C–F) The stimulus image cannot be retrieved by the
post-synaptic membrane potential. (C) Comparison of spiking and VSD
response. The spiking was quantified by subtracting the non-preferred
correlation from the preferred correlation. The preferred correlation was
calculated as follows: for a given time point after the transition the
instantaneous firing profile across the eight orientations were correlated with
the instantaneous firing profile across the eight orientations for the grating
preceded by a blank screen. The non-preferred correlation was calculated
similarly but instead shifting the orientations by 90◦. The encoding of the
voltage-sensitive dye signal is represented by the correlation curve computed
in B averaged across four animals (red). (D) Positioning of a patch stimulus for

VSD recording using Fourier imaging retinotopy of visual cortex. Left: Imaged
cortical region with superimposed retinotopic iso-lines. Blue (posterior) and
green (anterior) lines indicate iso-lines for which the anterior posterior
position is constant, and yellow (medial) and red (lateral) lines indicate
iso-lines for which the lateral medial position is constant. Right: We have
superimposed the cortical retinotopy on the stimulus monitor (left). (E)

Lateral spread of the errorsignal. Upper panel: a localized stimulus (10◦
diameter) positioned to evoke responses in the anterior part of the imaged
cortical area (guided by retinotopic imaging). Lower panel: spatial orientation
coding at 75 ms and at 175 ms. Population activity evoked by the grating was
pixel wise correlated with the average population activity within a 800 × 800
μm window centered around each pixel. Negative values indicate negative
correlations, and thus error encoding (blue color). Positive values indicate
positive correlations, and thus stimulus encoding (red color). (F) Extraction of
the most peripheral pixels at time point 175 ms, i.e., when the stimulus is
encoded. The peripheral pixels are those which mark the outer margin of the
area containing significant information about stimulus orientation.
The c-score is calculated by dividing the mean (across trials) correlation with
the standard deviation (across trials) of the correlation. (G) Correlation of the
peripheral pixel response at the time of error encoding (75 ms) with the
averaged population response. For both animals the correlation is
significantly (p < 0.05, n = 12) negative indicating that the error is encoded.
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stimulus. Error coding generates spikes that are not represent-
ing the currently shown stimulus. This is because it takes time
to form a prediction, i.e., the prediction builds-up over time
and can therefore outlast the stimulus. It is well-known that
for example OFF-responses, per definition, outlast the stimulus.
Consequently, the orthogonal response can be interpreted as an
OFF response since the transition consists of the disappearance
of the orthogonal grating. To investigate if a population of neu-
rons can distinguish between ON and OFF responses we defined
each time point of a stimulus as containing an orientation or not
(Figure 3A). We tested if this “stimulus existence code” was cor-
related with the population firing rate. If this would be the case
the population firing rate could be used to distinguish stimulus
coding spikes from spikes that codes for a disappeared stimu-
lus. The population code was defined as the ratio between the
instantaneous firing rate of one unit and the instantaneous fir-
ing rate of another unit. All possible combinations between 34
neurons and all orientations were used, i.e., 34 × 34 × 16 com-
binations (See red points in Figure 3B). The best combination

(see encircled point in Figure 3B) is located far away from ratio
1 (origo in log-log-plot) along the diagonal meaning that the
ratio for “ON” is much smaller than the ratio for “OFF” on
average. Hence, the combination should be well suited to dis-
criminate between “ON” and “OFF.” However, when inspecting
individual stimulus constellations of that combination the ratios
behave rather unsystematic (see Figure 3C). Whereas the firing
rate is normally larger for unit 1 than for unit 2 in case of
“ON”-coding, and larger for unit 2 than for unit 1 in case of
“OFF” coding, there are a few time-points for the grating con-
dition (first column in Figure 3C) where the opposite is true.
Therefore, this combination does not speak in favor of a very
reliable code. To be able to generalize the potential of “ON”
and “OFF” coding it was compared to orientation population
decoding. Instead of using three different transitions we only
used the second transition, grating preceded by a screen. Instead
of dividing pair-wise ratios into “ON” and “OFF” we divided
them into “orientation 1” and “orientation 2”. Orientation 2 was
orthogonal to orientation 1. All possible combinations between

