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A B S T R A C T   

The novel coronavirus disease 2019 (COVID-19) pandemic has severely impacted the world. The early diagnosis 
of COVID-19 and self-isolation can help curb the spread of the virus. Besides, a simple and accurate diagnostic 
method can help in making rapid decisions for the treatment and isolation of patients. The analysis of patient 
characteristics, case trajectory, comorbidities, symptoms, diagnosis, and outcomes will be performed in the 
model. In this paper, a symptom-based machine learning (ML) model with a new learning mechanism called 
Intensive Symptom Weight Learning Mechanism (ISW-LM) is proposed. The proposed model designs three new 
symptoms’ weight functions to identify the most relevant symptoms used to diagnose and classify COVID-19. To 
verify the efficiency of the proposed model, multiple laboratory and clinical datasets containing epidemiological 
symptoms and blood tests are used. Experiments indicate that the importance of COVID-19 infection symptoms 
varies between countries and regions. In most datasets, the most frequent and significant predictive symptoms for 
diagnosing COVID-19 are fever, sore throat, and cough. The experiment also compares the state-of-the-art 
methods with the proposed method, which shows that the proposed model has a high accuracy rate of up to 
97.1711%. The positive results indicate that the proposed learning mechanism can help clinicians quickly di-
agnose and screen patients for COVID-19 at an early stage.   

1. Introduction 

In December 2019, the first case of pneumonia of unknown origin 
was detected, which was subsequently discovered to be caused by severe 
acute respiratory syndrome coronavirus type 2(SARS-COV-2), named 
novel coronavirus disease (COVID-19) [1,2]. Although the treatment of 
COVID-19 patients has matured since the beginning of the outbreak, it 
cannot fundamentally contain the epidemic. There is an urgent need for 
the early prevention, screening, and diagnosis of suspected positive 
patients to control the spread of the disease [3]. Therefore, identifying 
the means to classify and diagnose suspected patients based on early 
examination results has become a problem worthy of investigation. 
Additionally, ensuring the effective control of symptom deterioration is 
also an urgent problem requiring a solution [4,5]. 

Many researchers have contributed information on how to diagnose 
positive cases and how to predict the course of the COVID-19 pandemic 
[6]. Building on the development of modern artificial intelligence (AI) 
and ML methods, models and technologies for coping with the 
COVID-19 pandemic are used to address the challenges during the 

outbreak. ML and AI have recently been employed to tackle the 
SARS-CoV-2 outbreak, SARS-CoV-2 screening and treatment, 
SARS-CoV-2 contact tracing, SARS-CoV-2 prediction and forecasting, 
SARS-CoV-2 drugs and vaccination, and other research directions [7]. 
The establishment of diagnostic models and techniques for COVID-19 is 
critical. Traditional techniques have been developed to assist doctors in 
making a correct diagnosis. In general, COVID-19 diagnosis can be 
categorized into three approaches: supervised learning approaches, 
unsupervised learning approaches, and hybrid approaches [8]. 

The common symptoms of COVID-19 patients appear approximately 
1–2 weeks after exposure, including the onset of a cough, fever, general 
malaise, and shortness of breath [9,10]. Patients with early infection 
may not show significant symptoms after COVID-19 infection, and their 
symptoms are similar to the cold or the flu, which makes it difficult to 
accurately diagnose these patients [11,12]. Therefore, early detection 
and diagnosis using ML can help prevent and combat the COVID-19 
pandemic by leveraging diverse epidemiological data [13,14]. To 
improve the early diagnostic capabilities of COVID-19, many methods 
based on symptom-based ML models have been proposed and studied 
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[15]. 
In the early stage of the pandemic, most studies were based on small 

datasets with fewer patients and symptoms. Besides, most of the labo-
ratory COVID-19 data sets were used for testing. Davide Brinati et al. 
developed two machine learning classification models using histo-
chemical values from routine blood and reverse transcription- 
polymerase chain reaction (RT–PCR) tests performed on respiratory 
tract specimens to discriminate between patients who are either positive 
or negative for SARS-CoV-2 [16]. The study included blood test results 
from 279 patients with symptoms of COVID-19. Of these patients, 177 
had COVID-19, and 102 did not. Thomas Tschoellitsch, MD et al. used a 
random forest (RF) algorithm to predict a diagnosis based on laboratory 
blood tests with 28 unique characteristics. The reliability of the pro-
posed method was verified by comparing it with real RT–PCR tests [17]. 

In general, blood and RT–PCR tests are expensive, and sometimes 
they may take a long time to produce results. To solve this problem, 
some researchers have proposed a simpler diagnostic model based on 
laboratory epidemiological symptoms. Rachid Zagrouba et al. presented 
a predictive framework incorporating support vector machine (SVM) in 
the forecasting of a potential outbreak of COVID-19, which can be used 
to predict the long-term spread of such an outbreak so that doctors can 
implement proactive measures in advance [18]. On this basis, Mahdi 
Mahdavi et al. proposed three SVM models to detect the invasive labo-
ratory and noninvasive clinical and demographic data of COVID-19 
patients at admission, which can decrease mortality by assuring effi-
cient resource allocation and treatment planning during a pandemic 
[19]. In addition, Ahmed Hamed et al. proposed a novel K-nearest 
neighbor (K-NN) variant algorithm called K-NNV and handled incom-
plete heterogeneous symptom data for different diseases to achieve ac-
curate classification of COVID-19 [20]. However, the above models are 
only used to classify COVID-19, without explicitly distinguishing it from 
other diseases. Matjaž Kukar et al. constructed a machine model for 
COVID-19 diagnosis using routine blood tests in 5333 patients with 
various bacterial and viral infections. The proposed model confirmed 
the five most useful routine blood parameters for COVID-19 diagnosis 
[21]. However, the studies obtained little symptom information from 
patients in the early stage of epidemic development and the reliability of 
the models still needs to be confirmed. 

