
Citation: Zhang, H.; Wu, X.; Quan, L.;

Ao, Q. Characteristics of Marine

Biomaterials and Their Applications

in Biomedicine. Mar. Drugs 2022, 20,

372. https://doi.org/10.3390/

md20060372

Academic Editors: João Borges, João

F. Mano, Laura Cipolla, João M.

M. Rodrigues and Hitoshi Sashiwa

Received: 10 April 2022

Accepted: 27 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

marine drugs 

Review

Characteristics of Marine Biomaterials and Their Applications
in Biomedicine
Hengtong Zhang, Xixi Wu, Liang Quan and Qiang Ao *

NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of
Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan
University, Chengdu 610064, China; zhanght_1226@163.com (H.Z.); wuxixi9997@163.com (X.W.);
quanliang@stu.scu.edu.cn (L.Q.)
* Correspondence: aoqiang@tsinghua.edu.cn

Abstract: Oceans have vast potential to develop high-value bioactive substances and biomaterials.
In the past decades, many biomaterials have come from marine organisms, but due to the wide variety
of organisms living in the oceans, the great diversity of marine-derived materials remains explored.
The marine biomaterials that have been found and studied have excellent biological activity, unique
chemical structure, good biocompatibility, low toxicity, and suitable degradation, and can be used as
attractive tissue material engineering and regenerative medicine applications. In this review, we give
an overview of the extraction and processing methods and chemical and biological characteristics
of common marine polysaccharides and proteins. This review also briefly explains their important
applications in anticancer, antiviral, drug delivery, tissue engineering, and other fields.

Keywords: marine biomaterials; extraction methods; marine polysaccharides; collagen; biomedical
applications; tissue engineering

1. Introduction

The total area of the oceans is about 360 million square kilometers, accounting for
about 71% of the earth’s surface area [1]. The ocean is rich in various biological resources,
such as skin, bone, and shells from marine organisms, which are important sources of
marine biological medical materials. However, the seas that people have explored are
only small parts, and most areas remain to be developed at present [2]. Driven by en-
vironmental pollution and energy shortages, the ocean seems to be a suitable choice for
finding renewable and environmentally friendly resources [3]. The discovery of a bioactive
substance called sea cucumber, which was extracted from marine organisms in 1967, in-
spired in-depth research on marine biomaterials [1,4]. Until today, an increasing number of
compounds are currently being isolated from marine organisms and proposed as novel
products for biomedical related applications ranging from bioactive ingredients to biologi-
cal scaffolds [2]. The progress of modern medicine is inseparable from the development of
biomedical materials.

In recent years, marine biological materials that have been paid attention to by human
beings are mainly some biological macromolecules and their derivatives, such as chitin,
alginate, and collagen. They do not carry the risk of zoonotic transmission, avoid religious
constraints for mammals, and possess good biocompatibility, biodegradability, biological
activity, and processing performance [5,6]. They can be used as scaffold materials, wound
dressings, and drug carrier materials for tissue engineering products. Therefore, the
development and utilization of marine biological materials is a major focus in the current
direction of material research and development. With the development and progress of
science and technology, the market prospect of the development and application of marine
biomedical materials is increasingly broad, and more and more attention is paid to it.
At present, the commonly used marine biomedical materials are mainly polysaccharides
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and proteins. Polysaccharides include chitin, alginate, and glycosaminoglycan, and proteins
are mainly collagen. This review gives an overview of the extraction, processing methods,
and chemical and biological characteristics of common marine polysaccharides and proteins
and introduces their applications in anticancer, antiviral, drug delivery, tissue engineering,
and other fields.

2. Biomaterials from Marine Organisms
2.1. Chitin and Chitosan

Chitin is the second largest natural macromolecular polysaccharide in the world
after cellulose, which is widely found in the fungi and algae of arthropods and lower
plants in the ocean [7]. It has good biocompatibility, promotes tissue growth, has great
extraction and utilization value, and has anti-inflammatory, hemostatic, and analgesic
properties [7]. The chemical structure of chitin is similar to that of plant cellulose, which
is a polymer composed of β-(1,4)-2-acetylamino-2-deoxy-D-glucose connected by β-1,4
glycosidic bond [8]. At present, the main raw materials for chitin production in the
industry are derived from the stratum corneum of crustaceans such as crab and shrimp [9].
Chitin combines with proteins to form a complex protein network system, and calcium
carbonate deposits on it to form a hard shell. Therefore, the main step of chitin production
is the removal of protein and CaCO3 while removing fats and pigments together.

The traditional production of chitin is divided into three basic steps (Figure 1a).
The first step is to remove proteins because the interaction between chitin and proteins
is strong, so the deproteinization process is also the most difficult step [10]. More impor-
tantly, the degree of protein removal should be paid special attention to because excessive
deproteinization will cause deacetylation and hydrolysis of chitin. On the contrary, due
to the allergy symptoms of some people, protein retention will affect the application of
chitin in medicine. The commonly used deproteinization reagents include NaOH, Na2CO3,
NaHCO3, KOH, K2CO3, Ca(OH)2, Na2SO3, NaHSO3, Na3PO4, and Na2S [11]. The second
step is to remove inorganic salt, mainly CaCO3. The main method of desalination is acid
treatment, and the desalination reagents are HCl, HNO3, H2SO4, CH3COOH, HCOOH,
etc. [11]. Since CaCO3 is easy to be acidified, the desalination process is relatively easy
to complete. To improve the desalination efficiency, it is usually achieved by increasing
the temperature and the acid concentration and prolonging the desalination time, which
is conducive to the immersion of acid into the chitin matrix. However, it will also bring
deacetylation and hydrolysis of chitin, affecting the final quality of chitin [12]. The third
step is decoloration. This is an additional step during the extraction process when the
colorless product is expected, as it aims to eliminate astaxanthin and β-carotene pigments
when they are present in the extraction source [13]. At present, the decolorization of chitin
in the industry is mainly through sunlight irradiation, KMnO4 oxidation [14], and organic
solvents such as acetone [15]. The sunlight irradiation time is too long, and the product
is yellow (high lightness value or less yellowness index is preferable). After the decol-
orization of KMnO4, reducing agents such as NaHSO3 need to be added for reduction.
In addition, unreacted KMnO4 will cause contamination of the environment. Hydrogen
peroxide (H2O2) is a good choice because of its low price and pollution-free decomposition
products [16].

The traditional acid-alkali treatment method also has many defects. The first is the
use of a large number of acid and alkali, resulting in serious environmental pollution;
meanwhile, the subsequent purification process of chitin is complex, which increases the
production cost; the decrease in molecular weight and acetylation degree of chitin affects
the quality of chitin products [17].
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various proteolytic enzymes and relatively mild ethylenediaminetetraacetic acid (EDTA), 
citric acid treatment. It has been found that many proteases can be used for the extraction 
of chitin, such as pepsin, papain [19], trypsin [20] and alkaline protease [21], etc. The 
mechanism of action is that the protein in the crustacean shell is separated from the 
crustacean shell under the catalysis of protease, and the deacetylation and 
depolymerization in the separation process can be minimized [12,17]. The method has the 
advantages of mild conditions, environmental friendliness, and high product purity [22].  

