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Abstract

This work demonstrates how gene association studies can be analyzed to map a global landscape of genetic interactions
among protein complexes and pathways. Despite the immense potential of gene association studies, they have been
challenging to analyze because most traits are complex, involving the combined effect of mutations at many different
genes. Due to lack of statistical power, only the strongest single markers are typically identified. Here, we present an
integrative approach that greatly increases power through marker clustering and projection of marker interactions within
and across protein complexes. Applied to a recent gene association study in yeast, this approach identifies 2,023 genetic
interactions which map to 208 functional interactions among protein complexes. We show that such interactions are
analogous to interactions derived through reverse genetic screens and that they provide coverage in areas not yet tested by
reverse genetic analysis. This work has the potential to transform gene association studies, by elevating the analysis from
the level of individual markers to global maps of genetic interactions. As proof of principle, we use synthetic genetic screens
to confirm numerous novel genetic interactions for the INO80 chromatin remodeling complex.

Citation: Hannum G, Srivas R, Guénolé A, van Attikum H, Krogan NJ, et al. (2009) Genome-Wide Association Data Reveal a Global Map of Genetic Interactions
among Protein Complexes. PLoS Genet 5(12): e1000782. doi:10.1371/journal.pgen.1000782

Editor: Kathleen Kerr, University of Washington, United States of America

Received July 9, 2009; Accepted November 22, 2009; Published December 24, 2009

Copyright: � 2009 Hannum et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by grants from the Netherlands Organisation for Scientific Research (NWO-VIDI), Microsoft (Computational Challenges in
Genome-wide association Studies), the National Science Foundation (IIS-0803937), and the National Institute of General Medical Sciences (R01-GM084279). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tideker@ucsd.edu

. These authors contributed equally to this work.

Introduction

A central challenge in genetics is to understand how interactions

among different genetic loci contribute to complex traits [1–7]. In

model organisms such as yeast, genetic interactions are typically

identified using reverse genetic approaches, in which different

pairs of genes are systematically knocked out to create a collection

of double mutants. Genetic interaction is indicated when the

growth rate of the double mutant is slower than expected (e.g.,

synthetic sickness or lethality) or faster than expected (e.g.,

suppression) [4,8,9]. Rapid screening of such interactions has

been made possible through a variety of methods including

Synthetic Genetic Array (SGA) analysis [4], diploid Synthetic

Lethality Analysis by Microarray (dSLAM) [3], and epistatic

miniarray profiles (E-MAP) [1,2,10,11].

In higher eukaryotes such as humans, reverse genetic analysis

has not been so straightforward. Complex traits such as body

weight or disease onset can be difficult to study in a cell-based

assay, and null mutations are expensive to induce in mammals

[12]. Instead, interactions amongst loci have been largely mapped

from data generated through forward genetic approaches, such as

genome-wide linkage [13] or genome-wide association studies

(GWAS) [14,15]. Such methods leverage naturally occurring

mutations in the genome to pinpoint loci that have associations,

ideally causal associations, with a trait of interest [7].

Mapping pair-wise locus associations has proven remarkably

difficult, however. The most basic approach is to perform an

exhaustive two-dimensional (2D) scan, in which all pairs of genetic

markers are tested for joint association with the phenotype.

Because billions of marker pairs must be tested, 2D scans are

computationally demanding and suffer from low statistical power

due to multiple hypothesis testing. One method to partially

mediate this problem is to initiate searches for pair-wise

interactions only for markers with strong individual effects

[14,15]. Two recent studies by Storey et al. and Litvin et al. used

this approach while accounting for information shared across

multiple traits to further enhance statistical power [16,17]. These

results indicate a major role for genetic interactions in the

heritability of complex traits. However, it is likely that the

interactions uncovered to date represent only a fraction of the true

genetic network.

Here, we show that both the power and interpretation of genetic

interactions derived from association studies can be significantly

improved through integration with information about the physical
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architecture of the cell. We apply this integrative approach to an

association study conducted in yeast, yielding a genetic network

that complements, extends, and validates networks assembled

through reverse genetic methods.

Results

Bi-clustering of marker pairs defines a network among
genomic intervals

We analyzed a recent GWAS in yeast which analyzed a

population of 112 segregants resulting from a cross of a laboratory

S. cerevisiae strain with a wild isolate [5]. For each segregant, the

states of 1,211 unique markers (genotypes) were mapped along

with the expression profile of 5,727 genes (traits) (Table S1). To

identify pairs of markers that genetically interact— i.e. for which

the joint state of the marker pair was associated with one or more

gene expression traits— we considered the method of Storey et al.