As researchers learn more about the virus and the pandemic, more 
patient information becomes available. Several large-scale laboratory 
COVID-19 datasets are also used. Buvana M and Muthumayil K explored 
COVID-19 datasets from the repository. Here, symptoms such as fever, 
body pain, runny nose, difficulty in breathing, sore throat, and nasal 
congestion were confirmed as the most important parameters with 
which to diagnose patients [22]. Warda M. Shaban et al. introduced a 
new detection strategy for COVID-19 infection called Distance Biased 
Naïve Bayes (DBNB). The researchers combined a new feature selection 
technique to identify the most informative and significant symptoms for 
diagnosing COVID-19 patients from laboratory datasets, which can 
quickly and accurately detect infected patients [23]. Prabh Deep Singh 
et al. designed and developed a novel aggregation-based classifier to 
predict COVID-19 cases at an early stage [24]. On this basis, Mohsin 
Sarker Raihan, MD et al. leveraged the concept of the COVID-19 blood 
test and proposed a risk-free model to identify COVID-19 patients in the 
blood test dataset [25]. 

At the beginning of the epidemic, the patients’ symptoms entries in 
laboratory datasets were simple, such as age, gender, history of fever 
monitoring, and travel [26]. These were not adequate for monitoring the 
clinical situation. The above models have achieved accurate results 
when tested against laboratory COVID-19 symptom datasets. To make a 
more accurate diagnosis, many datasets with clinical symptoms have 
been studied. Nan-Nan Sun et al. proposed a prediction model based on 
ML for the early diagnosis of COVID-19, which aims to extract risk 
factors from the clinical data of patients. They also test the applicability 
of the model in actual clinical data and improved the accuracy and 
timeliness of the early diagnosis of COVID-19 infection [27]. Jiangpeng 

Wu et al. used the RF algorithm to extract 11 key blood indicators from 
the data of 49 clinically available blood tests and established the final 
auxiliary discriminant tool for preliminary evaluation of suspected pa-
tients, helping to obtain timely treatment and quarantine suggestions 
[28]. 

However, some studies have shown that a single diagnostic model 
may produce errors in the face of complex clinical situations. To collect 
more patient symptoms data, several studies are devoted to developing 
new stacked models for diagnosis to improve accuracy. Three different 
supervised ML techniques are used to diagnose COVID-19, such as, the 
bagging algorithm, K-NN, and RF to classify COVID-19 data sets datasets 
[29]. The symptoms are captured from COVID-19 trackers in India to 
evaluate model performance. However, some traditional ML models still 
face some limitations in determining the selection of COVID-19 symp-
toms. Therefore, some new classifiers are considered to assist in diag-
nosis. Ibrahim Arpaci et al. developed six COVID-19 diagnostic 
prediction models to identify positive and negative cases, including 
BayesNet, logistic, lazy-classifier (IBk), classification via regression 
(CR), rule-learner (PART), and decision-tree (J48) classifiers. The clin-
ical dataset used was from the Taizhou Hospital of Zhejiang Province in 
China and contained 14 features [30]. Marcos Antonio Alves et al. 
presented understandable solutions based on ML techniques to deal with 
COVID-19 screening in routine blood tests. The sample consisted of 84 
COVID-19 patients along with 608 other patients [31]. Lucas M. Thi-
moteo et al. proposed an interpretable artificial intelligence approach 
that includes two black-box models to help diagnose COVID-19 patients 
based on blood tests and pathogen variables [32]. 

However, the clinical symptoms of COVID-19 patients collected by 
the above models in the early stage of the pandemic are not enough to 
reflect the generalization of diagnostic models. To better fit the clinical 
setting, many studies have begun to target large-scale clinical data. 
Martuza Ahamad, MD et al. employed the supervised ML algorithms to 
identify the presentation features predicting COVID-19 disease di-
agnoses with high accuracy [33]. Dan Assaf et al. used three different ML 
models to predict patient deterioration. In this study, the selected pa-
rameters were the Acute Physiology And Chronic Health Evaluation II 
(APACHE II) score, white blood cell count, time from symptoms to 
admission, oxygen saturation, and blood lymphocyte count [34]. Mar-
yam AlJame et al. proposed an ensemble learning model for diagnosing 
COVID-19 from routine blood tests, which exploits the strength of 
several diverse classifiers to improve the accuracy of the prediction and 
evaluates the importance of each feature [35]. Generally, blood tests 
usually take time to obtain, which slows the down subsequent analysis of 
the virus. 

To solve this problem, L. J. Muhammad et al. developed a supervised 
ML model for COVID-19 positive and negative cases in Mexico using 
epidemiological marker datasets. The proposed method also obtains the 
correlation efficiency analysis between various dependent and inde-
pendent features [36]. Similarly, Sakifa Aktar et al. further identified the 
most important symptoms and comorbidities that predict COVID-19 
infection using six clinically applicable supervised ML algorithms. 
Pneumonia–Hypertension, Pneumonia–Diabetes, and acute respiratory 
distress syndrome (ARDS)–Hypertension show the most significant as-
sociations with COVID-19 mortality [37]. The above models can speed 
up the classification for potentially infected patients and determine the 
impact on the COVID-19 patients [38]. 