However, compared with the acid-base method, the enzymatic method has the 
disadvantages of low efficiency, insufficient deproteinization of a large number of 
residual proteins, and high cost. Therefore, the method for enzymatic extraction of chitin 
needs to be improved. Weak alkali treatment under mild conditions can improve the 
purity of chitin and maintain its structure. The combination of enzyme extraction and mild 
chemical processes can improve the performance of chitin preparation. Marzieh M. N. et 
al. deproteinized white shrimp shell waste using trypsin and fig protease, and the 
enzymatic deproteinized shells were subjected to mild-alkali treatment (0–2% NaOH; 60 
°C and 30 min) [19]. The results showed that the degree of acetylation (DA) of enzymatic 
chitin (81–83%) was higher than that of the chemical method, and the protein content was 
low, which could be considered a good final product. Therefore, the enzymatic method 
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Using milder and more environmentally friendly methods to extract chitin has at-
tracted widespread attention to overcome the environmental problems associated with
acid-alkali treatment. Now a good alternative to chemical extraction of chitin is the use of
various proteolytic enzymes and relatively mild ethylenediaminetetraacetic acid (EDTA),
citric acid treatment. It has been found that many proteases can be used for the extraction
of chitin, such as pepsin, papain [19], trypsin [20] and alkaline protease [21], etc. The mech-
anism of action is that the protein in the crustacean shell is separated from the crustacean
shell under the catalysis of protease, and the deacetylation and depolymerization in the
separation process can be minimized [12,17]. The method has the advantages of mild
conditions, environmental friendliness, and high product purity [22].

However, compared with the acid-base method, the enzymatic method has the dis-
advantages of low efficiency, insufficient deproteinization of a large number of residual
proteins, and high cost. Therefore, the method for enzymatic extraction of chitin needs
to be improved. Weak alkali treatment under mild conditions can improve the purity of
chitin and maintain its structure. The combination of enzyme extraction and mild chemical
processes can improve the performance of chitin preparation. Marzieh M. N. et al. de-
proteinized white shrimp shell waste using trypsin and fig protease, and the enzymatic
deproteinized shells were subjected to mild-alkali treatment (0–2% NaOH; 60 ◦C and
30 min) [19]. The results showed that the degree of acetylation (DA) of enzymatic chitin
(81–83%) was higher than that of the chemical method, and the protein content was low,
which could be considered a good final product. Therefore, the enzymatic method can
replace the chemical method to complete the chitin extraction, which has great potential as
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a new protein removal method. The technology of chitin extraction by microbial fermen-
tation has been reported [23,24]. The organic acids produced by microorganisms in the
growth process were used to dissolve the minerals in raw materials such as shrimp and
crab to play the role of desalination, and the produced ‘enzyme’ hydrolyzed the protein to
remove it.

Chitin can be transformed into chitosan (when DA is less than 50%) under deacety-
lation to improve its application potential (Figure 1b). Chitosan (CHS) is one of the most
widely used biomedical materials, and its structure and properties are similar to human ex-
tracellular matrix glucosamine. Under the action of lysozyme, chitosan is mainly degraded
into chitosan oligosaccharide and glucosamine that can be absorbed by the human body.
In addition to active hydroxyl groups, free amino groups and hydroxyl groups also exist
in chitosan molecules, which makes its chemical modification more diversified, forming
various chitosan derivatives and changing their properties (Figure 1c) [11].

To improve the yield of CHS, a mechanochemical method of direct extraction from
shrimp shells is proposed [25,26]. The method applies mechanical energy (including impact,
compression, shearing, friction, and stretching) to solid raw materials. With the increase
in time, the solid morphology and crystal structure of substances change and induce
physical and chemical reactions. Compared with the traditional acid-base method, the
mechanochemical method has higher conversion efficiency and reduces the adverse impact
on the environment. Moreover, the mechanical force can reduce the molecular weight of
CHS and realize higher solubility. Chen et al. produced low molecular weight CHS (purity
of ca. 90%) from chitin and shrimp shell by a solvent-free mechanochemical method [27].
The products exhibited a much narrower molecular weight distribution than the traditional
method, with adjustable DA (40% to 83%) and MW (1 to 13 kDa) values, and base usage
was reduced to about 1/10 in the extraction process [27]. A mechanochemistry method can
create the possibility of large-scale production of chitosan.

As CHS cannot be dissolved in a neutral aqueous solution, it is frequently neces-
sary to add organic or inorganic acids to dissolve CHS in the preparation of CHS-based
materials. However, the β-1,4-glycosidic bond of CHS in acidic solution is prone to degra-
dation, resulting in a decrease in molecular weight and the weakening of its antibacte-
rial performance [28]. The poor stability of CHS-based systems limits its application in
biomedicine and other fields, so how to improve the storage stability is of great significance.
Several strategies to improve chitosan stability (addition of the stabilizing agent during
the preparation process [29], blending with hydrophilic polymer [30], and use of ionic or
chemical cross-linkers [31]) have also been reported. However, only a limited number of
studies and review articles have been devoted to long-term stability studies on CHS [32].

2.2. Alginates

Alginates are natural hydrophilic polysaccharides derived from kelp or Sargassum
algae of brown algae and several bacterial strains [33,34]. Chemically, alginates are mainly
composed of β-D-mannuronic acid (M unit) and α-L-glucuronic acid (G unit), and different
proportions of GM, MM, and GG fragments are formed via the β-1,4-glycosidic bond
(Figure 2) [35]. Alginates have excellent biocompatibility, low toxicity, and the most
important property is their gelling ability. When divalent cations are added to alginate
in an aqueous solution, the metal ions of G units are replaced with these divalent cations,
and the G units are stacked to form cross-linked networks to form hydrogels, which is
the most common method for the formation of alginate gels [36]. In addition, there are
several methods for preparing alginate hydrogels, including ion-interaction, covalent cross-
linking, thermal gelation, and cell cross-linking [35]. By altering the type and density
of cross-linking, the physical and chemical properties of the alginate hydrogels can be
tailored for various biomedical applications [37,38]. However, it is clear from various
studies that the application of alginate hydrogels is limited due to their poor mechanical
strength and syneresis occurring during the formation of the gel [39]. Therefore, alginate
hydrogels need to be combined with other biopolymers such as chitosan, gelatin, and starch



Mar. Drugs 2022, 20, 372 5 of 32

groups to improve the physical and mechanical properties. For example, chitosan has a
positive charge, and it can form a rigid composite gel with negatively charged alginate
through strong electrostatic interaction [40]. Starch can be used as an insoluble filler in an
alginate hydrogel matrix. The addition of starch creates structural support to control the
shrinkage of alginate hydrogel, maintain the gel shape during freeze drying, and improve
the mechanical strength of freeze-dried composite hydrogel [41].
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Figure 2. Stylized conformation structures of alginate units, blocks, and their linkages M unit: β-D-
mannuronic acid residue; G unit: α-L-guluronic acid residues. Alginates are extracted and purified
from various brown algae and have the gelation ability.

The traditional extraction method of alginates is usually to add an alkaline solution
(NaOH, Na2CO3) to extract alginate from the cell wall of algae after pretreatment with
dilute acid [42]. Then the extract is filtered, and calcium chloride is added to the filtrate
to precipitate alginate. The obtained alginate is decalcified by dilute hydrochloric acid,
dissolved by sodium carbonate, filtered, and precipitated by ethanol. After further purifi-
cation and transformation, water-soluble sodium alginate powder with better quality is
obtained [43].

