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Abstract. Malignant mesothelioma (MM) is a rare but 
aggressive cancer. The definitive diagnosis of MM is critical 
for effective treatment and has important medicolegal signifi-
cance. However, the definitive diagnosis of MM is challenging 
due to its composite epithelial/mesenchymal pattern. The aim 
of the current study was to develop a deep learning method 
to automatically diagnose MM. A retrospective analysis 
of 324 participants with or without MM was performed. 
Significant features were selected using a genetic algorithm 
(GA) or a ReliefF algorithm performed in MATLAB soft-
ware. Subsequently, the current study constructed and trained 
several models based on a backpropagation (BP) algorithm, 
extreme learning machine algorithm and stacked sparse 
autoencoder (SSAE) to diagnose MM. A confusion matrix, 
F‑measure and a receiver operating characteristic (ROC) 
curve were used to evaluate the performance of each model. 
A total of 34 potential variables were analyzed, while the GA 
and ReliefF algorithms selected 19 and 5 effective features, 
respectively. The selected features were used as the inputs 
of the three models. SSAE and GA+SSAE demonstrated 
the highest performance in terms of classification accuracy, 
specificity, F‑measure and the area under the ROC curve. 
Overall, the GA+SSAE model was the preferred model since 
it required a shorter CPU time and fewer variables. Therefore, 
the SSAE with GA feature selection was selected as the most 
accurate model for the diagnosis of MM. The deep learning 
methods developed based on the GA+SSAE model may assist 
physicians with the diagnosis of MM.

Introduction

Malignant mesothelioma (MM) is a rare but aggressive 
cancer (1). The prognosis of patients with MM is poor since 
the majority of patients are diagnosed at an advanced stage 

and MM is resistant to current treatment options, including 
chemotherapy, surgery, radiotherapy and immunotherapy (2). 
The estimated median overall survival for advanced MM is 
1 year following diagnosis (3). MM has a strong association 
with exposure to asbestos, a mineral extensively used world-
wide in the 1970‑80s. Although the use of asbestos has been 
prohibited in the 21st century, the incidence rate of MM has 
continued to increase worldwide due to the long latency period 
of MM (2,4).

Diagnosis of MM primarily relies on histopatho-
logical examination supported by clinical and radiological 
evidence (5). The definitive diagnosis of MM is a crucial step 
prior to appropriate treatment and has important medicolegal 
significance due to diagnosis‑related compensation issues (6). 
However, the definitive diagnosis of MM can be complex, 
particularly during early stages. This is due to significant 
variation between cases and the presence of traits that mimic 
other cancers (particularly adenocarcinoma) or benign/reac-
tive processes (6). Furthermore, given the low frequency of 
MM, it is commonly misdiagnosed or not identified due to a 
lack of experienced pathologists (1,6).

In the last two decades, the use of diagnosis support 
systems (DSSs) has gradually increased (7‑9). A DSS for MM 
may enable pathologists to rapidly examine medical data in 
considerable detail. More importantly, it may reduce the vari-
ability that occurs with different pathologists. Previous studies 
regarding computer‑aided diagnosis of MM mainly focused on 
developing automatic image processing approaches, including 
methods that can automatically detect and quantitatively 
assess pleural thickening in thoracic computed tomography 
images (10‑12). However, pleural thickening does not exclu-
sively signify an asbestos‑related disease (3), therefore previous 
methods possess limitations for identifying MM. To increase 
the accuracy of the DSS, it is necessary to effectively combine 
multi‑feature data, including clinical, laboratory and radiolog-
ical characteristics of MM. Er et al (7) collected multi‑feature 
data to diagnose MM. The authors achieved 96.30% classifica-
tion accuracy by using a probabilistic neural network (PNN). 
However, multi‑feature data may not contribute equally to 
the identification of MM. Feature selection methods may be 
utilized to remove the redundant or irrelevant features from 
the original feature set (9); this may aid the diagnosis model to 
focus on the most discriminative features in order to achieve a 
higher accuracy and decrease the learning time.