As the pandemic spreads and infection numbers soar in many 
countries and regions, some studies are increasingly incorporating larger 
and more realistic datasets to ensure accurate diagnosis and to control 
the spread of COVID-19. In the study by Suma L. S. et al. [39], an ML 
model was developed to analyze a clinical dataset containing 65,000 
patient records, including 26 features, and to select the optimal subset of 
features needed for in COVID-19 patient screening. Krishnaraj Chadaga 
et al. proposed an automated framework that combines four different 
classifiers along with a technique called the synthetic minority over-
sampling technique (SMOTE) for distinguishing COVID-19 infection and 
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used the Shapley additive explanations (SHAP) method to calculate the 
gravity of each blood parameters feature [40]. In a study by Krishnaraj 
Chadaga et al. [41], combined multiple machine learning methods to 
diagnose and predict COVID-19 through routine blood tests. The 
experiment uses a dataset from the Israelita Albert Einstein Hospital, in 
Brazil. Large clinical datasets provide a large amount of patients’ 
symptom information, but most of the classification models are tested in 
specific regions. The symptoms of COVID-19 infection vary by country 
and region. Although some symptom-based ML methods have been 
proposed, most of them are applied to specific datasets and cannot be 
applied to various situations [42]. 

To overcome these limitations, this paper proposes an intensive 
symptom weight learning mechanism, called ISW-LM, for a variety of 
situations using the intensive importance of symptoms to classify and 
diagnose early COVID-19. A new symptom weight calculation method is 
designed to rank the importance of symptoms. It also lists the order of 
intensive symptoms that can help in the early diagnosis of COVID-19. To 
verify the proposed model, many types of datasets are used for experi-
ments, such as, small and large COVID-19 datasets from laboratories and 
clinically settings. The important symptoms in the data that help di-
agnose such data in patients with new coronavirus infection are listed. 
Several symptoms that may aggravate the infection in patients with 
comorbidities were also analyzed. Compared with existing techniques, 
the proposed model expands the application range in COVID-19 diag-
nosis. Furthermore, it also provides a rationale for further treatment and 
resource allocation. 

The remainder of the paper is structured into multiple sections. The 
proposed method and the datasets are detailed in Section 2, which de-
scribes an intensive symptom weight learning mechanism for early 
COVID-19 diagnosis and the multiple datasets used in the paper. The 
experimental results are discussed in Section 3. Patient symptom data-
sets of different sizes from laboratories and clinical hospitals are used to 
verify the proposed model. Finally, concluding remarks and highlighting 
of future work are presented in Section 4. 

2. Materials and methods 

2.1. Datasets 

2.1.1. Datasets description 
The COVID-19 datasets [43–47] from open research datasets were 

used for research and analysis in this study. The experimental datasets 
are classified into small and large datasets by size. Moreover, datasets 
were divided into laboratory and clinical datasets based on their source. 
The corresponding classification chart for the datasets is shown in Fig. 1. 

The datasets used in the experiment included the initial symptoms or 
blood index of COVID-19 patients. The laboratory datasets contain only 
a few patient symptoms for the study, and the clinical datasets contain 
information on actual COVID-19 patients at the time of admission to 
hospitals in some countries. 

Fever, runny nose, body pain, sore throat, and difficulty breathing 
are the most comm symptoms in patients whose information is acces-
sible in the datasets. The patient labels used for classification are indi-
cated at the end of the datasets and were either COVID-19 or no COVID- 
19. Table 1 and Table 2 briefly describe the symptom information in the 
datasets. 

2.1.2. Preprocessing 
Due to the different sources of the datasets collected in the experi-

ment, the format and information in the datasets are also different. It is 
necessary to preprocess the experimental datasets. The original data 
include some problems such as different data representation formats, 
incomplete data information, and unbalanced data distribution. Several 
preprocessing techniques are applied to the dataset to remedy these 
issues. 

Most laboratory datasets have data format problems, such as the 

character gender information. Data transformation converts a data 
format from one type to another, which can standardize the datasets and 
smooth the experiment. Since the ML model requires that all 

Fig. 1. The datasets used in the paper.  

Table 1 
The symptom descriptions of the laboratory dataset.  

Symptom Value Description 

Age Integer The patient’s age 
Fever Integer The patient’s body temperature in Fahrenheit 
Body Pain Boolean Develops symptoms accompanied with body 

pain or lower back pain; a score of 0 means no, 
and a score of 1 means yes 

Runny Nose Boolean Develops a runny nose; a score of 0 means no, 
and a score of 1 means yes 

Difficulty Breathing 
(Dyspnea) 

0, 1 or 
− 1 

Develops symptoms of difficulty breathing or 
tachypnea; values of 0,1, and − 1 represent the 
severity 

Infection Boolean The patient had a positive contact with COVID- 
19  

Table 2 
The symptom descriptions of the clinical dataset.  

Symptom Value Description 

Gender String Representation of the patient’s gender 
Age 60 and 

above 
Boolean Measures of patient age with 60 set as the boundary; 

a score of 0 means no, and a score of 1 means yes 
Cough Boolean Develops symptoms with a dry cough; a score of 

0 means no, and a score of 1 means yes 
Fever Boolean Develops symptoms with a high body temperature 

of 38 ◦C or more; a score of 0 means no, and a score 
of 1 means yes 

Sore Throat Boolean Develops a sore, red, and swollen throat; a score of 
0 means no, and a score of 1 means yes 

Shortness of 
Breath 

Boolean Develops difficulty breathing or tachypnea; a score 
of 0 means no, and a score of 1 means yes 

Headache Boolean Develops headache or nausea; a score of 0 means no, 
and a score of 1 means yes 

Trajectory 
Information 

String Patient’s isolation treatment status and travel 
history  

L. Fang and X. Liang                                                                                                                                                                                                                           



Computers in Biology and Medicine 146 (2022) 105615

4

information used be inputted be in numerical form, the character 
symptom information is transformed into an integer. Some datasets 
contain many missing values, which are not collected or are collected 
incorrectly. These incorrect inputs can lead to incorrect experiments and 
results. Deletion and completion are used to address data incomplete-
ness, which results in a complete COVID-19 symptoms dataset. In 
addition, the data may be affected by uncertain and inaccurate factors. 
To address this problem, fuzzy logic is incorporated with data classifi-
cation after inputting the data [48,49]. The proposed method can divide 
the data with unfixed fuzzy rules and generate fuzzy rules suitable for 
each data point to improve the classification performance. 