Nowadays, many eco-friendly methods are increasingly developed to improve extrac-
tion processes, such as microwave-assisted extraction (MAE) [44], ultrasonic-assisted ex-
traction (UAE) [45], pressurized liquid extraction (PLE), and enzyme extraction (EAE) [46].
The advantage of using the enzyme to treat raw materials is to reduce the degradation
of alginate by acid. At the same time, the enzyme has specificity, which can destroy the
cell wall to make alginates dissolve more, improve the yield and efficiency, and reduce
the use of solvents. MAE is considered to overcome the shortcomings of traditional sol-
vent extraction. Rapid internal heating can lead to effective cell wall rupture and release
of intracellular compounds into the extraction solvent during microwave treatment [47].
UAE is a relatively green process, which can reduce the extraction time and the amount of
solvent used to limit energy consumption. Studies have shown that ultrasound does not
affect the extraction product degradation or structural modification over a short amount of
time [45]. PLE is a novel extraction technology based on using elevated temperatures and
pressures to extract compounds from samples in an oxygen and light-free environment in a
short time and using less solvent. Elevated temperature makes the raw materials easier to
dissolve and achieve a higher diffusion rate, while higher pressure keeps the solvent below
its boiling point [46].

Alginate can also be synthesized from Azotobacter vinelandii and Pseudomonas [34].
The production of alginate by bacterial fermentation is not limited and is affected by
geographical environment and climatic conditions. It can be controlled and optimized on
a large scale, and the ratio of M/G can be changed by changing fermentation conditions
(such as temperature, PH, and culture medium concentration), which provides more clear
chemical structure and physical properties for alginate [48].

2.3. Carrageenan

Carrageenan (CG) is a natural, high-molecular-weight, sulfated polysaccharide ex-
tracted from the outer cell wall and intracellular matrix of marine alga Rhodophyceae,
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such as Chondrus, eucheuma, Gigartina and Hypnea [49]. CGs are mainly composed of
D-galactose residues linked alternately in 3-linked-β-D-galactopyranose and 4-linked-α-
D-galactopyranose units. There are three major subtypes of CG: kappa, iota, and lambda
carrageenan (Figure 3a), which differ in their location and number of sulfate moieties on
the hexose scaffold skeleton and contain one, two, or three negatively charged sulfate ester
groups per disaccharide repeating unit, respectively [50]. As the bioactive molecules, CGs
have antioxidant, antibacterial, and anticoagulant properties. In addition, numerous reports
have shown that CGs are also antivirals, especially anti-respiratory viruses (SARS-CoV-2,
etc.) [50].
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fucoidan backbones. R is the potential attachment of carbohydrate (α-L-fucopyranose and α-D-
glucuronicacid) and non-carbohydrate (sulfate and acetyl groups) substituents; (c) structure of the
major repeating disaccharide units that comprise ulvan; (d) schematic illustration of laminarin
structure and its derivatives.

The preparation of CG usually follows such a process, including pretreatment, extrac-
tion, precipitation, filtration and drying. Firstly, the coarse impurities in red algae were
removed by pretreatment, and then CG was released from cells by hot alkali extraction.



Mar. Drugs 2022, 20, 372 7 of 32

Once CG is in a hot solution, it will be clarified and then converted into powder [49].
Generally, the “alcohol precipitation method” is a commonly used method to extract CG.
Because of its physicochemical properties, CG is insoluble in organic reagents such as
methanol and ethanol. The concentrated solution of CG is placed in alcohol to precipitate
CG from the solution. Then, the solvent is evaporated, and the precipitated CG is dried
and ground to the desired size [49].

Other more complex methods include extraction using enzymes [51] or fungal [52],
and these biological methods can reduce the toxicity of carrageenan. In particular, some
advanced extraction methods have been reported in recent years, such as deep eutectic sol-
vents (DES) [53], MAE [54], UAE [55], and subcritical water extraction [56]. Compared with
traditional methods, each extraction method may offer certain advantages, such as the
improvement of the physical and chemical, gelation and biological activity conditions of
CGs [57].

2.4. Fucoidan

Fucoidan is a complex sulfated polysaccharide, mainly derived from marine brown
algae and invertebrates, such as trepang and sea urchin. Fucoidan is composed of L-fucose
and sulfate groups, the main monosaccharide component of which is L-fucose-4-sulfate [58].
The structure of fucoidan is highly dependent on the algae species, but it always contains a
backbone of sulfated fucans. There are two types of fucoidan backbones: type I or type II
backbones (Figure 3b). One with a backbone of (1→3)-linked α-L-fucopyranose residues
and the other with α-L-fucopyranose linked alternately by (1→3) and (1→4) as the main
backbone [59]. Single and double substitutions in the sulfate groups at the C-2 or C-4
positions of both skeletons can occur. Some fucoidans possess substituted branches at
the C-2 and C-3 positions [58]. The molecular structure of fucoidan is important to its
biological activity.

The extraction method of fucoidan will affect the structural diversity as it introduces
a certain amount of bias, which results in changes in structure, charge, molecular weight
and chemical composition [60]. Many classical methods can be used to extract fucoidan,
such as hot water, dilute acid, dilute alkali, enzyme-assisted [61], and microwave-assisted
treatment [62]. However, these methods require high temperature, a large amount of solvent
or a long extraction time, and thus, researchers have proposed some new polysaccharide
extraction methods to provide higher yield and maintain the natural fucoidan structure [63].
DES combined with subcritical water extraction improves the yield of fucoidan [64]; the
high-pressure homogenization method can make the extraction of raccoon dog fucoid have
an excellent antioxidant capacity [63]; UAE is more efficient in the extraction of higher MW
fucoidan [65].

2.5. Ulvan

Ulvan is an acidic polysaccharide containing sulfate. It belongs to the cell wall polysac-
charide of green algae that accounts for 9~36% dry weight of green algae and is mainly
composed of sulfated rhamnose, uronic acid (including glucuronic acid and iduronic acid)
and xylose [66]. Ulvan has been used extensively in chemical, pharmaceutical, and co-
mestible fields because of its anticoagulation, antioxidation, antitumor, and blood lipid
level reduction activities, as well as the capability of immunoregulation [1].

Ulvan generally has complex branching structures and no clear main chain or simple
repeat unit. The main chain of Ulva pertusa from different sources is mainly composed of
α-(1→4) and β-(1→4) glycosidic bonds. Glucuronic acid, edoglucuronic acid and rham-
nose mainly exist in the form of aldiuronic acid in Ulvan, forming a typical repetitive
disaccharide unit. The disaccharide unit mainly has two different types (Figure 3c), which
is, respectively, type A ulvanobiuronic acid 3-sulfate (A3s) and type B ulvanobiuronic
acid 3-sulfate (B3s) [67]. Among them, A3s is mainly composed of β-D-glucuronic acid
(1,4)-linked to α-L-rhamnose 3-sulfate, while in B3s, α-L-iduronic acid is (1,4)-linked to
α-L-rhamnose 3-sulfate [67].
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The extraction method of ulvan is similar to other seaweed polysaccharides, and a
solvent method, physical assistant method or other method can be used. The choice of
extraction method generally depends on the physicochemical properties of ulvan, which
can interact with components of the cell wall when it comes in contact with a solvent [67].
Acid extraction causes almost complete desulfation of isolated ulvan, while purifying
enzymatic methods maintain a significant SO3 substituent level [67]. UAE can destroy
the cell wall and rapidly dissolve ulvan, but the structure of intracellular ulvan will not
be destroyed. The degradation of ulvan may reduce or enhance its function during the
extraction process, but the specific mechanism of ulvan biological activity and the structure–
activity relationship between them are less studied, which requires further study [68].