FIGURE 3 | Comparing an orientation population code with an “ON” or

“OFF” population code. (A) The three different stimulus transitions (rows).
All stimulus transitions were also presented after 90◦ rotation (second
column). Under each transition is the group assignment into ON (“up state”)
and OFF (“down state”) groups (red curve). (B) All neuronal pairs and all
orientations. The combination discriminating best is encircled. Best neuron

combination for the “ON” and “OFF” code. (C) The preference of the
first and second unit is 45◦ and 0◦, respectively. The horizontal
orientation is shown at 45◦ on the screen. If Rate1 is larger than Rate2

the orientation is on (displayed). This rule works for most cases
except second row and first column when the stimulus is off
(not displayed).
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34 neurons and all 16 orientations were used, i.e., 34 × 34 × 16
combinations (See blue points in Figure 3B). The ratios in ori-
entation coding were around 20 times larger than those for
“ON” and “OFF” coding, thus leaving the latter coding relatively
unreliable.

Rather than having to eliminate the OFF response, down-
stream neurons might need ON as well as OFF responses. The
ON response is needed to detect increased stimulus contrast and
the OFF response to detect decreased stimulus contrast. Both are
necessary for a complete coverage of the subtractive error calcu-
lation (Figure 4). That also the ON response is related to error
coding, in addition to the OFF response, is further motivated
by the significant correlation between the transciency index of
the ON response and the strength of error coding (Figure 5). To
summarize, eliminating the error-like signal from the stimulus
code might not be feasible. It is more likely that the brain makes
use of the combined code. In the next section we examined if a
combined code can be read out by a neuronal model.

CONSEQUENCE OF MIXING STIMULUS AND ERROR CODING
Both the extracellular spiking signal and the voltage-sensitive dye
signal showed a combination of error and stimulus coding. Since
both code types are used in predictive coding models we studied
how such models handle a combination of the codes. We used
the dynamic expectation maximization (DEM) model because it
is very general (Friston et al., 2008, see Methods). The particu-
lar version of the model applied here consists of a feed-forward
network with fixed connections that forms simple edge detec-
tors (Figure 6A). Its default response to a simple stimulus is
depicted in Figure 6B. As expected from a prediction model the
activity in the prediction unit follows the stimulus. The error is

the difference between the stimulus and the activity in the pre-
diction unit. Since the activity of the error units goes to zero
between time steps 12 and 20, i.e., the activity for the stimulus
(unit 2 with a vertical RF) is not larger than that of the error
(unit 1 with a horizontal RF), it means that the stimulus is not
represented during this time period. Whereas only the error sig-
nal is represented in the model, both error and stimulus signal
are represented in the experimental data. Therefore, we forced
the error unit to also encode a stimulus signal. This resulted in
a suboptimal behavior of the model since the prediction units
diverged from the stimulus (Figure 6C) and since the free energy
deviated from the optimal value (low free energy is optimal)
(Figure 6D).

Next, we modified the model in a straightforward way such
that it could handle the combined stimulus and error coding. To
this end, the error unit was replaced with a new type of error unit
in which stimulus in the multiplied by a constant was added to the
error signal. The constant defines the percentage of stimulus cod-
ing in the error unit. As a consequence, the new error unit could
combine stimulus and error at the same time as the prediction
unit followed the stimulus (Figure 6E). The error is extracted by
subtracting the stimulus prediction from the new error unit. The
modification proposed here is simple and can thus most likely be
applied to other predictive coding models.

TIME: WHEN THE ERROR SIGNAL LOOKS LIKE A STIMULUS SIGNAL
In the remaining three sections we investigated how the propor-
tion between stimulus and error depends on stimulus history,
stimulus contrast, and stimulus structure in space. To study the
influence of stimulus history we ran the stimulus described above
either with different durations of the priming image, or with

FIGURE 4 | Operator between previous and current image, encoded by

the instantaneous firing rate during the time of the ON and OFF

response, is best described by a subtraction. (A) Example neuron.
Different pairs of natural images where used irrespective of whether the
image transition elicited ON or OFF responses. The first column shows the

average firing rate between 50 and 100 ms after the transition onset. The
remaining columns show the average firing rate between 50 and 100 ms after
the test image onset (Observe that each test image was preceded by a blank
screen). Note the high correlation in the last column. (B) Average correlations
across all neurons (n = 320).
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FIGURE 5 | Correlation between the neuronal transciency index and

proportion between stimulus and error-like coding. The transciency
index was calculated by dividing the firing rate between 200–250 ms by the
firing rate between 40 and 90 ms in response to an optimally oriented
grating preceded by a gray screen (x-axis). The proportion of stimulus and
error-like coding was calculated by differentiating the firing rate for the
preferred and non-preffered orientation at 40–90 ms, and divide this
difference with the sum of the firing rate for the preferred and
non-preffered orientation at 40–90 ms (y-axis). Note that a strong transient
predicts a high proportion of error coding relative to stimulus coding.

different durations of a blank screen gap between the priming and
the grating image. Five different priming image durations were
used; 0, 20, 50, 100, and 250 ms. With priming image duration less
than 50 ms the preferred orientation was encoded (Figure 7A).