Disease diagnosis is a major classification issue; therefore, 
the classifier is critical to the DSS. Previously, a number of 

Diagnosis of mesothelioma with deep learning
XUE HU  and  ZEBO YU

Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, 
Chongqing 400016, P.R. China

Received March 26, 2018;  Accepted October 3, 2018

DOI:  10.3892/ol.2018.9761

Correspondence to: Professor Zebo Yu, Department of Blood 
Transfusion, The First Affiliated Hospital of Chongqing Medical 
University, 1 Youyi Road, Yuzhong, Chongqing 400016, P.R. China
E‑mail: zeboyuchongqing@163.com

Key words: deep learning, stacked sparse autoencoder, malignant 
mesothelioma, diagnosis



HU  and  YU:  DIAGNOSIS OF MESOTHELIOMA1484

machine leaning methods have been used as classifiers to 
assist the diagnosis of disease, including support vector 
machine (13,14), extreme learning machine (ELM) (15) and 
deep learning (DL; also termed Hierarchical Learning) (16,17). 
DL facilitates computational models, consisting of multiple 
processing layers, to learn representations of data with 
multiple levels of abstraction (18). DL is a family of compu-
tational methods, which includes the restricted Boltzmann 
machine (19), stacked autoencoder (20), deep belief 
networks (21) and convolutional neural networks (22). These 
algorithms markedly improve speech recognition, object 
detection and visual object recognition (16,23).

An autoencoder is a type of neural network including three 
layers: input layer, hidden layer, and output layer (20). Fig. 1 
presents the architecture of a basic autoencoder with ‘encoder’ 
and ‘decoder’ networks. An extension of an autoencoder, the 
sparse autoencoder (SAE) introduces a spare constraint on the 
hidden layer (20). Its algorithm steps are as follows: The given 
dataset, X={x(1), x(2),..., x(i)... x(N)}, x(i) ∈RM is mapped to the 
hidden layer with a nonlinear activation function:

Then, the resulting hidden representation Z is mapped back 
to a reconstructed vector hw,b(x) in the input space.

In the aforementioned formulas, X represents the feature 
expression of the original data, R represents real numbers; N 
represents the number of data samples and M represents the 
length of each data sample. W1 represents the weight matrix 
and b1 represents the bias of the encoder. f represents the 
encoder activation function. Subsequently, the parameter set, 
W1, b1, W2, b2, are optimized by minimizing error between the 
input and reconstructed data. The cost function of the SAE can 
be written as:

In this formula, N represents the number of data samples, 
hw,b(x(i)) represents the output feature vector, x(i) represents the 
input feature vector, λ represents the weight decay parameter, 
Sl represents the number of neurons in layer l, β represents 
the weight of sparsity penalty term, Wl

ji represents the weight 
on the connection between neuron j in layer l+1 and neuron i 
in layer l, ρ represents the sparsity parameter defining the 
sparsity level and ρj represents the average activation of hidden 
neuron j. KL(ρ||ρ̂ i) represents the Kullback‑Leibler divergence 
between ρ and ρ̂ i.

By minimizing J(W,b) the optimal parameters of W and b 
are updated in the process of coding. The parameters W and b 
in each iteration can be updated as:

In these formulas, parameter ε represents the learning 
rate; l represents the lth layer of the network; i and j denote 
the ith and jth neurons of two neighboring layers, respectively. 

J(W,b) represents the cost function of the SAE and ∂ represents 
seeking partial derivative.

Stacked sparse autoencoder (SSAE) is a newly developed 
DL algorithm and a feed‑forward neural network consisting 
of multiple layers of basic autoencoder. SSAE has success-
fully been employed to identify visual features in computer 
vision (24,25), predict protein solvent accessibility and contact 
number (26), predict protein‑protein interactions (27) and 
construct an electronic nose system (28). Similar to other DL 
algorithms, SSAE can efficiently use a deep or layered architec-
ture to identify potential representations from original clinical 
features, therefore enhancing the classification accuracy (20).

However, the performance of classification algorithms 
may differ from one dataset to another (29). Different clas-
sification algorithms may be used to develop and compare 
several models, allowing the best solution to be selected based 
on the dataset (29). In the current study, the GA and ReliefF 
methods were used to select high discriminative features and 
three commonly used machine leaning algorithms, BP, ELM 
and SSAE were selected as the classification algorithms. The 
performance of these models was compared using evalua-
tion metrics, including classification accuracy, specificity, 
F‑measure and AUC. The model with the best performance 
may be considered as a classifier to be used when developing a 
DSS to diagnose MM.