2.6. Laminarin

Laminarin, a storage β-glucan consisting of (1,3)-β-D-glucan and some β-(1,6)-intrachain
links, exists in the fronds of Laminaria and Saccharin species [69]. It has extensive biological
activities, such as antitumor, antioxidant, anti-inflammatory, and prebiotic properties.
Moreover, laminarins can be considered as ideal substrates for bioethanol production
because they are composed of abundant glucose residues [70].

The traditional extraction method of laminarin is time-consuming and low-yield, so it
is necessary to develop new environmental protection extraction technology to improve the
extraction rate and yield. For example, UAE is more effective than solid-liquid extraction in
extracting laminarins with higher molecular weight [71], and DES had the best extraction
efficiencies for laminarin (87.6%) from marine kelp [72]. In addition, to improve the
bioactivity of laminarin, various physical, chemical, and biological methods have been used
to modify its structure. Catarina et al. prepared photo cross-linked laminarins by chemical
modification with acrylate groups, which enhanced their applications in the biomedicine
field [73]. However, only a few chemical strategies have been successfully employed due to
batch variability and difficulties encountered during the modification and characterization
approaches [74]. In the future, the relationship between its structure and various biological
activities needs further attention and exploration

2.7. Hyaluronic Acid and Chondroitin Sulfate

Glycosaminoglycan (GAG) is a linear polysaccharide formed by disaccharide units
linked by covalent bonds and the core protein of proteoglycans [75]. The disaccha-
ride repeat units of GAG are composed of amino sugars (including D-glucosamine and
D-galactosamine) and uronic acids (glucuronic acid and L-eduronic acid) [76]. GAGs mainly
exist on the surface of animal cells and extracellular matrix. Because it has a certain viscosity
and lubrication function during mucus secretion, it is also called mucopolysaccharide [77].
GAGs mainly include the following categories of compounds: hyaluronic acid (HA), chon-
droitin sulfate (CS), heparin/heparin sulfate (HS), dermatan sulfate (DS), and keratan
sulfate (KS) (Figure 4) [77]. Their differences depend on the chain length, the connection
with proteins, the degree of sulfation, and the ratio of uronic acid, etc. [78]. Among them,
HA and CS are two important materials that have been used in various fields such as
biomedical, cosmetic, food, and drug applications.
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HA is an important component of the natural extracellular matrix, which mainly exists
in animal connective tissue. Unlike other GAGs, HA is unsulfated and does not bind
to proteins, and it is the only GAG without proteoglycan formation and sulfate group
substitution [80]. The basic units of HA are GlcA and GlcNAc, which are linked by one
to three glycosidic bonds. Each disaccharide unit contains hydroxyl, which can bind to a
large amount of water and interact with other extracellular proteins and polysaccharides to
form a network structure. Therefore, it has the functions of water retention, lubrication,
buffering, regulating osmotic pressure, and maintaining tissue morphology [81]. HS has
excellent cytocompatibility and can be recognized by specific cell receptors such as CD44
and hyaluronic acid endocytosis receptors, thereby controlling cell adhesion, growth,
and differentiation, and regulating physiological processes such as immune response,
vascularization, and healing, etc. [82].

CS is widely present in human and animal cartilage, tendon, ligament, cornea, and
vascular walls. It connects the basic unit GlcA and GalNAc by β-1,3 glycosidic bonds to
form disaccharide units, which are connected by β-1,4 glycosidic bonds to form polysaccha-
ride straight chains [83]. CS is an ideal extracellular matrix material, which can absorb and
maintain water and nutrients, promote rapid cell proliferation, type II collagen, hyaluronic
acid, and proteoglycan formation, and inhibit extracellular matrix degradation [84]. CS has
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the effects of anticoagulation, regulating blood lipids, delaying atherosclerosis, and enhanc-
ing immunity [84]. Many studies have shown that chondroitin sulfate plays an extremely
important role in a variety of biological events, such as the growth of the central nervous
system, damage repair, virus adhesion, growth factor signaling, morphological formation,
cytoplasmic separation, and other important functions [85].

HA and CS can be extracted from different parts of marine organisms, such as cartilage,
head, eyes, fins, and skin, etc. [86]. Researchers have developed and optimized technolo-
gies to decompose structures and separate GAG from other polysaccharide complexes
in tissues using decontamination agents, enzymes, microorganisms, or organic solvents
(mainly sodium acetate) and to ensure maximum utilization of marine wastes [87]. Due to
the covalent binding between glycosaminoglycan and protein, enzymatic hydrolysis is
mostly used in the extraction of glycosaminoglycan [87]. The covalent bond was bro-
ken by proteases such as pepsin, trypsin, and papain, and the glycosaminoglycan long
chain was released. Helosia et al. extracted GAG from tilapia scales by papain with a
yield of 0.86% [88]. GAG was purified by ion-exchange chromatography, and fraction
V (FV) revealed the presence of chondroitin sulfate chains CS-A and CS-C, with a DS of
0.146 [88]. In the final stage of extraction, various purification methods (such as dialysis,
ion exchange, and ultrafiltration-filtration) are generally used to separate and purify the
crude glycosaminoglycan. Since different kinds of glycosaminoglycans tend to have dis-
tinct charge properties based on the extent of sulfation, Anion exchange chromatography
may achieve the separation of proteoglycan species based on their glycosaminoglycan
composition, at least partially [89]. For example, heparin is more highly sulfated than CS
and is eluted at even higher concentrations of NaCl. Alicia M. H. et al. introduced a novel
method that extracted glycosaminoglycans from articular cartilage using a combination of
ethanol precipitation and enzymatic release [90]. After the separation of crude glycosamino-
glycan by reverse-phase and strong anion exchange solid-phase extraction steps, a more
refined disaccharide component can be obtained, which can improve its sensitivity and
reproducibility in subsequent disaccharide structure analysis [90].

2.8. Collagen

Collagen is an important component of abundant protein and extracellular matrix in
animals, which widely exists in sponges, jellyfish, sea cucumber, fish (skin, meat, scales,
cartilage, fin, swim bladder, etc.), and marine mammals [91]. At present, there are more
than 20 known collagens, of which type I widely exists in all tissues and organs, accounting
for about 90% of the body collagen content; type II is mainly in cartilage tissue; type III
exists in skin, blood vessels, and organs; type IV are in the basement membranes as a
system of filtration, and type V exists in all tissues as a cytoskeleton [92,93]. These types of
collagens are the most abundant and fully studied in biomedical applications [94].