We tested four different gaps between the priming image and
grating pattern: 20, 40, 50, 100 ms. For a 20 ms gap, the encoded
orientation was orthogonal to the orientation of the grating
pattern, shortly after the onset of that grating (Figure 7B). With a
40 ms gap responses to the preferred and non-preferred stimulus
were almost of equal size. Longer gaps such as 50 and 100 ms did
not evoke an orthogonal (non-preferred) response related to the
previous stimulus.

To study the integration time for previous stimuli we examined
the combination of near and far temporal context with a rapid
serial visual presentation (RSVP) stimulus consisting of orthog-
onal gratings alternating in different intervals. When a neuron
predicts one orientation and the stimulus orientation changes to
become orthogonal it results in an error that has both orienta-
tions. In other words, despite that there is an ON response to
the new orientation there will also be an OFF response to the
previous orthogonal orientation. This ON/OFF overlap can be
seen when stimuli lasted longer than 100 ms (Figure 8, left col-
umn). Accordingly, for stimulus duration 100 and 250 ms, ON
and OFF responses overlapped 30–90 ms after transition onset
(Figure 8, left column). However, for shorter intervals (20 and
50 ms) the two representations were more separated (Figure 8,
right column). This can also be appreciated by the fact that the
OFF-response becomes smaller for the 50 ms duration than for

the 100 ms duration. The longest priming duration for which the
actual stimulus was represented was 50 ms. This points to an inte-
gration time of 100 ms (2 × 50 ms), as confirmed by the following
argumentation. Hundred milliseconds are needed to integrate
over the past two orthogonal stimuli. When two orthogonal stim-
uli are summed the resulting image is orientation neutral, i.e., it
has both orientations. In terms of error coding, the next stimulus
in the sequence will be subtracted from this orientation neutral
prediction image. Since an orientation neutral stimulus minus
one oriented stimulus results in an oriented stimulus, the error
will correspond to the stimulus. To summarize, dependent on
which stimulus history is being integrated the error might match
or diverge from the stimulus.

CONTRAST: LOW CONTRAST INCREASES ERROR-LIKE SIGNAL
RELATIVE TO STIMULUS SIGNAL
Since low contrast has been demonstrated to increase the inte-
gration radius in a spatial context we tested if low contrast also
increased the integration time. Indeed, we found that the tim-
ing between the stimulus and the error-like signal changed with
contrast (Figures 9A–C). The switch from error- to stimulus
coding was delayed for decreasing contrast (107 ± 18 ms, 137 ±
33 ms, and 172 ± 76 ms, p < 10−8, ANOVA, n = 52, Figure 9D).
Furthermore, the duration of the error response increased with
decreasing contrast (57 ± 18, 80 ± 31, and 95 ± 76 ms, p <

0.001, ANOVA, n = 52, Figure 9E). The increased integration
time for low contrast was verified using a RSVP protocol. To
this end, we presented alternating grating sequences according
to the previous section albeit with lower contrast. According to
the reasoning in the previous section, increased integration time
would make the prediction image orientation neutral for longer
image durations. Thus, the actual stimulus should appear for
longer durations of the previous images. To detect the actual
stimulus in the spike trains we calculated the number of spikes
for the OFF-response divided by the number of spikes for the
ON-response, OFFON (Figure 10A). A low value of OFFON indi-
cates a relatively small OFF-response, which in turn indicates
that the influence of the history is minimal, and thus that the
actual stimulus is represented exclusively. The result for different
contrasts is plotted in Figures 10B and C. Note that the high con-
trast curve (Figures 10B and C) reproduces the previous result
(Figure 8), namely that the OFF-response is smallest for short
image durations (in Figure 8, left column, the blue and the green
lines overlap at the transients, but not for the right column).
Interestingly, OFFON remained smaller for low contrast than for
high contrast even for image durations longer than 20ms for ani-
mal 1 (Figure 10B) and 40 ms for animal 2 (Figure 10C). The
increase in the full width half maximum is between 60–100%. To
summarize, both integration time and error-like coding duration
increased for low contrast, and this increase is so large that the
actual stimulus might never be represented for some units in a
200 ms window.