Moreover, some original clinical datasets include ambiguous infor-
mation about which symptoms manifest themselves clearly in the early 
stages of infection. In the Chinese dataset, the data contain patient 
symptoms in a text format that is not available in the experiment. 
Therefore, a string-matching algorithm is designed to search for symp-
tom keywords and generate the regular dataset seen in Fig. 2. The 
selected data from six different provinces in China are processed into a 
proper dataset format that can be used in experiments. Labels assigned 
to patients at the end of the dataset indicate whether they are infected, 
and are then used for classification. The dataset after preprocessing 
provides a basis for the detection of the proposed model. The corre-
sponding pseudocode is shown in Algorithm 1. 

Algorithm 1. (Pseudocode of the string-matching algorithm).  

2.2. Methodology 

In medical practice, the prediction and classification of trends and 
severity of symptoms severity are crucial factors. ML methods can be 
used to analyze the importance of the different disease symptoms. Faced 
with the COVID-19 pandemic, there is an urgent need to identify 
effective predictive classification tools. Therefore, this paper establishes 
an intensive symptom weight learning mechanism called ISW-LM, to 
predict the diagnosis and risk for critical COVID-19 based on the clinical 
and laboratory parameters of patients. The proposed method learns the 
weight of patients’ symptoms to diagnose and predict whether patients 
have COVID-19 and to classify the severity of symptoms. 

In this paper, three weight functions are proposed to calculate and 
rank the symptoms of COVID-19 patients. According to the order of 
weight calculated by the functions, the intensive of symptoms is used to 
predict whether COVID-19 patients are infected. 

2.2.1. Symptom weight measures 
If the COVID-19 datasets contain Accuracy = TP+TN

TP+FP+FN+TN patients 
and precision = TP

TP+FP symptoms, then the values of symptoms Recall =
TP

TP+FN across F1 score = 2 × Recall×Precision
Recall+Precision patients form an m-element 

vector. A comparison of the symptoms in the weight functions is pro-
duced with the value of the m-element vector, which ranges between 
0 and F1 score = 2× Recall×Precision

Recall+Precision. The ranking of symptom weight rep-
resents the importance. Intense symptoms with a high weight will be 
used for prediction, while symptoms with a low weight can be discarded. 

2.2.1.1. Support vector weight score (SV-WS). The SVM algorithm for 
supervised machine learning provides a theoretical foundation based on 
the notion of margins [50,51]. Instances on either side of a boundary 
hyperplane are divided into two classes, healthy or diseased. The 
boundary hyperplane can be obtained by calculating the symptom cor-
relation between the two classes. According to the hyperplane defini-
tion, it can be described as follows [50]: 

yi(xi ⋅ w+ b) − 1≥ 0, ∀i= 1,…, n  

where xi is the i-th instance of patients and yi is the classification label, 
which indicates the state of patients. w is the vector of symptom weight 
and b is a constant of trade-off. 

By constructing a Lagrange function, the weight vector w of symp-
toms can be explained with the Lagrange multipliers and the training 
samples as follows [51]: 

w= aiyixi, ∀i ∈ [1, n]

Here, ai is its corresponding class labels and Lagrange multiplier. 
The correlation between each symptom and category may vary little. 

To distinguish the weight of symptoms clearly, the adjustment strategy 
of weight calculation is redefined in this paper: 

w= aiyixi +

(

1 −
1
k
|cos(xi)|

)

, ∀i ∈ [1, n]

Here, the coefficient 1/k ensures that the later term of w ranges be-
tween 0 and 1. The new w ensures that the important symptoms are 
determined in the classification with higher weights and that the un-
important symptoms that have no effect on classification have lower 
weights. 

Fig. 2. The Chinese COVID-19 dataset was processed by a string-matching algorithm.  
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2.2.1.2. Information entropy weight score (IE-WS). By classifying the 
symptoms and finding the most representative symptoms, the state and 
category of patients can be accurately judged. Information entropy can 
be used to measure the importance of symptoms [52,53]. Since the de-
cision tree (DT) algorithm can represent the connection between attri-
butes and features through information entropy, the importance of 
COVID-19 patients’ symptoms can be calculated based on the theoret-
ical foundation of information entropy in the DT. 

Information entropy is defined as the difference between patients’ 
symptoms. A smaller entropy coefficient indicates a greater difference 
and more importance among the symptoms. Therefore, the symptom 
weight can be measured by the information entropy value as follows 
[52]: 

ei = −
∑n

i=1
pilog2pi  

where pi represents the probability that the patient belongs to the 
COVID-19 class or not. 

The difference in coefficient among various symptoms is calculated 
by the following equation [54]: 

dj = 1 − ej, j ∈ [1,m]

Thus, the symptom weight can be adjusted by its importance. It can 
be redescribed as follows: 

wj =
dj

∑m

j=1
dj

, j ∈ [1,m]

w= ei − wj
dj

∑m

j=1
dj

⋅ e′

i , i∈ [1, n] j ∈ [1,m]

where wj is the current symptom weight and e′

i is the current symptom’s 
information entropy. 