[17] which provides the best marker pair for each expression trait,

resulting in a set of 4,687 distinct marker-marker interactions

(removing redundancies due to marker pairs that associate with

multiple traits).

A preliminary examination of the genotype data showed few

recombinations between neighboring markers, indicating that

markers in close proximity were in linkage disequilibrium (LD). As

a result, neighboring markers were often found to display similar

patterns of interactions (Figure 1A). In much the same way that

LD has allowed neighboring markers to be grouped into haplotype

blocks [18], we reasoned that LD between neighboring markers

could also be exploited to enhance marker-marker interactions. To

this end, we developed a bi-clustering algorithm to identify groups

of marker-marker interactions that fall across common genomic

intervals (Figure 1B; see Methods). We reasoned that bi-clustering

the marker pairs might provide two distinct advantages: First, it

allows many statistically insignificant marker-marker interactions

to reinforce a single interval-interval interaction. Second, it

leverages the structure between neighboring marker pairs to

identify with greater precision the interval of DNA underlying the

variance in a given trait.

Applied to the marker pairs from Storey et al., the bi-clustering

procedure yielded a network of 2,023 interactions between 1,977

genomic intervals (Figure 1C). Of these, 695 interval pairs

garnered support from multiple marker pairs (five on average).

The remaining 1,328 interval pairs consisted of singleton marker-

marker interactions, which were not found to cluster with any

others. The complete network of interval-interval interactions can

be found in Table S2. We refer to this network as a natural genetic

network since it is derived from natural rather than engineered

mutations.

Natural interactions define a map of functional links
between protein complexes

A common interpretation of genetic interactions measured in

reverse genetic screens has been the ‘‘between-complex’’ or

‘‘between-pathway’’ model, in which interactions are found to

span pairs of protein complexes or functional annotations. Such

complex-complex interactions have been instrumental in identify-

ing synergistic or compensatory relationships [4,8,19]. Similarly,

pairs of functional terms have served to identify functions that are

cooperative or buffer one another [4].

To evaluate natural networks in this fashion, we examined all

pairs of documented protein complexes (out of 302 in Gavin et al.

[20] or the Munich Information Center for Protein Sequences

[MIPS] [21]) and all pairs of functional terms (out of 1,954 terms

in the Gene Ontology [GO] [22]) for enrichment for natural

genetic interactions. As further described in Methods, we

inspected all complex pairs and found 208 significant interactions

in the natural network (False Discovery Rate,5%; Table 1).

Similarly, we identified 17,714 significant interactions between

functional terms. In contrast, far fewer results were found for

complex or term interactions derived from the raw marker pairs of

Storey et al. prior to bi-clustering these data into intervals (Table 1).

The full set of complex-complex and term-term interactions are

available as a resource in Table S3 and on http://www.

cellcircuits.org/qtlnet/.

Figure 2A shows a map of the 50 most significant complex-

complex interactions. Because gene expression is the phenotypic

trait, each complex-complex interaction is linked to a cluster of

gene expression levels that it regulates (with each cluster

containing an average of 287 genes). As the map integrates many

traits simultaneously, it is distinct from previously-published

genetic networks which have relied on cell viability as the single

readout of interest. We found that two-thirds of the complex-

complex interactions were linked to gene expression clusters that

were highly functionally coherent (Figure 2A). In contrast, less

than one one-hundredth of interval-pairs were found to influence a

set of genes belonging to a single pathway or function. Thus, we

conclude that integration of epistatic interactions with protein

complex maps helps to filter spurious interactions while simulta-

neously providing a putative mechanism for the pair-wise

associations.

As an illustrative example, Figure 2B shows the natural genetic

interactions supporting a functional link between the synaptone-

mal complex and RNA Polymerase II. Mutations in the TOP2

gene of the synaptonemal complex have been shown to lead to

higher levels of mitotic recombination in rDNA which can result in

amplification and deletion of the rDNA array [23]. RNA

polymerase II is responsible for the transcription of small nucleolar

RNAs (snoRNAs) that physically and functionally interact with

many other proteins required for ribosomal biogenesis [24].

Indeed, we found that the gene expression traits linked to this

interaction were enriched for ribonucleoprotein complex biogen-

esis and ribosome biogenesis (both P9 = 1028 by hypergeometric

test; P9 is a Bonferroni corrected p-value).