Materials and methods

Data source. To facilitate comparisons with previous studies, 
the current study used a dataset obtained from the University 
of California (Irvine, CA, USA) machine learning data-
base (7). The original dataset includes 324 participants. For 
each participant, 34 physiological variables were recorded, as 
presented in Table I.

Data preprocessing and feature selection. The original 
dataset was classified into two groups by experienced patholo-
gists: 97 patients with MM and 227 healthy participants. For 
each participant, 34 variables were recorded and no data were 
missing. Multiplicity of the features may lead to over‑training 
a model. Therefore, a frequently used preprocessing method is 
feature selection, in which irrelevant, weakly relevant or less 
discriminative features are removed. Feature selection can 
increase the accuracy of the resulting model (30,31). Previously, 
a variety of feature selection algorithms have been developed 
to perform feature selection (32,33). The current study used 
the GA (34) and the ReliefF algorithm (30) with MATLAB 
software (R2016b 9.1.0.441655); MathWorks, Natick, MA, 
USA). The parameters of GA were set as follows: Number 
of generations=100, population size=20, encoding length=34 
and the crossover rate=2. While ReliefF methods were used to 
select high discriminative features, the parameters of ReliefF 
were set as follows: Number of iterations=323 and the number 
of close samples=95. The important features selected by GA 
and ReliefF were used as inputs to train the diagnosis models. 
For training these diagnosis models, the dataset was randomly 
divided into training (70%) and testing (30%) data.

Construction of the diagnosis models. Previous studies have 
demonstrated that the most effective model is not always easily 
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identified. Therefore, testing various diagnosis models is 
required to select the most effective one. In the current study, 
a number of diagnosis models, including BP, ELM and SSAE, 
were developed using MATLAB software. Selected features 
were used as the inputs for these recognition models.

The algorithm principle for BP can be reviewed in a previous 
study (35). In the current study, the parameters of BP were set 
as follows: Size of hidden layers=50, transfer function of hidden 
layers=‘tansig’, transfer function of output layer=‘purelin’, 
training function=‘trainlm’, epoch =1,000, goal of training accu-
racy=0.1 and the learning rate=0.1. Other associated parameters 
were based on the default values of MATLAB.

In addition, an ELM algorithm was selected to build a 
pattern recognition model. ELM is a learning algorithm, which 
is developed on the basis of a single‑hidden layer feed‑forward 
neural network (15). ELM can achieve a faster learning speed 

and improved generalization capability compared with other 
pattern recognition models by distributing the input weights 
and hidden layer biases randomly and determining the output 
weights through a Moore‑Penrose generalized inverse operation 
of the weight matrices in hidden layers (36). Further information 
regarding ELM can be reviewed in a previous study (37). In the 
current study, the number of hidden nodes was set to 30 and the 
sigmoidal function was adopted as the transfer function.

The SSAE is a feed‑forward neural network consisting of 
multiple layers of basic autoencoder (28). To reduce the dimen-
sions and extract high‑level abstract features from the input 
without labels, two autoencoders were stacked to generate an 
SSAE in the current study. When using an SSAE, features 
calculated by the first autoencoder are used as the inputs for 
the second autoencoder’s hidden layer, as presented in Fig. 2. 
When the expected error rate is achieved by the first auto-
encoder, the high‑level abstract features are extracted by the 
second autoencoder (38,39). In the current study, a supervised 
model, the Softmax classifier (SMC), was connected to the 
end of the trained SSAE to identify the classification task. To 
train the SMC, the high‑level abstract features extracted by the 
SSAE were used as the inputs for the softmax layer. Following 
training, the SMC was stacked with SSAE to establish a deep 
neural network (Fig. 2). Further information regarding the 
SMC can be reviewed in previous studies (38,40).

The parameters of the first autoencoder were set as follows: 
When using raw data as the input the size of the hidden 
representation=30, when using data generated by dimension 
reducing processing as the input the size of the hidden repre-
sentation=20, weight regularization for loss function=0.001, 
sparsity regularization for loss function=4 and sparsity propor-
tion=0.05. The parameters of the second autoencoder were 
set as follows: Size of the hidden representation=10, weight 
regularization for loss function=0.001, sparsity regularization 
for loss function=4 and sparsity proportion=10. In addition, 
the current study selected the linear transfer function.