2.2.1.3. Euclidean distance gini weight score (EDG-WS). In ML, RF is an 
ensemble classifier containing multiple decision trees with the same tree 
structure, which integrates trees through a resampling process called 
bagging [55,56]. The theory of ensemble learning in the RF algorithm 
can calculate the contribution of each symptom to each tree and 
calculate their average. The ratio between the symptoms can be used to 
determine how important the symptom is to the diagnosis of COVID-19 
and its severity. 

During forest growth, each tree, leaf, and root node in the forest 
generates a Gini value for symptom importance evaluation. The Gini 
value is calculated as follows [55]: 

Gini(t)= 1 −
∑k

j=1
[p(j|t)]2  

where p(j|t) is the probability of class j at node t and k is the number of 
classification results. 

If there is a significant difference in the Euclidean distance of the 
same symptom between two different classes of patients that can 
distinguish whether patients are sick or serious, and the intensive 
symptom weight can be increased to make that symptoms more 
important. The weight computation formula is shown as follows: 
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wi =wi −

(
d(Ri, Si)

m
−

d(Ri,Di)

m

)

⋅Gini(m), (i= 1, 2,…, n)

where wi is the weight of the i-th symptom and m is the i-th patient. R, S 
and D are the samples of standard, ill or severe patients, and healthy 
people or mild patients, respectively. 

2.2.2. The proposed method 
The proposed ISW-LM is a mechanism consisting of five processing 

stages data preprocessing, the proposed symptom weight functions, the 
sort of symptoms’ importance with the weight, intensive symptom 
weight, and the attribute prediction or diagnosis of patients. The flow 
chart of the proposed ISW-LM is illustrated in Fig. 3. 

2.2.2.1. Data preprocessing. The purpose of data preprocessing is to 
eliminate outliers and balance the impact of data. In this paper, the 
selected COVID-19 symptom datasets are of different sizes and from 
different sources, and types. Therefore, it is crucially important to pre-
process these datasets. This phase is the operations of handling missing 
values, cleaning up outliers, and balancing the data distribution. 

First, datasets are divided into small and large COVID-19 datasets 
according to their size. Furthermore, the COVID-19 datasets can be 
subdivided into laboratory and clinical datasets based on their sources. 
Second, missing values and outliers in the data sets are processed and the 

COVID-19 datasets are supplemented. For the unbalanced distribution 
of data, datasets are balanced by randomly deleting most class patients 
and creating a minority of class patients. Finally, format conversion is 
carried out for some special COVID-19 datasets such as the original 
Chinese dataset. A string-matching algorithm shown in Fig. 4 is designed 
to transform the format, where the symptoms of COVID-19 patients in 
the dataset are extracted. After these steps, preprocessed and organized 
datasets are available for the following experiments. 

2.2.2.2. Symptom weight calculation and ranking. Those infected with 
COVID-19 and ordinary patients appear to have many similar symptoms, 
so prominent symptoms of them can be given a higher weight to 
compare the attributes of patients. 

Several designed weight functions, i.e., SV-WS, IE-WS, and EDG-WS, 
that are introduced in section 2 are used to calculate the contribution of 
each symptom to diagnose COVID-19 patients. Combined with the pa-
tient’s classification labels, the corresponding weights for diagnosing 
COVID-19 and its severity are obtained. Then, the weight value is uni-
formly standardized for subsequent calculation and evaluation. The 
weight value with high reliability can be reserved by the designed 
weight functions. 

COVID-19 patients always have some prominent symptoms, which 
are vital for diagnosing COVID-19. These can be obtained by integrating 
and ranking the symptoms of diagnosed patients in this work. The 

Fig. 3. The flow chart of the proposed ISW-LM.  
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visualized steps are shown inFig. 5. 
The ranking function is designed to sort out the relative importance 

of symptoms and can order them using the weight value. Symptoms that 
have higher prioritization ranks have major relativity with COVID-19 
diagnosis. This can improve the ability to identify COVID-19 patients 
at an early stage using clinical symptoms. 

2.2.2.3. ISW-LM for patient classification and diagnosis. In this paper, the 
ISW-LM is designed to improve the accuracy of patient diagnosis 
through the contribution of important symptoms. Here, each patient’s 
symptoms are regarded as independent, and the calculated weights 
obtained by the above functions are incorporated into them. 

The proposed method is a process for constructing the calculated 
weight until all symptoms are clearly represented, which is defined as 
intensive symptom weight. Through continuous learning and integra-
tion, the difference between the symptoms increases, and the impor-
tance of intensity becomes more prominent. Meanwhile, the binary 
grasshopper optimization algorithm (BGOA) [57] is integrated to pro-
cess the differences that can help to classify and diagnose patients who 
are either infected with COVID-19 or not. The ISW-LM results provide a 
basis for classifying and diagnosing patients infected with early 

COVID-19. Fig. 6 shows the corresponding steps. 
To ensure the diagnostic accuracy, the high-ranking intensive 

symptoms are selected as the basis for classification in BGOA. Patients 
with higher levels are classified as suspected or diagnosed. Besides, 
weights intensity can also separate already infected patients who are 
severe from those who are not. This can help doctors diagnose patients 
and perform next steps. Meanwhile, this work can satisfy the accuracy of 
classification results, which provides reference credibility for decision 
making. 

3. Experimental results and discussions 

3.1. Performance metrics 

Performance measurement is an essential task in machine learning 
and can typically be measured based on a classification algorithm. Each 
of the following five performance metrics is used in the paper to evaluate 
the quality of the proposed method: accuracy, precision, recall, F1 score, 
and confusion matrix. They are the primary metrics for determining the 
class of correctly identified COVID-19 patients [58]. 