Figure 2C centers on two of the interactions for the Tim9-Tim10

complex, an essential component of the TIM machinery responsible

for the transport of carrier proteins from the cytoplasm to the inner

mitochondrial membrane [25]. Tim9-Tim10 is genetically con-

nected with Mannan Polymerase II and the TRAPP complex.

Author Summary

One of the most important problems in biology and
medicine is to identify the genetic mutations that affect
human traits such as blood pressure, longevity, and onset
of disease. Currently, large scientific teams are examining
the genomes of thousands of people in an attempt to find
mutations present only in individuals with certain traits.
Until now, mutations have been largely examined in
isolation, without regard to how they work together inside
the cell. However, large pathway maps are now available
which describe in detail the network of genes and proteins
that underlies cell function. Here we show how to take
advantage of these pathway maps to better identify
relevant mutations and to show how these mutations
work mechanistically. This basic approach of combining
genetic information with known maps of the cell will have
wide-ranging applications in understanding and treating
disease.

Interpretation of Natural Genetic Interactions

PLoS Genetics | www.plosgenetics.org 2 December 2009 | Volume 5 | Issue 12 | e1000782



Mannan Polymerase II is a component of the secretory pathway

and is involved in lengthening the mannan backbone of cell wall and

periplasmic proteins [26]; the TRAPP complex plays an important

role in trafficking of proteins from the golgi to the cell periphery

[27]. The abundant genetic interactions between Tim9-Tim10 and

these two complexes suggest they may jointly influence the make-up

of cell surface proteins, possibly through control of trafficking.

Consistent with this hypothesis, disruption of mitochondrial

function has been shown to influence cell wall composition,

including levels of phosphopeptidomannans [28].

For comparison to the between-complex model, we also

examined the natural genetic network for support for a ‘‘within-

complex’’ model, in which single functional terms or complexes

are enriched for genetic interactions among their member genes

[4,8,19]. Searching across the 1,954 GO terms and 302

complexes, the natural network identified only 12 enriched GO

terms and no significant complexes (Table 1 and Table S3). Thus,

genetic interactions in naturally-derived networks are far less likely

to occur within a single pathway than to span between pathways.

This result mirrors what has been observed in analysis of reverse

genetic interaction networks, particularly amongst interactions

characterized as synthetic lethal or synthetic sick, which have been

shown to interconnect different pathways that are functionally

synergistic or redundant [19,29].

Complementarity between natural and synthetic genetic
networks

Next, we asked whether the natural genetic network had any

direct overlap with ‘‘synthetic’’ networks derived using reverse

Figure 1. Using genome-wide association data to identify natural genetic interactions. (A) Two interacting interval pairs (green and blue)
which represent significantly dense groups of marker-marker interactions are shown. (B) A matrix view of the same genomic regions. The blue and
green interval pairs appear as two rectangles. (C) The entire set of marker pairs was bi-clustered to form a set of high-confidence interval pairs (blue
rectangles).
doi:10.1371/journal.pgen.1000782.g001

Interpretation of Natural Genetic Interactions
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genetic approaches such as SGA, dSLAM, or E-MAP platforms.

To address this question, we considered four synthetic interaction

networks: a network by Tong et al. [4] including comprehensive

interaction screens for 132 genes using SGA, a genetic network

governing DNA integrity identified using dSLAM [3], and E-

MAPs centered on chromosomal biology [2] and RNA processing

[1]. The combined network from these four sources consisted of

2,117 genes linked by 29,275 genetic interactions. As with the

natural network, we confirmed that interactions in the combined

synthetic network were more likely to fall between functional terms

and protein complexes than within them (Table 1 and Table S4).

To evaluate overlap, an interaction in the synthetic network was

considered ‘‘supported’’ if the two genes mapped into two different

intervals that were found to interact in the natural network. As

shown in Figure 3A, the natural network supported on average

8.7% of interactions across the four synthetic networks as opposed

to 5.760.5% expected by chance (Text S1). Thus, some regions

are shared in common between natural and synthetic networks,

although these regions appear to represent a minority of all genetic

interactions.