SPACE: DYNAMIC SEPARATION OF ERROR AND STIMULUS
CODING NEURONS
Since predictive coding models not only work across time but
also across space we examined whether the mixing of stimulus
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FIGURE 6 | Consequence of mixing stimulus and error coding in a

predictive coding model. (A) The model consists of four input units in level
1 (stimulus pixels) and two output units in level 2 (line detectors), where the
line thickness corresponds to the connection weight. (B) Default behavior of
the model. Top: Note that the activity in unit 1 and 2 follows the stimulus.
The activity in unit 1/2 (green/blue line) is positive/negative since the stimulus
image is positively/negatively correlated with the receptive field image of unit
1/2. Bottom: The error is the difference between the stimulus and the activity
in the prediction unit. For clarity both prediction and error were taken from
the line detectors in level 2, i.e., the error in level 2 was calculated by
multiplying the error in level 1 by the connection weights between level 1 and
2. It is important to note that the results also hold for the error units in level 1.

(C) To mimic the combination of error and stimulus signal found in this study,
the error unit was made to combine stimulus and error signal (bottom). Note
that the value of the prediction unit now overshoots the stimulus (top). (D)

This divergence from the stimulus can also be quantified in terms of an
increase in free energy. Abscissa: 0% means that only the error is
represented. This corresponds to the default behavior shown in A (empty
circle). Fifty percentage means that the stimulus is represented as much as
the error. The example in C has a non-optimal free energy because the model
is not made to combine stimulus and error coding (solid circle). (E) By a
simple modification of the model the (new) error units can be made to
combine stimulus and error at the same time as the prediction unit follows
the stimulus (see Inset and Methods).

and error also occurred in space. A computer model that explains
many of the response properties of single units in visual cortex
was applied (Spratling, 2010). We remapped the stimulus transi-
tion from time to space. A single stimulus image was constructed
by setting the checkerboard-like priming pattern and the grat-
ing pattern side-by-side in order to merge them to one stimulus
image (Figure 11A). This leads to a spatial rather a temporal
transition. We ran two different versions of the model; high and
low spatial suppression (Figure 11B). Low spatial suppression
is more representative for mice and high spatial suppression is
more representative for macaque monkeys (van den Bergh et al.,
2010).

Instead of tracing the activity from earlier to later in time,
we traced the resulting activity across the neurons in space from
left to right (see orange line in A). The responses for the verti-
cal and horizontal neuron (Figure 11C) are qualitatively similar
to the responses in time (Figure 1E). For the leftmost neurons,
vertical and horizontal neurons are equally activated. As one gets
closer to the midline the horizontal becomes more activated than
the vertical neuron. Finally, to the right, the opposite activation
pattern emerges. The major difference between space and time is
that the peak of the horizontal unit is more toward the checker-
board pattern (to the left) in the spatial case than for the temporal
case. First, this is because time is causal whereas space is not, i.e.,

in time the response to a stimulus can only be delayed relative
to the stimulus. Second, spatial contextual modulation is more
“modulatory” than temporal contextual modulation.

The results of this model were also compared to the results of
a pure feed forward model (Figure 11D). A feed forward model
does not have any feedback inhibition and was realized by con-
volving the image with Gabor patches. Note that in response to a
pure feed forward model the vertical unit was stronger activated
than the horizontal unit at the spatial point indicated by a star in
Figure 11C, i.e., where the horizontal unit was stronger activated
than the vertical unit for the V1 model (See Figures 11E and F for
a magnification of 11C and D). Thus, although the feed forward
evidence for a vertical orientation is stronger than for a horizon-
tal orientation, the V1 model inverts this relation. This shows that
a V1 model can make the neuronal response diverge from the
stimulus when the error signal is strong. To summarize, spatial
modeling suggests that blending of a stimulus and an error like
signal occurs also in space, even though the spatial and temporal
domain use different neuronal mechanisms, e.g., responses in the
spatial domain cannot be divided into ON and OFF classes. More
importantly, the proportion between stimulus and error coding
is not constant across space; unit A can show stronger error cod-
ing than unit B for one stimulus and vice versa for a different
stimulus.
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FIGURE 7 | History dependency. (n = 60, three animals) (A) Responses
to a grating preceded by a priming image of different durations. Blue
(green) lines indicate the response to a grating of preferred (non-preferred)
orientation. With priming lasting 20 ms the encoded image resembles
more the actual stimulus image because the response to the preferred

orientation dominates. Error and stimulus are equally represented
when the priming duration is around 50 ms. (B) Conventions as in A.
The gap between priming and stimulus image is varied. Two animals had
three different gap durations (top) and one animal had five different gap
durations (bottom).