Fig. 4. The preprocessing dataset.  

Fig. 5. Calculation and sorting of the weight functions.  
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Accuracy=
TP + TN

TP + FP + FN + TN  

precision=
TP

TP + FP  

Recall=
TP

TP + FN  

F1 score= 2 ×
Recall × Precision
Recall + Precision 

A confusion matrix is a form for evaluating the accuracy of prediction 
results. The columns represent the two conditions, or classes, of either 
having COVID-19 or not. The rows represent the actual classes and the 
number of patients. 

Here, the true positive (TP) refers to the number of patients 
confirmed as COVID-19 positive the method correctly identifies. The 
true negative (TN) represents the number of patients without COVID-19, 
and the false positive (FP) and the false negative (FN) are the opposite of 
TP and TN, respectively [59]. 

3.2. Performance evaluation 

In this study, multiple independent experiments are performed to 
ensure the reliability of the proposed method for COVID-19 prediction. 
The experiment is carried out in datasets, and the patient symptoms in 
different datasets are analyzed and ranked by the proposed ISW-LM. 
After the ranking of symptom weight, the diagnosis of COVID-19 de-
pends on the intensity of some important symptoms in different datasets, 
so that other patients can be classified and predicted using BGOA. To 
evaluate the model’s generalizability, the datasets are divided into 80% 
for training and the 20% for testing [60]. 

3.2.1. Evaluation of symptom importance 
The proposed symptom weight functions involve selecting symptoms 

to obtain the best results from the ISW-LM. Combined with the weight 
functions, the order associated with each symptom is obtained. After 
numerous replications of the symptom selection experiments, the top 

four symptoms for diagnosing and classifying COVID-19 are identified as 
the optimal result. The symptoms with high-ranking values are listed in 
Tables 3–7. 

3.2.1.1. In the small COVID-19 datasets. The orders shown in Table 3, 
Table 4, and Table 5 are the results of the small COVID-19 datasets 
calculated by different symptom weight functions in ISW-LM. Table 3 
describes the four most significant symptoms that are strictly related to 
COVID-19 positive status. Tables 4 and 5 show the order in small clinical 
COVID-19 datasets from China and Brazil. 

3.2.1.2. In the large COVID-19 datasets. The crucial symptoms used to 

Fig. 6. Process of the ISW-LM in classification and diagnosis.  

Table 3 
The order of symptoms in laboratory datasets.  

Dataset Symptom 
weight 
function 

The order of symptoms 

First Second Third Fourth 

Symptom- 
1 

SV-WS Age Fever Body pain Infection 
IE-WS Age Fever Infection Body 

pain 
EDG-WS Fever Infection Age Body 

pain 
Symptom- 

2 
SV-WS Body 

pain 
Infection Age Fever 

IE-WS Fever Age Body pain Infection 
EDG-WS Fever Age Body pain Runny 

nose 
Symptom- 

3 
SV-WS Abroad 

travel 
Fever Cough Sore 

throat 
IE-WS Sore 

throat 
Abroad 
travel 

Dyspnea Fever 

EDG-WS Dyspnea Fever Abroad 
travel 

Cough 

Symptom- 
4 

SV-WS Cough Fever Dyspnea Sore 
throat 

IE-WS Fever Cough Dyspnea Sore 
throat 

EDG-WS Fever Cough Dyspnea Sore 
throat  
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classify COVID-19 or not are diverse in different datasets. Tables 6 and 7 
show the order of symptoms in large laboratory COVID-19 datasets and 
clinical datasets, respectively. 

3.2.2. Symptom weight function evaluation 

3.2.2.1. Evaluation in the small COVID-19 datasets. The experiments are 
divided into two parts according to the size of the datasets mentioned in 
3.1. Table 8 shows the accuracy and other metrics of small COVID-19 
data sets calculated from symptom weight functions taken from three 
laboratory and clinical symptom datasets from three provinces in China. 

In comparison to the different symptom weight functions in ISW-LM, 
Table 3 that the results of the two types of datasets are different. The 
accuracy of weight functions calculated in the laboratory COVID-19 

datasets is up to 97.1711%, with precision and recall rates reaching 
100% and over 99.75%, respectively, while the F1 Score is above 
99.87%. 

The above results are obtained by SV-WS in the Symptom-3 dataset. 
For the clinical COVID-19 datasets, the results are evenly distributed. 
Taking the clinical COVID-19 dataset of Anhui Province as an example, 
the highest accuracy rate is 81.8182%, the precision rate is over 83.33%, 
the recall rate is up to 85.6618%, and the F1 Score has a top value of 
84.1919%. However, the accuracy rate is lower than 55% for datasets 
with a single symptom, such as the Symptom-1 and Symptom-2 datasets 
(see Fig. 6). 

Moreover, the performance metrics mentioned above can be further 
appreciated in the confusion matrix shown in Fig. 7, which demonstrates 
that most of the COVID-19 classes are properly identified, however, a 
few are incurred in misclassifications. The SV-WS used in the Symptom- 
3 dataset is proven to be the best, and the EDG-WS is optimal in the 
Anhui dataset. 

To determine the overall performance of the accuracy of the pro-
posed symptom weight functions, the confidence limits of the three 
symptom weight functions are shown in Fig. 8, using the Symptom-3 and 
Anhui datasets as examples. It can be seen that the accuracy of the 
proposed ISW-LM is approximately 97% and 80% in the symptom-3 and 
Anhui datasets, respectively. The results of Fig. 8 show that the average 
accuracy, which is given in Table 8, is reliable. 