We found that these common genetic interactions took place

among genes encoding basal transcriptional activators (‘‘regulation

of nucleotide metabolism’’, Figure 3B) including components of

RNA polymerase II, Kornberg’s mediator complex, the holo

TFIIH complex, INO80, SET3, and COMPASS (Figure 4A). The

expression traits linked to these common interactions were for

genes encoding the cytosolic ribosome (P9,10247), cell cycle

checkpoints (P9,10215, including RAD9 and DDC1), and

mitochondrial electron transport (P9,10212). Thus, interactions

that overlap between natural and synthetic genetic networks take

place largely among core transcriptional activators and influence

expression of core metabolic processes.

Novel interactions of the INO80 complex as suggested by
natural networks

One prominent complex highlighted by both natural and

synthetic interactions was INO80, a multi-subunit ATP-dependent

chromatin remodeling complex (Figure 4A). At its core is the

Ino80 protein, an ATPase of the SNF2 family which functions as

the catalytic subunit. Recent studies have demonstrated that

INO80 chromatin remodeling activity contributes to a wide

variety of pivotal processes, including transcription, DNA

replication, and DNA repair [30–33]. Consistent with these

processes, both the natural and synthetic networks supported

interactions of INO80 with TFIIH and alpha(I)-primase. Howev-

er, INO80 had far more interactions in the natural network than

the synthetic one. This result is reflected in Figure 4A (large height

versus width of the INO80 node) and more explicitly in Figure 4B,

which plots the p-values in the natural versus synthetic network for

all complex pairs involving INO80. This plot suggests that the

reason for few synthetic interactions is lack of coverage: most

complex pairs (82%) have simply not yet been tested for

interaction using reverse genetic screens, placing them at a

significance score of P = 1 (i.e., on the y-axis of Figure 4B).

To fill this gap, we genetically analyzed three genes encoding

members of the INO80 complex (Arp8, Ies3, Nhp10) using the

quantitative E-MAP approach. Complete genomic deletions of

each gene were screened against a standard array of 1,536 mutants

to select double mutant combinations whose growth rates were

slower or faster than expected (Methods). This screen uncovered

496 novel genetic interactions (Table S5) supporting 20 complex-

complex relationships (P,0.05; Table S6). Nine of the complex-

complex interactions were also supported by the natural network,

including interactions with four complexes (tRNA splicing, RNA

polymerase II, Actin-associated proteins, and the Vps35/Vps29/

Vps26 complex) that were already present in the common

complex interaction map (see Figure 4B and 4C).

The relationships identified here implicate a number of novel

links between INO80-mediated chromatin remodeling and a wide

range of important cellular processes. For example, numerous

genetic interactions were identified between INO80 and RNA

Polymerase II. There is substantial evidence demonstrating that

the rate of transcriptional elongation by RNA Polymerase II is

reduced in the presence of nucleosomes and requires chromatin-

modifying activities [34]. Since INO80 has been shown to

mobilize/remove nucleosomes [32,35], this functional link may

indicate that the two complexes co-operate: INO80 may exchange

histones at a particular location to facilitate transcriptional

elongation by RNA polymerase II. Indeed, while this manuscript

was in review, a new report has implicated a role for INO80 in

histone redeposition during RNA polymerase II-mediated tran-

scription of stress-induced genes [36].

Table 1. Correspondence of interval and marker pairs with complexes and functions.

Between Within

Nodes{ Edges{ Complexes Terms Complexes Terms

Storey et al.

Bi-clustering* 1,977 2,023 208 17,714 0 12

Raw Marker Pairs 1,157 4,687 38 3,546 0 3

Full 2D ANOVA scan**

Bi-clustering 1,387 964 0 19 0 0

Raw Marker Pairs 1,141 4,687 0 0 0 0

Synthetic Genetic Analysis 2,117 29,275 140 1,833 13 33

{Node definition: For Storey et al. and Full 2D ANOVA, nodes represent genomic intervals. For the synthetic network, nodes represent genes.
{All cases report the number of distinct interactions in the network, removing redundancies due to marker pairs that associate with multiple traits (Storey et al., Full 2D
ANOVA) or gene pairs scoring positive in multiple data sets (Synthetic Genetic Analysis).