DISCUSSION
In this paper we hypothesized that if visual cortex does error cod-
ing, it should be possible to make the neuronal response diverge
from the stimulus. By contrasting the stimulus and error we
examined how the two types of codes can be combined. Our
results suggest that the same neuron can code for both stimulus
and error signal. We show that the strength of an error-like cod-
ing relative to a true stimulus coding changes with time, space,
and stimulus contrast. Finally, we show that the combined cod-
ing presented may require a modification of existing predictive
coding models.

STIMULUS MOTIVATION AND GENERALIZATIONS BEYOND THE
GRATING STIMULUS
We have used a stimulus that enables the separation of two dif-
ferent components based on the neurons’ orientation selectivity.
This feature based separation is advantageous since a separation
cannot be done on the basis of the temporal shape of the neuronal
responses. The temporal shape of neuronal responses is neuron

and stimulus dependent so fixed templates cannot be used for
separation (Richmond and Optican, 1990; Richmond et al., 1990;
Heller et al., 1995; Richmond, 2009). Furthermore, it is difficult
to detect stimulus related activity because the stimulus offset can
generate as complex temporal response shapes as the stimulus
onset (Duysens et al., 1985, 1996; Nikolic et al., 2009). Another
advantage of the feature based separation is that it allows the
quantification of when in time one component becomes stronger
than the other one. This is done by finding the time when the
instantaneous firing rate for the preferred orientation is equal to
that of the non-preferred orientation.

By using grating stimuli we suggest that neurons predict grat-
ings which are constant across time and space (Rao and Ballard,
1999; Spratling, 2010). It might be reasonable to assume that
non-grating-like stimuli such as natural movies can be better pre-
dicted and with a lower error. A lower error could be indicated
if there are long periods without spiking activity. This has been
shown for natural stimulus (Vinje and Gallant, 2000; Haider et al.,
2010). It is, however, unlikely that “no spike” always indicates “no
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FIGURE 8 | Integration time for a RSVP stimulus. Response to a
sequence of gratings with alternating orientations, i.e., preferred and
non-preferred orientations. Four different image durations were tested;
250 ms (upper left), 100 ms (lower left), 50 ms (upper right), and 20 ms
(lower right). For 250 and 100 ms, the second burst (at 300 and 150 ms,

respectively) encodes the difference between the horizontal and
vertical grating, i.e., the error signal containing information
about both horizontal and vertical grating. For 20 and 50 ms, neurons can
separate between the two orientations (see inset for average across all
cycles).

FIGURE 9 | Low contrast prolongs error-like signal. (n = 52, two animals)
See Figure 1E for plotting conventions. (A–C) Three different contrasts were
tested, i.e., 25 (priming pattern) vs. 12.5% (stimulus pattern) (top row), 50 vs.
25% (middle row) and 100 vs. 50% (bottom row). (D) The time at which the

error-like coding switched to stimulus coding was calculated as the
intersection between a gaussian fit to the NP and a constant fit to the P (see
Methods). (E) The duration of the error-like signal was increased as a function
of contrast (see Methods).

error.” Every spike signals an error and it is quite likely that this
error will remain unchanged during silent periods until the next
spike occurs. Rather, the long periods of silence in the average
(across stimulus repetitions) activity are the result of a reliable
firing across stimulus repetitions. That is, multiple repetitions

of the same movie will result in similar spike trains, with spikes
occurring at similar time points relative to the onset of the movie.
This repeatability of the spike train might be the result of a bet-
ter experimental control of the synaptic inputs to the recorded
neuron for natural scenes than for optimized artificial stimuli.
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FIGURE 10 | Integration time for a low contrast RSVP stimulus. (A) The
amplitude of the OFF-response is divided by the amplitude of the ON
response. A small value (yellow arrow point to the right axis) indicates that
the influence of the history is minimal and thus, that the stimulus is
represented. (B) Index (y-axis) as a function of priming image duration

(x-axis) for three different contrasts for animal 1 (10% = light gray, 25%=
gray, and 100% = black). (C) Index (y-axis) as a function of priming image
duration (x-axis) for three different contrasts for the more contrast sensitive
animal 2 (2% = light gray, 5%= gray, and 10% = black). Note that when the
contrast is low the index remains relatively small for durations up to 50 ms.