Collagen molecules are surrounded by three α-peptide chains or multi-peptide chains
of α-chains to form a triple helix structure, which is arranged in a periodic fiber structure
vertically and bilaterally (Figure 5) [91]. The characteristic triple helix region of collagen has
high stability, so the essential amino acid composition and quaternary structure of collagen
between marine collagen and terrestrial mammals are similar [95]. However, the complexity
and diversity of the marine environment are higher than that of the terrestrial environment.
Accordingly, the structure of marine collagen shows rich diversity with species, origin,
environment, season, growth cycle and other factors, which leads to a slight difference
between the composition and structure of marine collagen and terrestrial animal collagen.
For many years, bovine and pigs have been used as the common source of collagens, but the
outbreak of bovine spongiform encephalopathy, transmissible spongiform encephalopathy,
and foot and mouth disease that happened during the last decades has limited the use of
collagen from these sources [96]. The marine-derived collagen can partially replace or even
replace terrestrial animal-derived collagen since both the number and the productivity of
fish aquaculture species have increased in recent years. Farmed marine organisms are bred
in a confined environment in which the ability to control and eventually modify (in the
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case of inshore facilities) physicochemical parameters could result in more homogeneous
and safer collagens [97].
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Based on the current research reports, the common extraction and separation tech-
nologies for different types of collagens from different sources and tissues include acid
extraction [98], enzymatic extraction, hot-water extraction [99], salt extraction, alkali ex-
traction, and fermentation (Table 1). The differences in the distribution of collagen fibers,
the tightness of the binding between fibers, and the cross-linking degree between other
components (such as mucopolysaccharides and minerals) in tissues and collagen fibers
all affect the difficulty of collagen separation, extraction rate, purity, and integrity of
collagen structure.

The acid extraction method uses low-concentration acids (commonly used hydrochlo-
ric acid, acetic acid, citric acid, and formic acid) to destroy Schiff bonds and ionic bonds so
that no cross-linked collagen and collagen-containing aldehyde amine cross-linking bonds
dissolve. The acid solution cannot dissolve collagen with a large cross-linking degree, and
the extraction rate is not high, but it has little damage to the cross-linking bond damage of
collagen, which can maintain the integrity of the collagen structure [100]. To improve the
yield and reduce environmental pollution, researchers have also developed a new green ex-
traction process. Alexandre A. Barros et al. successfully extracted sponge collagen/gelatin
(about 50% extraction rate) under mild conditions by acidification of carbon dioxide into
water under high pressure [101].
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Table 1. Summary of collagen isolated from marine organisms.

Collagen Type Source Extraction Solvent or
Method Yield (Y) Refs

Collagen type I Tilapia Scales

A combination of dilute
acetic acid (0.1 M and

0.5 M) with
ultrafine bubbles

Y = 1.58% [102]

Collagen type I
Chinese sturgeon
(Acipenser sturio
Linnaeus) skins

2.42% pepsin solution The maximum yield
of 86.69% [103]

Collagen Carp scale

300 mg/g of pepsin
solution, 0.3 mol/L acetic

acid solution, and
200 min ultrasonic

Y = 28.7% [104]

Collagen type I Scales of Labeo rohita
and Catla catla 0.5 M AcOH nearly 5% [105]

Collagen type I and II Skin and notochord of
Bester sturgeon

M NaOH
0.1% (dry w/v)
porcine pepsin

Y (type I) = 63.9 ± 0.19%
Y (type II) = 35.5 ± 0.68% [106]

Collagen/gelatin Sponge samples of the
species Thymosea sp.

High-pressure carbon
dioxide-acidified water nearly 50% [101]

Collagen type I and V Tiger puffer
Takifugu rubripes

0.5 M AcOH and 1:20–1:50
(w/w) porcine pepsin / [107]

Collagen type I and V Trash fish, leather
jacket (Odonus niger)

0.5 mol/L AcOH and 0.1%
(w/v) pepsin Y = 64–71% [108]

Collagen type II Cartilages of skate
and sturgeon

0.5 mol/L AcOH
containing 0.1%

(w/v) pepsin
/ [109]

Collagen type III Jellyfish
(Acromitus hardenbergi)

0.5 M AcOH (1:100 w/v),
10% (w/v) pepsin and

15 min sonication

Y (jellyfish bell) = 37.08%
Y (oral arms) = 40.20% [110]

The alkali extraction method uses alkaline substances (strong alkali or strong alkali
salt) to hydrolyze the peptide bond in the material to obtain collagen. The commonly used
alkalis are lime, sodium hydroxide, Ca(OH)2, and sodium carbonate, etc. This method is
simple in operation and fast in extraction, but the relative molecular mass of the product
is low. Moreover, collagen is unstable under alkaline conditions and is prone to excessive
hydrolysis, which destroys the triple helix structure and even produces D-type amino acids
with carcinogenic, teratogenic, and mutagenic effects [106]. Hot-water extraction is used to
extract collagen by direct extraction and reflux with hot water after pretreatment of raw
materials. When the water temperature is too high, the triple helix structure of collagen will
be destroyed, resulting in denaturation, and the resulting product has no obvious network
structure; when the temperature is too low, the extraction rate is slow and cannot even
extract any collagen [111].

Enzymatic extraction is one of the relatively rational methods for extracting medical
collagen. The enzymatic method has better selectivity, less damage to collagen, and mild
reaction conditions required for enzymatic hydrolysis [112]. After enzymatic extraction
of collagen, most of the terminal peptides have been removed, which greatly reduces
its immunogenicity and is conducive to subsequent applications [113]. The principle of
enzymatic extraction is to selectively remove the covalent bond between the end peptides
of collagen molecules by proteases to promote the dissolution of collagen. The commonly
used enzymes include pepsin, trypsin, and papain, etc. [114]. These enzymes can hydrolyze
non-collagen proteins in tissues, which is convenient for subsequent salt purification and
dialysis to remove these proteins. It greatly improves the purity and the extraction efficiency
of collagen. In general, the factors affecting the extraction effect are not only related to the
source of collagen but also related to the type of enzyme, the solid–liquid ratio, the enzyme
amount, and the extraction time. In the actual extraction of collagen, to improve efficiency
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and yield and reduce costs, we can also combine a variety of methods, such as the acid-
enzyme extraction method, which can significantly improve the yield of collagen [112,115].
This is because the diluted acid solution can effectively act on the hydrogen bond between
collagen molecules so that the expansion of collagen fibers is conducive to the efficiency of
enzymatic extraction. In addition, there is the enzyme-hydrothermal treatment method
and the enzyme-alkali compound method [106], and these will also be combined with
UAE [116], homogenization-assisted extraction (HAE) [117], extrusion [118], and other
processing methods [110].

The extracted collagen also needs to be purified to remove impurities in collagen as
much as possible, including partially modified collagen. Salting-out, dialysis, centrifuga-
tion, electrophoresis, chromatography, and ion-exchange chromatography were mainly
used for purification [102,119]. Different types of collagens are separated according to the
different solubility of collagen at different isoelectric points and different salt concentrations.
However, it is difficult for a single method to have a good separation and purification
effect, so many methods are often used in practical applications, such as the combination
of ultrafiltration membrane separation technology and chromatography technology to
achieve the effect of stepwise separation and purification [120].

3. Biomedical Applications
3.1. Anticancer Activity

At present, the treatment of tumor disease is mainly chemical therapy. Studies have
found that most chemotherapeutic drugs can induce tumor cell apoptosis or improve
body immunity, and at the same time, they also have destructive effects on normal body
cells, which are harmful to a certain extent and sometimes life-threatening [121]. In recent
years, with the continuous research on marine biomaterials, it has been found that many
materials not only have significant antitumor activity but also have relatively small toxic
side effects. Due to the special habitat, culture conditions, and separation methods of
marine-derived organisms, a large number of bioactive metabolites with therapeutic activity
and very unique structure can also be produced [1]. Kaori haneji et al. extracted a sulfated
polysaccharide fucoidan from brown algae Cladosiphon okamuranus Tokida and found that it
induced tumor cell apoptosis in two different leukemia cell lines [122]. Cunzhi Lin et al.
found that the holothurian GAG extracted from the body wall of sea cucumber can promote
the apoptosis of lung adenocarcinoma A549 cells and inhibit the proliferation of A549
cells [123]. Further studies showed that GAG could promote cell cycle arrest in G1 and G2
phases and improve the chemotherapeutic effect of cisplatin on A549 cells [123].