*These bi-clustered interval pairs were used to define the ‘‘Natural Network’’ explored in this work.
**We also considered an exhaustive scan of all marker pairs using two-way analysis of variance (ANOVA). The most significant 4,687 marker-marker interactions (Table

S7) were taken to match the number of interactions from Storey et al. (Text S1). Both the raw marker-pairs and the bi-clustered interval network identified substantially
fewer enrichments than the Storey et al. method.

doi:10.1371/journal.pgen.1000782.t001

Interpretation of Natural Genetic Interactions
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Four of the nine novel INO80 interactions are involved in

various aspects of vacuolar protein degradation including

transport of hydrolases to the vacuole (Vps35/Vps29/Vps26

complex and Vps27/Hse1 complex), vacuole biogenesis (Vacu-

olar assembly complex), and targeting of proteins for degrada-

tion (Rubiquitin-activating complex). Given INO80’s role in

transcription [32], the new interactions suggest that these

complexes work in tandem to regulate the expression level of

certain proteins, with INO80 controlling the level of transcrip-

tion and these four complexes controlling the rate of protein

degradation. This work serves as an example of how the broad

coverage in the natural network can be used to focus future

genetic screens and provide the basis for many mechanistic

follow-up studies.

Discussion

Currently, mapping genetic interactions using GWAS faces two

major challenges: a lack of statistical power for finding genotype-

phenotype associations, and a lack of tools for understanding the

Figure 2. Natural genetic networks elucidate pathway architecture. (A) A global map of the top 50 complex–complex interactions found
using the natural network. Each node represents a protein complex and each interaction represents a significant number of genetic interactions
(False Discovery Rate,5%) [49]. We analyzed the set of gene expression traits associated with each complex-complex interaction for functional
enrichment using the hypergeometric test. Nodes and edges are colored according to the functional enrichment of gene expression traits underlying
the natural interactions (Bonferroni P9,0.05). Node sizes are proportional to the number of proteins in the complex. When available, nodes have
been labeled with the common name of the complex. (B,C) Two specific examples of complexes spanned by dense bundles of natural genetic
interactions.
doi:10.1371/journal.pgen.1000782.g002

Interpretation of Natural Genetic Interactions
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molecular mechanisms behind the associations found to be

significant [14,15,37]. In this study, we have demonstrated that

such challenges can be partly overcome by (1) accounting for bi-

cluster structure in the data and (2) by integrating genetic

interactions derived from GWAS with protein complexes and

functional annotations. The result is a map of protein complexes

and pathways interconnected by dense bundles of genetic

interactions, which raises statistical power and provides biological

context to the genetic interactions uncovered in natural popula-

tions.

Figure 3. Comparison of the natural and synthetic networks. (A) The overlap between the natural network and four previously-published
synthetic genetic networks (Tong [4], Pan [3], Collins [2], Wilmes [1]) is shown as a percentage of the synthetic network size. An asterisk indicates
significance at P,0.05. (B) A map of the functions and functional relationships supported by either the natural or synthetic networks. Each node
represents a broad GO term, with colors (green, orange, blue) indicating terms that contain many within-term interactions (Text S1). Edges show the
top 30 between-term interactions for each of the natural and synthetic networks. Two broad GO terms (regulation of nucleotide metabolism and
DNA repair) contained many within-term interactions in both the natural and synthetic networks.
doi:10.1371/journal.pgen.1000782.g003

Interpretation of Natural Genetic Interactions
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Despite exhibiting some overlap (8.7%), there was also much

divergence between the natural and synthetic networks. Such

divergence might be explained by a number of factors. First, the

two types of genetic networks have major differences with respect

to coverage and power. Natural networks are based on genome-

wide variations and thus nearly all gene pairs are tested for

pairwise interaction— i.e., the coverage of gene pairs is practically

complete. This large coverage comes at the price of low statistical

power: gene association studies are limited by the number of

individuals that can be surveyed which, in turn, limits the power of

natural genetics to detect any given genetic interaction. On the

other hand, a reverse genetic interaction screen explicitly tests the

growth rate of gene pairs, with high power to detect interaction.

However, the set of gene pairs that can be tested in a single study is

limited by the throughput of the screening technology. The

synthetic genetic network used here was a combination of four

such studies which collectively cover approximately 5% of yeast

gene pairs. Future efforts may seek to complement the coverage of

reverse genetic screens by using natural genetics, or to improve the

power of gene association studies through focused reverse genetic

Figure 4. Guiding synthetic genetic screens using natural genetic networks. (A) Complex-complex interactions common to both the natural
and synthetic networks at a relaxed threshold of P,0.05. Many of these complexes, including INO80 (orange), have more coverage in the natural
network (node height) than in the synthetic network (node width). (B) Each point in the scatter plot represents the significance of support for a
possible complex-complex interaction with INO80 from the natural (y-axis) versus synthetic (x-axis) networks. Due to low coverage, comparatively few
complex pairs have support in the synthetic network. New E-MAP data for INO80 support nine new complex-complex interactions predicted by the
natural network (blue arrows). (C) A network of natural genetic interactions for INO80 validated by the new E-MAP. Functional enrichment for traits is
shown as in Figure 2. The thickness of each link is proportional to its support in the new genetic interaction screen.
doi:10.1371/journal.pgen.1000782.g004

Interpretation of Natural Genetic Interactions
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analysis. Here, we have demonstrated this concept by expanding

the coverage of the synthetic network around the INO80 complex,

based on the conserved interactions we found for this complex in

both types of networks.