Performance measure. In order to evaluate and select the most 
accurate diagnostic model, confusion matrixes were adopted to 

Figure 1. Architecture of a basic autoencoder. V (1,2...n), entire training data; 
X (1,2...n), set of training data; bh, bias of hidden layer; bx, bias of input layer; 
h ( 1,2...m), feature vector at hidden layer; x ,̂ reconstruction of input x.

Table I. Variables for diagnosing malignant mesothelioma.

Variable Value type

Age Quantitative
Sex Qualitative
City Qualitative
Asbestos exposure Qualitative
Type of malignant mesothelioma Qualitative
Duration of asbestos exposure Quantitative
Diagnosis method Qualitative
Keep side Qualitative
Cytology Qualitative
Duration of symptoms Quantitative
Dyspnoea Qualitative
Ache on chest Qualitative
Weakness Qualitative
Smoker Qualitative
Performance status Qualitative
White blood cell count Quantitative
Hemoglobin Quantitative
Platelet count Quantitative
Sedimentation rate Quantitative
Blood lactose dehydrogenase Quantitative
Alkaline phosphatase Quantitative
Total protein Quantitative
Albumin Quantitative
Glucose Quantitative
Pleural lactose dehydrogenase  Quantitative
Pleural protein Quantitative
Pleural albumin Quantitative
Pleural glucose Quantitative
Mortality Qualitative
Pleural effusion Qualitative
Pleural thickness on tomography Qualitative
Pleural pH Qualitative
Cell count Quantitative
C‑reactive protein Quantitative



HU  and  YU:  DIAGNOSIS OF MESOTHELIOMA1486

calculate the sensitivity, specificity, precision and accuracy of 
each diagnostic model. Occasionally, contradictions occurred 
between the sensitivity and precision, therefore the F‑measure 
was used to weight and average the two values: F=(2 x preci-
sion x sensitivity)/(precision+sensitivity).

In addition, a receiver operating characteristic (ROC) 
curve and the area under the ROC curve (AUC) were used 
to evaluate the performance of the diagnostic models. ROC 
analysis evaluated the capacity of the diagnostic models to 
distinguish between MM and healthy participants. All calcula-
tions were based on standard equations published in previous 
studies (31,41). Furthermore, the central processing unit (CPU) 
time was recorded and compared between the SSAE and 
GA+SSAE diagnostic models to indicate the computational 
complexities of each model.

Results

Identifying variables that are important for MM diagnosis 
by feature selection. The original dataset contained 34 vari-
ables for each participant. GA and ReliefF were performed 
to select the most significant features for diagnosing MM. 19 
relevant features were selected as the feature subset based on 
GA. However, only five relevant features with a weight value 
>0.10 were selected as the feature subset based on the ReliefF 
algorithm. The feature subset based on GA included: Age, 
gender, city, duration of asbestos exposure, diagnosis method, 
cytology, ache on chest, weakness, smoking habit, white blood 
cell level, hemoglobin level, blood lactose dehydrogenase level, 
albumin level, glucose level, pleural lactose dehydrogenase 
level, pleural protein level, pleural glucose level, cell count and 
pleural level of acidity.

Comparing the diagnostic models. The current study 
compared the performance of the diagnosis models using four 
evaluation measures, as illustrated in Figs. 3‑6. Overall, SSAE 
and GA+SSAE demonstrated a higher performance compared 
with the other diagnosis models evaluated.

When all 34 variables of the original data set were used 
to diagnosis MM, the SSAE model demonstrated the highest 
accuracy (100.00%), while other models demonstrated an 
accuracy <95%. When the 19 variables selected by GA were 
used as the input variables, both the GA+BP and GA+ELM 
models achieved an accuracy of 98.00%. However, GA+SSAE 
demonstrated the highest accuracy (100.00%). When the five 
variables selected by the ReliefF algorithm were used as the 
input variables, the accuracy of the ReliefF+SSAE model 
decreased to 98.00%, while the other models demonstrated 
accuracies <92% (Fig. 3).

The SSAE model demonstrated a specificity of 100.00% 
when all 34 variables of the original data set were used as the 
input variables. Similarly, when the 19 variables selected by 
GA were used as the inputs, the GA+SSAE model demon-
strated a specificity of 100.00%. By contrast, the ReliefF+BP 
model achieved the lowest specificity of 89.10% (Fig. 4).