It is reported that chitin, chitosan, and their derivatives have the effects of adjuvant
immunity, inhibition of cancer cells, and tumor growth. F.A. Taher et al. prepared chitosan
from chitin extracted from raw red swamp crayfish Procambarus clarkii exoskeleton [124].
The results showed that the synthesized chitosan (higher DA) and its nanoparticles ex-
hibited higher antitumor activity on human breast cancer SK-BR-3 and MDA-MB-231 cell
lines than chitosan directly extracted from different parts [124]. The DA and particle size
of chitosan are the key factors that inhibit the growth of cancer cells, and its mechanism
can inhibit the proliferation of cancer cells by reducing the number of cells in the S phase
and inhibiting DNA synthesis. There are also some insufficient studies on the anticancer
mechanism of chitosan. Lifeng Q et al. proved that chitosan nanoparticles could inhibit the
proliferation of human liver cancer BEL7402 cells, which was achieved by neutralizing its
surface charge, penetrating the cell membrane, reducing mitochondrial membrane poten-
tial, and inducing lipid peroxidation in vitro [125]. Laure G. et al. showed that chitosan
could directly kill cancer cells by initiating the apoptosis mechanism and improving the
proliferation of T-lymphocytes [126]. By regulating some special apoptotic proteases such
as Caspase-3/caspase-9, chitosan induced an up-regulation of mitochondrial pro-apoptotic
protein Bax and a down-regulation of anti-apoptotic proteins, such as Bcl-2 and Bcl-XL, to
reduce the adhesion between cancer cells [126]. Although these studies have shown that
marine biomaterials have good therapeutic effects in mouse tumor models, this does not
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mean that the same therapeutic effect can be achieved in human tumors. Therefore, it is nec-
essary to establish a model more similar to human tumors for research. In addition, whether
the preparation process of biomaterials is simple and easy also needs further exploration.

Laminarin possesses a wide range of biological activities, including antitumor, antioxi-
dant, anti-inflammatory, and other biofunctional activities [70,74]. Lin Tian et al. evaluated
the antitumor roles of laminarin from seaweed (Laminaria japonica) [127]. The results
showed that laminarin significantly inhibited the proliferation and promoted the apoptosis
of BEL-7404 and HepG2 cells in vitro, and it also significantly inhibited the growth of
the tumor in Hepa 1–6 tumor-bearing mice [127]. The regulatory mechanism of Lami-
naria in tumors is to increase the expression of senescence marker protein-30 (SMP-30) in
BEL-7404 and HepG2 cells. Moreover, laminarin possesses the potential as adjuvant for
cancer immunotherapy. Song et al. evaluated the effects of laminarin on the maturation
of dendritic cells and on the in vivo activation of anticancer immunity [128]. The results
indicated laminarin enhanced ovalbumin antigen presentation in spleen dendritic cells and
promoted the proliferation of OT-I and OT-II T cells [128]. It also induced the maturation
of dendritic cells in tumor-draining lymph nodes and protected interferon-γ and tumor
necrosis factor-α and proliferation of OT-I and OT-II T cells in tumors [128]. Fucoidan has
significant antiproliferative effects on a variety of tumor cells. Many studies have indicated
that fucoidan binds to a variety of receptors on the surface of the cell membrane and causes
apoptosis of tumor cells by activating the endogenous (mitochondrial and endoplasmic
reticulum pathway) and exogenous (death receptor pathway) signaling pathways [129,130].
Moreover, Atashrazm et al. also found that fucoidan could enhance the ability of natural
killer (NK) cells and T cells to kill tumors via activating the immune system and promoting
the production of interferon gamma [131]. However, the therapeutic application of these
sulfated polymers is still in the experimental stage, and their effectiveness and real efficacy
remain to be observed.

3.2. Antiviral Activity

In recent years, various viral diseases, such as SARS and avian influenza, have been
emerging, which pose a great threat to human health. Traditional antiviral drugs of-
ten have side effects or are prone to drug resistance and other shortcomings. It is ur-
gent to develop new antiviral drugs with small side effects and good antiviral activity.
Sulfated polysaccharides extracted from marine organisms, such as carrageenan and ulvan,
have received extensive attention. The antiviral activities of these bioactive substances need
to be optimized by high sulfation and low molecular weight.

Some studies have summarized that carrageenan and ulvan are selective inhibitors
of several viruses, including herpes simplex virus (HSV), human papillomavirus (HPV),
and varicella-zoster virus (VZV), etc. [66,132]. The first step of virus invasion into cells
is to bind to the cell surface through electrostatic interaction and change from unstable,
reversible binding to stable irreversible adsorption to realize the subsequent invasion
process. These compounds could interfere electrostatically with the positively charged
region of viral glycoprotein and the negatively charged HS chains of the cell receptor
(Figure 6) [133]. Nayara et al. found SU1F1, a modified polysaccharide from ulvan, showed
significant anti-HSV-1 activity with the highest selectivity index [133]. Romain et al. proved
that carrageenan with high sulfate content and low molecular weight showed greater
anti-HSV-1 activity [54].
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Many authors also proposed to improve the antiviral effect of these marine bioac-
tive substances by combining them with other drugs, including prodrug oseltamivir and
zanamivir. M. Morokutti et al. found that the combination of kappa and iota-carrageenan
with zanamivir in the treatment of H7N7 infected C57Bl/6 mice revealed synergistically el-
evated survival of mice in comparison to both single therapies [134]. Sahar et al. evaluated
the antiviral selectivity of griffithsin and carrageenan against SARS-CoV-1 and SARS-CoV-2
using a cytotoxicity assay and a cell-based pseudoviral model [135]. This synergistic in vitro
activity of griffithsin and carrageenan suggests that it might be useful in preventing or
treating infections caused by SARS-CoV-1 or SARS-CoV-2 (half-maximal effective concen-
tration between 3.2 and 7.5 µg/mL) [135]. In addition, many studies have shown that these
sulfated polysaccharides can be used to treat and prevent coronavirus 2019 [57,136,137].
However, there is a lack of data on drug–drug and drug–disease interactions, and further
studies are needed to verify the universality of these therapeutic results. The research
on the antiviral mechanism of sulfated polysaccharides is still not in-depth or perfect.
These studies will further promote their application in the development of antiviral drugs
so as to discover low-toxic and efficient antiviral marine drugs.