Even with equivalent coverage and power, the two types of

network would still likely diverge due to their different means of

perturbation. The natural network is driven by variations in

genome sequence including SNPs, repeat expansions, copy

number variations, and chromosomal rearrangements which lead

to a variety of effects on gene function such as hypo- and

hypermorphic alleles, null alleles, and so on. In contrast, synthetic

networks predominantly consist of complete gene deletion events,

which are rarely experienced in nature and lead exclusively to null

alleles.

A final difference is phenotype— the natural and synthetic

networks in this study differ markedly in the underlying

phenotypic traits they have measured, relating to gene expression

versus cell growth, respectively. It is important to note, however,

that the differences in traits are specific to the currently available

data sets. They are not inherent to either mapping approach, and

in general one can imagine synthetic genetic interactions related to

gene expression (see Jonikas et al. for a recent example [38]) or

natural interactions related to a single phenotypic trait such as cell

viability or disease (which in fact describes the majority of GWAS

data generated to-date for humans) [7].

Despite all of these differences, we did observe a significant

number of natural and synthetic genetic interactions in common.

It is tempting to speculate that these common interactions might

share certain characteristics with regard to cellular function. In

particular, we found that natural interactions also present in the

synthetic network were linked to expression levels of ribosomal

genes as well as to core components of respiration and cell cycle.

Several studies have noted a correlation between the expression

levels of ribosomal or mitochondrial genes and growth rate

[39,40]. Thus, the overlap between natural and synthetic

interactions seems to occur among genes that strongly influence

expression traits related to growth.

A common issue in association studies, known as the ‘‘fine

mapping problem’’ [41,42], is that a strongly associated marker

will fall near many candidate genes, leaving it ambiguous as to

which of these candidates is the causal factor. Numerous methods

have been developed to refine or prioritize these candidates, often

through incorporation of orthogonal information [43]. An

extension of this problem applies to marker-marker interactions,

which typically implicate one of many possible pairs of genes.

Here, we have mitigated this problem by summarizing markers

into protein complexes and functional terms. However, ambigu-

ities can still arise in cases where several complex-complex

interactions are supported by the same underlying set of marker

pairs. Since it is likely that only one of these interactions is causally

linked to phenotype, further work may be necessary to prioritize

these candidates. It is important to note, however, that fine-

mapping issues will be less of a concern in humans than in yeast,

given the higher density of available markers which will improve

the resolution in identifying causal genes.

In summary, we have demonstrated that the logical framework

developed for analysis of synthetic genetic networks can also be

readily applied to natural genetic networks. Biologically and

clinically, the clear and immediate application is towards the

analysis of genome-wide association studies in humans. Many

diseases, both common and rare, have so far been opaque to

genome-wide association analysis [44]. The key question will be

whether, using integrative maps such as those developed here, they

can become less so.

Methods

Marker pair bi-clustering
An interval is defined as a set of one or more contiguous

markers along the chromosome. A pair of intervals induces a set of

m tested marker pairs of which k pairs are found to interact, drawn

from a total genome-wide pool of N tested marker pairs of which n

are found to interact. An exhaustive genome-wide scan is

performed to identify interacting interval pairs, i.e. those that

are enriched for marker-marker interactions, as follows. The

counts (m, k) are tallied for all possible pairs of intervals (up to a

maximum of 60 markers per interval) using a recursive algorithm

in which the entire space of marker pairs is represented as an

upper-triangular matrix A with each row and column denoting a

marker. An interval pair is represented by a submatrix Ai,j,a,b,

where i,j are the starting row and column indices and a,b are the

dimensions of the submatrix. The number k i,j,a,b of interacting

marker pairs in a submatrix is determined using the formula:

ki,j,a,b~ki,j,a{1,b{1zkiza,j,1,b{1zki,jzb,a{1,1zkiza,jzb,1,1

An identical formula is used to count the number of tested

marker pairs in each interval pair (substitute m for k). Following

computation of the (m, k) counts, every interval pair is assigned a p-

value of enrichment for marker-marker interactions based on the

four parameters m, k, N, n using the hypergeometric distribution.