When all 34 variables of the original data set were used 
as the inputs, the SSAE model demonstrated the highest 
F‑measure value (100.00%), while ELM achieved the lowest 
F‑measure value (90.91%). When the 19 variables selected 
by GA were used as the input variables, both GA+BP and 
GA+ELM models demonstrated an F‑measure value of 
97.10%. With the same input variables, the GA+SSAE model 
achieved the highest F‑measure value (100.00%). However, 
when the five variables selected by the ReliefF algorithm 
were used as the input variables, the F‑measure value of the 
ReliefF+ELM model decreased markedly to 5.48%, while 
the F‑measure value of the ReliefF+SSAE model was 97.12% 
(Fig. 5).

An evaluation was performed to compare the discrimina-
tory power of the BP, ELM and SSAE models, with or without 
feature selection, as illustrated in Figs. 6 and 7. An ROC 
curve and the AUC were used to indicate the effectiveness 
of a diagnostic model to discriminate between patients with 
MM and healthy participants. The current study revealed 
that the SSAE and GA+SSAE models demonstrated the 
highest diagnostic power compared with the other models, as 
presented in Fig. 7.

Performing feature selection does not exclusively improve 
the performance of diagnostic models. As demonstrated in 
Figs. 3‑7, performing GA markedly enhanced the classifica-
tion performance of BP. Compared with BP alone, GA+BP 
achieved a higher accuracy (98.00 vs. 94.40%), specificity 
(98.4 vs. 95.30%), F‑measure (97.10 vs. 92.73%) and AUC 
(97.75 vs. 94.72%). Whereas, compared with BP alone, 
performing a ReliefF algorithm generated a lower accuracy 
(90.80 vs. 94.90%), specificity (89.10 vs. 95.30%), F‑measure 
(87.69 vs. 92.73%) and AUC (80 vs. 94.72%).

As demonstrated in Fig. 4, performing GA or ReliefF 
prior to training the ELM classifiers markedly improved the 
specificity. Compared with ELM alone, the GA+ELM model 
revealed a higher accuracy (98.00%), specificity (98.40%), 
F‑measure (97.10%) and AUC value (97.75%). However, 
comparison of the accuracy, F‑measure and AUC demon-
strated that performing the ReliefF algorithm reduced the 
performance of the ELM model on the same dataset.

The performance of SSAE in diagnosing MM was 
compared with that of the GA+SSAE and ReliefF+SSAE 

Figure 2. Architecture of sparse autoencoder. V (1,2...n), entire training data; 
X (1,2...n), set of training data; bh, bias of hidden layer; and bx, bias of input 
layer; h(l) ( 1,2...m), feature vector at layer l; h(2) (1,2...m), feature vector at 
layer 2.
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models. In comparison with SSAE without feature selec-
tion, performing the ReliefF algorithm achieved a worse 
performance. However, both SSAE and SSAE+GA achieved 
an accuracy, specificity, F‑measure and AUC of 100%. The 
average CPU time of the SSAE diagnostic model following GA 

feature selection was compared with the average CPU time of 
the baseline SSAE diagnostic model without feature selection. 
Each model was performed ten times. the mean CPU time of 
SSAE was 33.2 sec. However, following GA feature selection, 
the mean CPU time of SSAE decreased to 28.8 sec.

Figure 3. Comparison of the accuracy achieved by various diagnostic models. BP, backpropagation; GA, genetic algorithm; ELM, extreme learning machine; 
SSAE, stacked sparse autoencoder.

Figure 4. Comparison of the specificity achieved by various diagnostic models. BP, backpropagation; GA, genetic algorithm; ELM, extreme learning machine; 
SSAE, stacked sparse autoencoder. 

Figure 5. Comparison of the F‑measure for various diagnostic models. BP, backpropagation; GA, genetic algorithm; ELM, extreme learning machine; SSAE, 
stacked sparse autoencoder. 
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Discussion

The definitive diagnosis of MM is significant at both the indi-
vidual and public health level, and has important medicolegal 
significance due to diagnosis‑related compensation issues (6). 
However, the definitive diagnosis of MM is complicated due 
to its composite epithelial/mesenchymal pattern and its low 
occurrence frequency (6). To improve the diagnosis of MM at 
an early stage, the current study designed and implemented a 
diagnostic model based on SSAE algorithms.