3.2.2.2. Evaluation in the large COVID-19 datasets. Furthermore, the 
same experiments are implemented on the large COVID-19 datasets. 
Table 9 shows the performance metrics for symptom weight functions in 
large COVID-19 datasets. 

The results show that the accuracy rate in the laboratory blood test 
dataset shows a better value is better, with an overall score of 75.5144%. 
However, the accuracy of the proposed algorithm varies greatly, with a 
difference of 5.5556%. In addition, the recall and F1 Score of the pro-
posed method still need to be balanced and improved. The analysis 
shows a high precision, recall, and F1 score, with values of 87.3482%, 
80.0714%, and 77.8219%, respectively. Compared with other symptom 
weight functions in the clinical Israeli dataset-2 dataset, the SV-WS has 
an optimal performance in terms of accuracy and precision. Besides, the 
second function emerged as the best weight function, a recall rate 
48.6312% and an F1 score of 47.3068%. 

Table 4 
The order of symptoms in the Chinese datasets.  

Dataset Symptom weight 
function 

The order of symptoms 

First Second Third Fourth 

Anhui SV-WS Fever Cough Age Isolation 
IE-WS Fever Age Cough Isolation 
EDG-WS Fever Cough Age Isolation 

Chongqing SV-WS Fever Cough Isolation Age 
IE-WS Age Fever Gender Cough 
EDG-WS Isolation Age Fever Cough 

Fujian SV-WS Fever Gender Cough Isolation 
IE-WS Fever Gender Isolation Cough 
EDG-WS Fever Gender Cough Isolation 

Guangxi SV-WS Fever Cough Gender Isolation 
IE-WS Age Fever Cough Isolation 
EDG-WS Gender Fever Age Cough 

Hebei SV-WS Fever Cough Isolation Age 
IE-WS Age Fever Gender Isolation 
EDG-WS Fever Age Cough Isolation 

Zhejiang SV-WS Fever Cough Age Isolation 
IE-WS Age Fever Cough Isolation 
EDG-WS Fever Age Gender Isolation  

Table 5 
The order of symptoms in Brazilian datasets.  

Dataset Symptom 
weight 
function 

The order of symptoms 

First Second Third Fourth 

Brazilian 
dataset-1 

SV-WS Dyspnea Coryza Runny 
nose 

Fever 

IE-WS Runny 
nose 

Dyspnea Coryza Fever 

EDG-WS Fever Dyspnea Gender Runny 
nose 

Brazilian 
dataset-2 

SV-WS Fever Runny 
nose 

Coryza Taste 

IE-WS Fever Gender Cough Runny 
nose 

EDG-WS Runny 
nose 

Dyspnea Gender Cough 

Brazilian 
dataset-3 

SV-WS Runny 
nose 

Fever Coryza Taste 

IE-WS Fever Runny 
nose 

Gender Dyspnea 

EDG-WS Fever Dyspnea Gender Cough  

Table 6 
The order of symptoms in blood test dataset.  

Dataset Symptom weight function The order of symptoms 

First Second Third Fourth 

Blood test SV-WS Platelets Kallistatin Red blood cells Monocytes count 
IE-WS Aspartate aminotransferase Eosinophils count White blood cells Lactate dehydrogenase 
EDG-WS Eosinophils count Calcium Nucleic acid testing Polymerase chain reaction  

Table 7 
The order of symptoms in Israeli datasets.  

Dataset Symptom 
weight 
function 

The order of symptoms 

First Second Third Fourth 

Israeli 
dataset- 
1 

SV-WS Headache Sore 
throat 

Dyspnea Gender 

IE-WS Gender Headache Cough Fever 
EDG-WS Headache Sore 

throat 
Gender Dyspnea 

Israeli 
dataset- 
2 

SV-WS Sore 
throat 

Fever Headache Dyspnea 

IE-WS Gender Headache Fever Sore 
throat 

EDG-WS Headache Sore 
throat 

Dyspnea Gender  
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As shown in Fig. 9, 54 COVID-19 patients and 63 non-COVID-19 
patients in the blood test dataset, whose result is calculated by the 
EDG-WS, are properly classified. On the other hand, 97.3% of patients in 
the Israeli dataset-2 dataset are categorized correctly by the SV-WS 
using functions. 

Similarly, the overall performance of the proposed ISW-LM function 
in the blood test and Israeli dataset-2 datasets is shown in Fig. 10. As 
shown in Fig. 10, the overall accuracy distribution is approximately 
72%, and the average values in Table 9 are all within the confidence 
limit. 

The accuracy of the proposed method in Table 9 is approximately 
95% on average and is within the interval shown in Fig. 10. The results 
show that the accuracy is obtained with a highly convincing probability. 

3.2.3. Analysis of experimental results 
In this paper, the symptom weight function is used to calculate, rank, 

and diagnose the crucial symptoms related to COVID-19 based on the 
proposed ISW-LM. The corresponding function and symptoms are 
selected for the specific datasets by comparing the accuracy of the three 
functions in the ISW-LM. 

Combined together, Table 3, Table 4, Table 8, and Fig. 7 show that in 
the small laboratory COVID-19 datasets, fever, body pain, age, and 
dyspnea are the most crucial symptoms. The specific datasets are 
analyzed by taking Symptom-3 and Anhui data as examples. The ISW- 
LM predicted with a high accuracy that sore throat, travel abroad, 
dyspnea, and fever are the most significant symptoms for the Symptom- 
3 data. Similarly, the key symptoms for diagnosing COVID-19 in Anhui 

Table 8 
Performance metrics for symptom weight functions in small COVID-19 datasets.  