The natural network is then assembled in an iterative fashion,

where the most significant interval pair is selected from among all

possible interval pairs, after which all interval pairs which contain

any overlapping marker pairs (interacting or non-interacting) are

removed from consideration. The process is repeated until there

are no interval pairs remaining, which ensures that the final set of

interval-interval interactions comprising the natural network is

disjoint.

Comparison of bi-clustering to a naı̈ve algorithm
We considered that the improved performance of bi-clustering

might be non-specific, i.e., that simpler methods for expanding

marker-marker pairs to form genomic intervals might perform

equally well. As one possibility, we compared the bi-clustering

approach to a naı̈ve algorithm for generating interval-interval

interactions, in which raw marker pairs were expanded to

encompass the nearest x neighboring markers on either side.

However, as shown in Figure S1 this naı̈ve expansion method

performed substantially worse than bi-clustering at identifying

term-term or complex-complex interactions, for any choice of x,

suggesting that bi-clustering identifies more appropriate interval

boundaries for each natural genetic interaction.

Mapping genes to intervals
The chromosomal coordinates of open reading frames (ORFs)

for all yeast genes were obtained from the Saccharomyces Genome

Database [45]. Each gene was assigned to all markers found within

its ORF and to the nearest marker within a window of x = 100 kb

on either side (Figure S2). This mapping procedure resulted in a

discrete number of genes mapped to a given marker. Intervals

were mapped to all genes assigned to their constituent markers,

again resulting in a discrete number of genes mapped to an

interval.

The complex-complex interactions identified in the natural

network were robust to the particular choice of window size x. We

varied x over a range of distance thresholds from 0 to 100 kb. As

shown in Figure S3, the resulting complex-complex interactions
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implicated by the natural network had a high degree of overlap

with the results obtained using the original mapping procedure.

Enrichments of interactions within and between
complexes and terms

A within-complex (within-term) model is defined as the set of all

gene pairs falling within a given physical complex (functional GO

term). A between-complex (between-term) model is defined as the

set of all gene pairs that span two complexes (terms), such that one

gene belongs to the first complex, the other gene belongs to the

second complex, and neither gene belongs to both. For each

model we compute k, the number of gene pairs ‘‘supported’’ (see

main text) by the network. The significance of this support is

assessed using the hypergeometric distribution, governed by k and

three additional parameters:

n. The total number of gene pairs induced by the model.

m. The total number of gene pairs having support in the entire

network.

N. The total number of gene pairs in the tested space of the

entire network.

Counts for all four parameters are based only on pairs of genes

found in the corresponding space of interactions tested by the

network and covered by the given annotation set (complexes or

terms). Further details are given in Text S1. All models are

visualized using Cytoscape [46].

Removing the effects of non-random gene order on
annotation enrichment

The above enrichment tests assume independence of genetic

interactions from protein complexes and functional terms.

However, intervals in the natural network typically cover several

consecutive genes, which are more likely to be of similar function

than genes chosen at random [47]. To correct for this effect, each

complex/term annotation is assigned a score PminM[0, 1] measuring

the degree to which its member genes are clustered [Pmin R 0]

versus dispersed [Pmin R 1] along the genome (see Text S1 for

more details). Annotations with Pmin,pT are removed from further

consideration. We use a stringent threshold of pT = 0.1 for physical

complexes and pT = 0.3 for functional terms resulting in less than

one erroneous complex-complex or term-term interaction identi-

fied in randomized networks (Figure S4 and Figure S5). Further

details regarding the randomization procedure is provided in Text

S1. A list of the complexes used in this study is provided in Table

S8.

INO80 Epistatic Mini-Array Profile (E-MAP)
The arp8D, nhp10D, and ies3D knockout strains were constructed

and E-MAP experiments were performed as described previously

[48]. The array used to generate the double-knockout strains

contained 1,536 strains involved in chromatin metabolism

(including chromatin remodeling, repair, replication, and tran-

scription) as well as global cellular processes like protein trafficking

and mitochondrial metabolism (see Table S5). Genetic interaction

scores were computed as described previously [9].