Natural scenes cover a large portion of the field of view per
definition. Therefore, most neurons are stimulated and under
experimental control for natural scenes. However, this might be
not the only explanation for the long periods of silence for natural
scene stimulation (Haider et al., 2010) and it remains to be shown
if responses to natural scenes can be indicative of error coding.

In conclusion, the grating stimuli used here provide two rules
that can be applied to more complex stimuli.

Once the network recognizes and can predict the stimulus,
the error-like signal decreases and the stimulus signal becomes
dominant (Figure 12A).

For decreasing contrast the error-like signal becomes relatively
stronger than the stimulus signal (Figure 12B).

HIGH CONTRAST STIMULUS
Our experimental results can be summarized by the following
conceptual model.

R(t) = E(t) + S(t) = [S(t) − P(t)] + S(t)

=
[

S(t) − 1

T

∫ T

0
S(t − τ)dτ

]
+ S(t) (3)

where S(t) is the stimulus and R(t) is the firing rate. E(t) cor-
responds to the error signal. E(t) + S(t) corresponds to the
combined error and stimulus coding. P(t) is the predicted image
and corresponds to the integrated history or temporal average.
T defines the integration duration. The integral smoothes and
delays S(t). The smoothing reduces the amplitude of S(t) if that
changes quickly, i.e., the integral works like a low pass filter. A
quickly changing stimulus is the case for RSVP (Reid et al., 1997;
Isaak et al., 1999; Foldiak et al., 2004). Since the fluctuations in
P(t) will be smaller than those in S(t) for a rapid stimulus it means
that the fluctuations in S(t) will be apparent in E(t). Therefore,
the error signal will be similar to the stimulus signal. This explains
why the stimulus is represented during a RSVP stimulus with
extra short image durations in our data and in the data of others
(Benucci et al., 2009). On the other hand, if S(t) changes slower
than T, P(t) will only be a delayed version of S(t). Then, the E(t)
will reflect the difference between the true stimulus image and the
preceding image (see also Eriksson et al., 2010).

How could the formula described above be implemented in a
neuron? One mechanism could be that of adaptation. The inte-
grated history might, for example, be encoded by intracellular
calcium. Calcium has slow dynamics and the cell will, therefore,
accumulate or integrate calcium over time (Baker, 1972). The
amount of calcium would represent the prediction. Accumulated
calcium leads to the activation of calcium dependent potassium
channels and, therefore, to an increase in firing threshold (Hotson
and Prince, 1980). The threshold increase corresponds to a sub-
traction in the firing rate, i.e., the resulting firing rate corresponds
to the error. Other possibilities for creating a temporal error are
synaptic depression, feedforward inhibition, inactivation of cal-
cium channels as well as higher level mechanisms such as the
action of horizontal and feedback connections onto inhibitory
neurons (Gonchar and Burkhalter, 2003).

Another possibility for making a neuron represent both stimu-
lus and error could be that error and stimulus spikes are grouped
according to the phase of an oscillation. In this case, the aver-
age firing rate over at least one oscillation period would look
like the sum of the stimulus and error signal. A recent evidence
for this phase division is that the stimulus information is highest
for spikes at a certain phase of a gamma oscillation (Womelsdorf
et al., 2012). Spikes at other phases transmit considerably less
stimulus information and could as such represent the error. The
instantaneous firing rate at the error phase is lower than that of
the stimulus phase indicating inhibition. If the neuronal network
performs a prediction, the neurons will communicate with each
other and therefore their activity may become correlated. This
type of correlation would be called noise correlation since it is
related to a prediction rather than to the stimulus and since it
makes stimulus coding noisier. Consistent with this argumenta-
tion is a higher noise correlation for the error phase (Womelsdorf
et al., 2012).