Dataset Symptom weight function Performance metric (%) 

Accuracy Precision Recall F1 Score 

Laboratory COVID-19 datasets Symptom-1 SV-WS 54.0291 49.3269 49.4581 49.3912   
IE-WS 54.3689 53.4857 55.5454 54.4742  
EDG-WS 53.5947 51.5344 48.4104 49.8790 

Symptom-2 SV-WS 53.3750 48.7965 51.1771 49.8673  
IE-WS 54.0625 49.8320 52.1533 50.9333  
EDG-WS 53.9375 52.6599 51.9158 52.1567 

Symptom-3 SV-WS 97.0791 100.0000 99.7545 99.8768  
IE-WS 97.1711 100.0000 98.5267 99.2549  
EDG-WS 96.5271 100.0000 99.1406 99.5670 

Clinical COVID-19 datasets Anhui SV-WS 76.1363 87.7104 73.3543 77.9652  
IE-WS 81.8182 83.3333 85.3641 84.1919  
EDG-WS 80.1137 84.0852 85.6618 83.9773 

Chongqing SV-WS 62.3189 76.1905 100.0000 86.4397  
IE-WS 66.3044 81.3665 79.9295 80.3953  
EDG-WS 66.3044 81.6782 74.9806 77.8922 

Hebei SV-WS 75.4464 83.5556 87.5776 83.6111  
IE-WS 70.0893 86.1111 88.1067 86.1047  
EDG-WS 76.7857 82.6087 81.5045 81.2598  

Fig. 7. Confusion matrix for symptom weight functions in small COVID-19 datasets.  
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Province are fever, age, cough, and isolation. Furthermore, the accuracy 
of datasets containing simple symptoms still needs to be improved in the 
accurate selection of key symptoms. 

As shown in Table 6, Table 7, Table 9, and Fig. 9, the top fourth 
highest-ranking symptoms for the blood test dataset are eosinophil 

count, calcium, nucleic acid testing, and polymerase chain reaction. In 
the large clinical COVID-19 datasets, the Israeli dataset-2 dataset is 
taken as an example. The most important symptoms for the diagnosis of 
COVID-19 include headache, sore throat, dyspnea, and sex. Meanwhile, 
more attention should be given to the generalization capabilities of the 

Fig. 8. Confidence limits of accuracy in the Symptom-3 and Anhui datasets.  

Table 9 
Performance metrics for symptom weight function in large COVID-19 datasets.  

Dataset Symptom weight function Performance metric (%) 

Accuracy Precision Recall F1 Score 

Laboratory COVID-19 dataset Blood test SV-WS 70.3195 87.3482 17.1630 28.5386   
IE-WS 69.9588 71.1580 74.4211 72.6900   
EDG-WS 75.5144 75.7425 80.0714 77.8219 

Clinical COVID-19 dataset Israeli dataset-2 SV-WS 95.9081 52.8562 27.7115 36.3588   
IE-WS 95.5282 46.5812 48.6312 47.3068   
EDG-WS 95.6849 49.7243 44.6894 45.6310  

Fig. 9. Confusion matrix for symptom weight functions in large COVID-19 datasets.  
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proposed ISW-LM, including the diagnosis of hematological and epide-
miological symptoms in large clinical COVID-19 datasets. 

3.3. Comparison with state-of-the-art methods 

To better evaluate the proposed ISW-LM, this experiment is dedi-
cated to comparing the recall metric in which the blood test dataset is 
used with state-of-the-art methods. Eight algorithms that have per-
formed well in classification have been selected for comparisons, such as 
DT, RF, KNN, SVM, etc., using the proposed method in Latif, Siddique, 
et al. [13], called TWRF, as shown in Fig. 11. 

Fig. 11 summarizes the recall metric that is measured by nine clas-
sification methods in the blood test dataset. This result indicates that the 
proposed method is superior to other algorithms for this measure, and 
the ISW-LM gives the highest testing score of 87%. Most classification 
methods have a recall rate of less than 70%. Therefore, the best- 
performing models could be usefully applied in clinical scenarios, 
which verifies that the proposed method can classify COVID-19 
effectively. 

4. Conclusion 

The early detection and diagnosis of COVID-19 patients are critical to 
preventing the spread of the disease and promptly treating patients. 
Recent studies have revealed that patients’ epidemiological symptoms 
and routine blood tests can be used to classify and screen for COVID-19. 
This study proposes an intensive symptom weight learning mechanism 
called ISW-LM to classify and diagnose COVID-19 patients. Three 
symptom weight functions are proposed to analyze and evaluate the 
importance of symptom intensity for a positive diagnosis. These rank-
ings of symptom intensity may aid doctors in identifying potentially 
infected patients before a formal diagnosis is made. Finally, multiple 
laboratory and clinical COVID-19 datasets are used to test the validity of 
the proposed model. By analyzing the results, the model presents the 
important symptoms that identify COVID-19 in different datasets, in 
which the most frequent and significant predictive symptoms in most 
datasets for diagnosing COVID-19 are fever, sore throat, and cough. 
Different state-of-the-art classification models are also used to compare 
and verify the effectiveness of the proposed ISW-LM. Experimental re-
sults show that the proposed ISW-LM can obtain an accuracy of 
97.1711%. Compared with that of other algorithms, the recall rate can 
also be increased to 87%. 

By analyzing and judging the intensity of the symptoms of infected 
patients, the proposed method can assist doctors in the treatment and 
reliable early detection of COVID-19, which can save both treatment 
time and cost. In future work, the proposed method can also be used to 
diagnose the degree of infection in patients with severe infections or 
complications of chronic diseases. 
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