Supporting Information

Figure S1 Comparison of the bi-clustering method to a naı̈ve

approach. A naı̈ve approach for identifying interval-interval

interactions was compared to the bi-clustering approach. In the

naı̈ve approach, markers involved in a marker-marker interaction

were expanded to encompass the nearest k neighboring markers

on either side. The naı̈ve approach identified substantially fewer

between-pathway enrichments.

Found at: doi:10.1371/journal.pgen.1000782.s001 (0.14 MB TIF)

Figure S2 Interval to gene mapping. Each gene (diamond) was

assigned to all markers (vertical bars) found within its ORF and to

the nearest marker within a window of x = 100 kb on either side.

Each interval (green bar) inherited the mapping of all constituent

markers.

Found at: doi:10.1371/journal.pgen.1000782.s002 (0.71 MB TIF)

Figure S3 Sensitivity of pathway identification to marker-gene

mapping threshold. Genes were mapped to their nearest marker

within 100 kbp. We varied this threshold from 0 kbp to 100 kbp to

determine what effect it would have on the resulting complex-

complex interactions. Overlap of the resulting complex-complex

interactions with the results in the manuscript are shown as a

Jaccard score.

Found at: doi:10.1371/journal.pgen.1000782.s003 (0.26 MB TIF)

Figure S4 Choosing a colocalization threshold. The number of

interactions identified from permuted natural networks were

examined at several colocalization thresholds. Thresholds were

chosen which resulted in fewer than one interaction in a typical

permuted network (blue arrows).

Found at: doi:10.1371/journal.pgen.1000782.s004 (0.36 MB TIF)

Figure S5 Additional permutation methods for pathway valida-

tion. The number of complex-complex interactions identified by

the natural network (dotted line) is compared to the average

number of complex-complex interactions identified across 100

permuted interval networks generated using three different

procedures. Complex-complex interactions were mapped using

either all complexes (unfiltered) or only those with a co-localization

p-value above 0.1 (filtered). Error bars indicate one standard

deviation.

Found at: doi:10.1371/journal.pgen.1000782.s005 (0.29 MB TIF)

Table S1 List of genetic markers used in the association study

and their genomic locations. A list of the genetic markers and their

corresponding genomic locations used in the Brem et al. study [5].

Found at: doi:10.1371/journal.pgen.1000782.s006 (0.09 MB

XLS)

Table S2 List of interval-interval interactions in the natural

network. A list of interval-interval interactions identified by the bi-

clustering algorithm.

Found at: doi:10.1371/journal.pgen.1000782.s007 (0.20 MB

XLS)

Table S3 Significant pathways identified by the natural network.

(A) List of significant complex-complex interactions identified. (B)

List of significant term-term interactions identified. (C) List of

complexes containing a significant number of natural interactions.

(D) List of functional terms containing a significant number of

natural interactions.

Found at: doi:10.1371/journal.pgen.1000782.s008 (1.35 MB

XLS)

Table S4 Significant pathways identified by the pooled synthetic

network. (A) List of significant complex-complex interactions

identified. (B) List of significant term-term interactions identified.

(C) List of complexes enriched for synthetic interactions. (D) List of

functional terms enriched for synthetic interactions.

Found at: doi:10.1371/journal.pgen.1000782.s009 (0.17 MB

XLS)

Table S5 Results of the INO80 E-MAP screen.

Found at: doi:10.1371/journal.pgen.1000782.s010 (0.31 MB

XLS)
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Table S6 Novel complex-complex interactions identified in the

INO80 E-MAP screen. List of significant complex-complex

interactions identified by the new synthetic genetic interactions

uncovered in the new E-MAP screen.

Found at: doi:10.1371/journal.pgen.1000782.s011 (0.02 MB

XLS)

Table S7 Results from the exhaustive 2D scan. (A) For

comparison with the Storey et al. approach [24], the association

data were analyzed using a simple 2-way ANOVA (see Text S1).

Marker-marker interactions with P,0.18 are presented here. (B)

The marker-marker interactions from (A) were bi-clustered to

identify 964 interval-interval interactions. Both the raw marker

pairs and the interval pairs identified substantially less pathways

than the Storey et al. approach (Table 1).

Found at: doi:10.1371/journal.pgen.1000782.s012 (0.69 MB

XLS)

Table S8 List of physical complexes used in this study.

Found at: doi:10.1371/journal.pgen.1000782.s013 (0.04 MB

XLS)

Text S1 Supplementary methods.

Found at: doi:10.1371/journal.pgen.1000782.s014 (0.06 MB

DOC)
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