CONTRAST DEPENDENCY
For low contrast our results suggest that the integration time T
in Equation 3 increases about 60–100%. This is related but not
identical to the previous findings that the peak of the instanta-
neous firing rate, for example, is delayed in time for a low contrast
stimulus (Gawne et al., 1996; Mechler et al., 1998; Reich et al.,
2001). Rather, the increase in integration time might correspond
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FIGURE 11 | Blending of stimulus and error may also occur for a spatial

stimulus. (A) The same stimulus image patterns that we used for a
transition in time could also be used for a transition in space. To this
end, a stimulus image was constructed by setting the checkerboard like
pattern and the grating pattern side-by-side. (B) To study the response in
space we used a computer model that explains the response of primary
visual cortex to many different spatial stimuli (Spratling, 2010). We tested two
different values of the epsilon parameter; generating a moderate (solid line)
and strong (dashed line) spatial suppression. (C) The responses to image
A were displayed separately for horizontally (green lines) and vertically
preferring neurons (blue lines). At x ∼= 90 the horizontal response was

larger than the vertical response, whereas when x increased the vertical was
larger than the horizontal. This switch across space is similar to the switch
we have shown across time in Figure 1F. (D) The results of this predictive
coding model were also compared to the results of a pure feed forward
model. A feed forward model was created by convolving the image with
Gabor patches. (E–F) Same as in C–D but with a magnification around
x = 90. Note that for the model of the primary visual cortex the horizontal
unit is stronger activated than the vertical unit at x = 93 (arrow pointing
upwards), whereas for a pure feed forward model the vertical unit is
stronger activated than the horizontal unit at x = 93 (arrow pointing
downwards).

to the increase in integration radius seen for spatial suppres-
sion. The optimal radius of a grating, for example, increases by
50–100% as its contrast decreases (Sceniak et al., 1999). In agree-
ment with this notion, it has been shown also explicitly that
the integration radius of a neuron increases as stimulus con-
trast decreases (Nauhaus et al., 2009). By this analogy between
space and time we predict that equation 3 can be converted to
space by replacing t (time) with r (space), T with R (integration
radius), and the non-symmetric (causal) integration before t with
a symmetric (acausal) integration around x.

The increased error-like coding relative to stimulus cod-
ing for low contrast might be related to the increased lateral

communication across cortical neurons for low contrast (Nauhaus
et al., 2009). Error coding needs a prediction and, for the
spatial case, the prediction might be done in the lateral network.

SIMILARITY BETWEEN SPACE AND TIME
The similarity between space and time shown in this paper is sup-
ported by additional neuronal response properties. In this sense,
the amplitude of the Gamma power in the LFP has been shown to
increase both with the stimulation radius as well as with the time
from stimulus onset (Gieselmann and Thiele, 2008). A further
similarity is that both dimensions have also a similar relationship
to the recorded cortical layer. As a consequence, the depth profile
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FIGURE 12 | Example of how the results from the grating stimulus can

be generalized to other types of stimuli. (A) A visual dot moves in an
oscillating manner across space. In the beginning the error coding is high
since the movement is new to the network. As the oscillation is repeated it
is expected that the network may recognize the stimulus. The error signal
decreases. The stimulus is represented if the network can recognize and
predict the stimulus. (B) The same stimulus trajectory as in A, but with a
low contrast dot.

of the temporal transiency index is similar to the depth profile of
the spatial suppression index. Both indices are calculated as the
ratio between peak firing rate (for the optimal time or radius)
and plateau firing rate (beyond the optimal time and radius). The
index is higher when the peak firing rate is larger than the plateau
firing rate, and lower when the peak firing rate is close to the
plateau firing rate. In general, peak firing is more pronounced in
the supragranular layers and less pronounced in layer V in both
space (Shushruth et al., 2009; van den Bergh et al., 2010) and time
(Heimel et al., 2005; Harvey et al., 2009; Eriksson et al., 2010).

In addition to the four above discussed similarities between
spatial and temporal contextual influences, i.e., response shape,
contrast dependency, gamma dependency, and layer dependency,
we observed a fifth one in the current study. The model data
indicate that the proportion of error and stimulus signal not
only changes across time—as observed experimentally—but also
changes across the spatial domain.

PREDICTIVE CODING MODELS
In this study we observed a discrepancy between the response
of the error unit in the DEM model and the response measured
experimentally. Model and experimental data can be compared
since the model error unit is positioned in the supragranular
layers (Friston, 2008, 2010) where our electrophysiology and
voltage-sensitive dye data mainly originate from. The voltage-
sensitive dye signal stems from the superficial part of the supra-
granular layers (Kleinfeld and Delaney, 1996; Petersen et al., 2003;
Ferezou et al., 2006; Berger et al., 2007). Since our recordings
were in the upper granular layers at deepest we conclude that the
majority of our complex cells were recorded in the supragranular
layers.