3.3. Drug Delivery

Marine-derived materials play an important role in drug delivery applications and
have been widely used as carriers for antitumor drugs, genes, and proteins [138]. At present,
the bioavailability of drugs is low in the process of using drugs to treat diseases because
of their inability to be effectively absorbed, their inability of effectively reaching the des-
ignated action site, and excessive metabolism in the body [139]. Moreover, multiple
administrations will also increase the burden on patients, resulting in poor patient compli-
ance. Therefore, finding appropriate drug carriers can promote drug absorption, prevent
premature drug inactivation, delay drug release, and enhance drug targeting and bioavail-
ability. Most marine polysaccharides can be modified to allow processing into various
shapes and sizes, and may exhibit response dependence on external stimuli, such as pH
and temperature [138]. Due to these characteristics, these biomaterials are used to construct
drug delivery, including hydrogels, capsules, particles and tablets (Figure 7).
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Peptide protein drugs are easily degraded by enzymes in vivo, with poor permeability
and stability. Carrier encapsulation can protect proteins and promote the contact between
drugs and biofilms well, thereby improving the bioavailability of drugs. Martina Nicklas
et al. developed an aqueous gastro-resistant coating dispersion on the base of freeze-dried
sponge collagen 15% (w/w) as the film-forming agent [140]. The results showed that
tablets coated with sponge collagen resisted 0.1 M hydrochloric acid for more than 2 h
and disintegrated within 10 min in phosphate buffer solution (pH 6.8) [140]. The coated
tablets have good mechanical properties and can be stored for at least 6 months without
loss of enteric properties. Huang YC et al. prepared pH-sensitive nanoparticles by an
ionic gel method using chitosan and alginate as raw materials [141]. They used curcumin
as a model drug to test the encapsulation and release and found that the encapsulation
efficiency of curcumin in nanoparticles could reach 90%. In vitro studies showed that the
loaded curcumin was prevented from releasing at a pH of 1.2 but was significantly released
at a pH of 7.0 [141]. However, these studies lack safety assessments in complex in vivo
environments, and the efficiency of the carrier delivery of drugs to specific sites needs
further investigation. MAITY et al. prepared chitosan/alginate nanoparticles that exhibited
significant naringenin entrapment of >90% and pH-responsive slow and sustained release
of the flavonoid [142]. In vivo studies revealed a significant hypoglycemic effect after oral
delivery of the nanoparticles to streptozotocin-induced diabetic rats and prevented iron-
mediated oxidative stress induced by saccharification [142]. Fucoidan has been reported to
target P-selectin expressed on metastatic cancer cells. Lu et al. developed a multi-stimuli-
responsive nanoparticle (NPs) self-assembled via fucoidan and protamine [143]. The NPs
was stable at a pH of 7.4, but enzymatic digestion and acidic intracellular microenvironment
(pH 4.5–5.5) in cancer cells triggered the release of an anticancer drug (doxorubicin) from
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the nanoparticles [143]. The NPs with P-selectin mediated endocytosis, charge conversion,
and stimuli-tunable release properties showed an improved inhibitory effect against tumor
cells [143]. The pH-dependent release profile makes intravenous injection the best route for
administration of these nanoparticles. To further improve the tumor-targeting function of a
PH-sensitive drug carrier, targeting ligands can be modified simultaneously on the carrier to
achieve tumor targeting and controllable delivery of drugs. Moreover, the stability of drug
carriers, degradation behavior in vivo, and interaction with cells still need further study.

The transport of drugs into cells is one of the key steps for drug efficacy, and some
characteristics of marine biomaterials can help solve these problems. For example, HA can
specifically target CD44 receptors overexpressed in many tumor cells [144]. The chitosan
ligand interacts with the receptors on the membrane surface to open the tight connection be-
tween cells so that the target drug can pass through the membrane cells [145]. Wang T. et al.
designed a nano-drug delivery system in which HA-coated chitosan NPs promoted the
drug delivery of 5—fluorouracil (5—Fu) into tumor cells that highly expressed CD44 and
found that HA-chitosan NPs could effectively promote the enrichment of 5—Fu in A549
tumor cells with high expression of CD44 [146]. In vitro experiments showed that HA-
chitosan NPs selectively bound to CD44 receptors and accelerated the internalization of
NPs into cells [146]. The nano-drug delivery system can improve the uptake of drugs
by tumor cells through targeted administration, thereby improving the antitumor effi-
ciency of drugs. Jang B. et al. synthesized fucoidan-coated CuS nanoparticles via using
the layer-by-layer technique and alternating poly-cationic and anionic substances [147].
Obtained nanoparticles not only improved the intracellular transport of fucoidan, which
possesses the ability to induce apoptosis, but also provided favorable photothermal fea-
tures [147]. These nanocarriers exhibit excellent drug delivery efficiency and therapeutic
effect, but they lack standardized preparation methods and clinical evaluation experience.
In future research, multiple responsive, intelligent carriers with less toxicity and better
biocompatibility should be optimized or searched.

3.4. Tissue Engineering and Regenerative Medicine

Tissue engineering is one of the most important fields of biomedicine, which assembles
biological materials, cells, and bioactive factors to construct transplants for tissue replace-
ment and repair [148]. This technology helps to restore, maintain or improve the function of
damaged or lost tissues or organs due to trauma or disease. Marine biomaterials have been
widely used in biomedical tissue engineering and are being continuously excavated due
to their low immunogenicity, good biocompatibility, promoting cell migration, inducing
the interaction of the cell matrix and tissue regeneration, and forming multifunctional
scaffolds with additional mechanical strength and stability through self-aggregation and
cross-linking. Among them, tissue engineering scaffolds are a hot topic in current research
(Figure 8). Bioscaffolds are not only the basic framework for cell adhesion but also can be
used as a site for cell proliferation and differentiation. In recent years, with the emergence
of some new technologies and strategies, biological scaffolds have played an important
role in the construction of bionic tissues and organs. For example, 3D bioprinting can make
the microstructure of scaffolds more advanced and accurate in anatomical features, which
helps to more accurately co-deposit cells and biomaterials [149]. The application of marine
materials in biomedical tissue engineering is mainly introduced below (Table 2).
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Table 2. Biomaterials from marine organisms applied in tissue engineering.

Materials
Marine

Biomaterial
Sources

Testing Cell
Source or

Active
Ingredient

Forming
Method Application Advantages (A) and

Disadvantages (D) Ref.

Alginate/gelation/ECM Brown algae
Human
HepaRG
liver cells

Extrusion
3D printing

Liver tissue
engineering

A: Improved cell
viability and hepatic

metabolic activity; high
precision and stability

of the printed
constructs;

D: Prevented cell–cell
connection and
influenced the

measured metabolic
activity of hepatocytes

[150]

Collagen jellyfish
Rhopilema esculentum

Human and rat
chondrocytes Freeze-drying Cartilage tissue

engineering

A: Safe, no cytotoxic
effects, biocompatible,

and a continuous
biodegradability rate
D: Persisting chronic

inflammatory reactions
within the vicinity

of implants

[151]

Carrageenan/PVA Red algae Mesenchymal
stem cells Freeze-drying Cartilage tissue

engineering

A: Cell viability and the
increase in proliferation;
Imitated the structural

features of
natural cartilage

[152]

Alginate/gelatin Brown algae 10T1/2 and
HAE cells

Enzyme-
catalyzed

cross-linking

Fabrication of cell
sheets and

spherical tissues

A: Shorter time for
enclosed cell growth;

enhanced cell adhesion;
maintaining on-demand

degradability
D: Reduced the
degradability by

alginate lyase treatment

[153]

CS/CHS/PDLLA Shell NGF

Layer-by-layer
and Electro-

Static-assembly
technique

Neural tissue
engineering

A: Good mechanical
properties and

degradation properties;
good biocompatibility

with Schwann cells

[154]

Alginate/gelation Brown algae hMSCs
micro-

extrusion
3D printing

Bone tissue
engineering

A: Provided uniform
macropores and

different compressive
moduli

D: Cell viability
decreased with an

increase in compressive
modulus of
the scaffolds

[155]

CHS/hydroxyapatite Shell MC3T3-E1 Extrusion
3D printing

Bone tissue
engineering

A: Good mechanical
support after printing
and provided highly
active cell-platforms
D: Low mechanical
strength and poor

mechanical stabilities

[156]

SF/CS/HA / L929 Freeze-drying Dermal tissue
engineering

A: Contributed to blood
capillary network

formation; stimulated
repair cells to secrete

and enrich
growth factors

[157]
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Table 2. Cont.