To the best of our knowledge, no previous studies have 
developed MM diagnostic models using SSAE algorithms. 
However, previous studies have successfully applied SSAE 
in processing diagnosis information (38,40,42). A number 
of previous studies have compared the performance of 
different statistical and machine learning techniques in 
the field of medical diagnosis; the results revealed that the 
performance of SSAE is higher than several other similar 

techniques (42,43), a finding that is consistent with the 
current study.

However, the performance and precision of a classifica-
tion algorithm may vary depending on the dataset (44). For a 
specific dataset, it is difficult to identify which classification 
algorithm has the highest performance without performing a 
comparison. In addition, feature selection methods exhibit a 
marked influence on the performance of a classification algo-
rithm; a feature subset that improves the performance of one 
classification algorithm may not improve the performance of 
a different classification algorithm. To generate a diagnostic 
model for MM and evaluate its performance, three different 
algorithms with or without feature selection were applied 
on the same training dataset and their performances were 
compared in the current study.

The results indicated that the SSAE and GA+SSAE models 
exhibited the highest overall performance; the accuracy, 
specificity, F‑measure and AUC for both models were 100%. 

Figure 6. ROC curves to assess the capacity of the diagnostic models to distinguish between patients with malignant mesothelioma and healthy participants. 
ROC, receiver operating characteristic; BP, backpropagation; GA, genetic algorithm; ELM, extreme learning machine; SSAE, stacked sparse autoencoder.

Figure 7. Comparison of the area under the receiver operating characteristic curves for various diagnostic models. AUC, area under the curve; BP, backpropa-
gation; GA, genetic algorithm; ELM, extreme learning machine; SSAE, stacked sparse autoencoder.
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However, following feature selection with GA a decrease was 
identified in the CPU time for training the SSAE diagnostic 
model compared with the baseline SSAE diagnostic model 
without GA. Furthermore, the GA+SSAE model required 
fewer variables to achieve the same performance as SSAE. 
The ReliefF+ELM diagnosis model exhibited the worst 
performance on the dataset used in the current study, with 
an accuracy, F‑measure and AUC of 65.30, 5.48 and 50.00%, 
respectively. In addition, performing feature selection did not 
exclusively produce an improved performance. The accuracy 
of the ReliefF+ELM model was 65.3%, while the accuracy of 
ELM without feature selection was 93%. Similarly, the ReliefF 
algorithm reduced the performance of the SSAE model.

The results from the current study were compared with 
a previous study that used the same training dataset (7). 
The previous study compared the performance of three 
classification methods and identified that the classification 
accuracies were 96.30, 94.41 and 91.14% for PNN, multilayer 
neural network and learning vector quantization structures, 
respectively. The highest classification accuracy was obtained 
using a PNN (with 3 fully connected layers, response surface 
method) structure (96.30%) (7,45). In comparison, the SSAE 
and GA+SSAE methods achieved a classification accuracy of 
100% on the same training dataset, in the current study.

The current study demonstrates the effectiveness of DL 
in the diagnosis of cancer. A pathologist’s clinical impression 
and diagnosis of MM is based on contextual factors, whereas 
a GA+SSAE model has the ability to diagnose MM with 
high accuracy and may augment clinical decision‑making. 
Furthermore, this fast and scalable method may be applied to 
other clinical datasets for the diagnosis or prediction of other 
cancer types.

In conclusion, the current study has aimed to improve the 
diagnosis of MM by evaluating three deep learning algorithms, 
using a dataset containing 97 patients with MM and 227 healthy 
participants. To avoid over‑training and improve the classifica-
tion accuracy of a diagnosis model, ReliefF and GA feature 
selection algorithms were implemented to remove the irrelevant 
or weakly relevant features. The current study identified that 
the GA+SSAE algorithm exhibited the highest performance in 
all evaluation criteria and required the smallest number of vari-
ables. The GA+SSAE algorithm‑based DSS may contribute to 
the definitive diagnosis of MM. Consequently, the current study 
may assist pathologists with the diagnosis of MM by providing 
a system that can achieve optimal diagnostic performance. In 
addition, it may facilitate the screening of high‑risk individuals 
in regions where asbestos exposure is common.
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