Whereas the experimental data showed combined stimulus
and error coding, the model showed only error coding. When the
error unit was forced to represent the additional stimulus signal
the behavior of the model became non-optimal. To address this

issue a simple modification was introduced that most likely can
be applied to other predictive coding models. The modification
consists of adding stimulus and error signal in a new type of error
unit. The original error signal can in turn be extracted from this
new error unit by simply subtracting the stimulus signal. Since
we did not add or remove model features the performance and
free energy is preserved. The reformulated model predicts that the
target layer of the feedback signal can be the same as the source
layer, which is consistent with axonal tracing studies (Rockland
and Virga, 1989; Felleman and van Essen, 1991). Finally it should
be noted that the presented reformulation is one of many possibil-
ities. Future studies will reveal which biologically plausible model
can best decipher a combined code.

Despite that the spatial model (Spratling, 2010) combines a
stimulus and an error-like signal, this model may have to be
modified in the same way as the temporal version of the DEM
model. This is because this model contains error and stimulus
units and the error units lack a stimulus component. The error
unit responses do also not match the experimental data. With
a potential modification of the model one cannot only explain
more experimental data, but one can potentially also understand
a combined code.

ADVANTAGE OF COMBINING ERROR AND STIMULUS SIGNAL
Why should a neuron encode both types of signals? To answer this
question we first note that in the predictive coding framework,
the error signal is the result of a generative model. It is called
a generative model because “higher areas” generate a predicted
image in the lower areas. The resulting predicted image is com-
pared to the sensory input and an error is calculated. For example,
when the door to my grandmother’s house opens I might antic-
ipate that her face will appear. As such, grandmother neurons in
higher areas might generate a picture of grandmothers in early
visual areas. This prediction is performed by a model defined by
the grandmother neuron and the neurons targeted by the grand-
mother neuron. If it is my grandmother that is opening the door
the error will be small. The error is, therefore, model dependent
whereas the stimulus is model-free. A generative model might be
advantageous if the stimulus is ambiguous or if the stimulus has
low contrast (Wertheimer, 1923; Nauhaus et al., 2009; Ringach,
2009). On the other hand, a suboptimal model may lead to wrong
inferences about the stimulus. Therefore, it could be advanta-
geous to represent the model-free stimulus code in addition to
the model-dependent error code.

The advantage of combining a model-free code with a model-
dependent code can be illustrated in terms of learning. With a
purely model-dependent (error) code it might be difficult for the
network to improve a non-optimal representation. For example,
suppose a network has two grandmother cells, which connect
two error coding non-overlapping neuronal populations in the
lower area, A and B, respectively. One of the grandmother cells
can feed back its activation to the corresponding neuronal pop-
ulation in the lower area in order to predict the activity in
this population, A or B, and to enable the calculation of an
error in those populations. If the error is 0 there is no need
to modify the model, i.e., to change the connections between
grandmother cells and lower area. It is, however, easy to create a
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case when the error is 0, but the grandmother representation is
non-optimal. This happens when we stimulate both children pop-
ulations, A + B, in the lower area simultaneously. Each individual
grandmother unit can predict the activity in the corresponding
population, so the error is 0. Two grandmother cells are, however,
non-optimal in this case as one grandmother cell alone would suf-
fice to represent the combined children, A + B. Therefore, it would
be optimal to connect the combined children to one grandmother
cell instead of two. Such a change will not occur as long as the
error in the children is 0 since plasticity in predictive coding mod-
els is driven by the error signal (see Equation 55 in Friston, 2008).
Therefore, the required non-zero activity in the error units ought
to represent the stimulus in order to enable the formation of a
stimulus related connection to a more optimal grandmother cell.
In this manner, a combined stimulus and error code might enable
the network to improve certain suboptimal representations.

CONCLUSION
In this paper we have used the word “error” as a substitute
for “difference between integrated stimulation history and the

current stimulus,” or “difference between integrated stimulation
context and the current stimulus.” One might have the objec-
tion that the word “error” is misleading because it is associated
with various interpretations. To avoid this possibility we summa-
rize our results as follows. A neuron seems to code for at least
two different signals. The proportion of the two signals varies
dynamically as a function of time, space and stimulus contrast. It
is unclear how downstream neurons can make use of such a com-
bined and dynamic code. Until we have the experimental tools
to separate signals from different brain regions we are bound
to use computer models to understand such a code. Since there
is one model that has proclaimed itself to implement a general
brain theory we have used that model (Friston, 2010). With this
model and our modification of it we have taken one step toward
understanding a combined neural code.
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