Materials
Marine

Biomaterial
Sources

Testing Cell
Source or

Active
Ingredient

Forming
Method Application Advantages (A) and

Disadvantages (D) Ref.

Collagen/CHS Blue shark
(Prionace glauca)

6T-CEM and
hFOB12 Freeze-drying Bone tissue

engineering

A: Compact, regular
pore shapes; good

biocompatibility and
osteogenesis properties

D: Fast degradation
speed, reduced water
binding capacity and

shrinkage factor

[158]

Chitin I. basta sponge
skeletons

hBMSCs and
human

dermal MSCs

Decellularization
and

demineralization

Tissue
engineering

A: Simplicity and ease
of the isolation;

interconnected porosity;
excellent

biocompatibility;
D: Weakened cell

attachment and viability
after thawing

[159]

CHS/collagen Shell/salmon skins MSCs Freeze-drying
Bone and

cartilage tissue
engineering

A: Enhanced the
mechanical properties;

enhances both MSC
osteogenesis and
chondrogenesis.

D: Lower mechanical
properties and

decreased mean
pore size

[160]

Collagen Shark Skin Chondrocyte
cells (ATDC5)

Freeze-drying,
Supercritical

fluids

Cartilage tissue
engineering

A: Highly porous and
interconnected; Allows

the cell adhesion,
growth, and
proliferation

D: Low mechanical
strength and fast

degradation speed

[161]

Alginate/gelation Brown algae
L929 and
smooth

muscle cells
3D printing Vessel tissue

engineering

A: Structures with
multilevel fluidic

channels; sufficient
mechanical strength;

exhibits
biocompatibility

D: Lower
mechanical strength

[162]

Collagen/PLLA Fish Intestinal
organoids Solvent casting Intestine tissue

engineering

A: Beneficial in trapping
the seeded cells,

enhanced cell viability
and growth,

biofunctionality
D: Weak mechanical
nature and slower
degradation speed

[163]

PCL/collagen Fish-Scale
corneal

endothelial
cells

Cross-linked Ocular tissue
engineering

A: Suitable spherical
curvature, transparent

and biocompatible
[164]

Alginate Brown algae ZnO NPs Ionic
cross-linked

Dermal tissue
engineering

A: Durable antibacterial;
allows accessible

mobility of molecular
exchange required for

improving chronic
wound healing

D: Slightly influenced
cell viability

[165]



Mar. Drugs 2022, 20, 372 20 of 32

Table 2. Cont.

Materials
Marine

Biomaterial
Sources

Testing Cell
Source or

Active
Ingredient

Forming
Method Application Advantages (A) and

Disadvantages (D) Ref.

Alginate/Gelatin Brown algae
human dental
pulp stem cells

(hDPSCs)
3D printing Dental tissue

engineering

A: Suitable for the
growth of hDPSCs;

promoted cell
proliferation

and differentiation

[166]

collagen Salmon HUVEC Chemical
cross-linked

Vessel tissue
engineering

A: Biodegradability;
enhanced the
production of

inflammatory cytokines
in HUVECs

[167]

HS Mollusk
Nodipecten nodosus / Enzymatic

Treatments
Anticoagulant

drug

A: Inhibited thrombus
growth in

photochemically injured
arteries

D: Limited sources
and toxicity

[168]

Collagen/PLGA Tilapia skin / Self-assembly;
electrospinning

Tissue
engineering

A: Good
biocompatibility and

immunogenicity; good
hemostatic function;

guided bone
regeneration

D: Low mechanical
strength and induced
some immunogenicity

[169]
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3.4.1. Bone and Cartilage Tissue Engineering

Articular cartilage is a tissue that cannot be naturally regenerated due to its spe-
cial physiological structure without blood vessels and lymphatic vessels. The articular
chondrocytes around the injury site undertake the task of replacing necrotic cells and re-
constructing the secretory matrix. Therefore, simulating the fine structure and composition
of the natural extracellular matrix is one of the important principles of cartilage tissue
engineering scaffold design. Gabriela et al. fabricated highly interconnected porous 3D
scaffolds made of shark skin collagen and HA [170]. In vitro studies reveal that human
adipose stem cells adhere abundantly to the constructs, and the mRNA expression encoding
chondrogenic-related markers such as Coll II and Sox-9 that are markedly upregulated at an
early stage for both conditions, with and without exogenous stimulation (Figure 9A) [170].
This suggests the early chondrogenic differentiation of those cells. Li et al. designed a carti-
lage regeneration system consisting of chitosan hydrogel/3D-printed poly(ε-caprolactone)
(PCL), which also contains synovial MSCs (SMSCs) and recruiting tetrahedral framework
nucleic acid (TFNA) [171]. The 3D printed PCL scaffold provides basic mechanical support.
Chitosan binds to DNA through electrostatic action and collects free TFNA in vivo after
intra-articular injection. TFNA provides a good microenvironment for the proliferation
and cartilage differentiation of transported SMSCs, promotes cartilage regeneration and
greatly improves the repair of cartilage defects (Figure 9B,C) [171]. The design of the
composite structure effectively avoids the structural damage of cartilage scaffold under
actual load and also takes into account the diffusion ability of nutrients and bioactive
factors in hydrogels. However, the adverse effect of scaffold degradation on tissue healing
should also be taken into account due to the inconsistent degradation rates of PLA and
chitosan. Although bone tissue has extensive regeneration ability after trauma, large bone
defects cannot be recovered without intervention [172]. Various applications of marine
biomaterials for bone regeneration and bone defect repair have been deeply investigated in
recent years. Yash M.K. et al. designed a hybrid growth factor delivery system consisting of
an electrospun nanofiber mesh tube for guiding bone regeneration with peptide-modified
alginate hydrogel injected into the tube to sustain the release of growth factors [173]. By pro-
viding sustained and local release of rhBMP-2 and allowing strong cell infiltration, the
alginate/nanofiber mesh system provides an environment conducive to bone regeneration
and can bridge the 8 mm segmental defect in the rat femura [173]. Balu K.S. et al. produced
a biomimetic nanocomposite scaffold consisting of chitosan/sodium alginate (4:4) blended
with several concentrations of hydrothermally prepared titanium dioxide nanoparticles
using the solvent casting approach [174]. The composite scaffolds had appropriate physico-
chemical and mechanical properties and showed good antibacterial properties (Figure 9D)
and antiproliferative properties against the osteosarcoma MG-63 cell line [174]. Adérito JR
Amaral et al. designed a dynamically cross-linked hydrogel bio-ink for 3D bioprinting [175].
The bio-ink exhibited suitable rheological properties, improved mechanical properties, and
could provide appropriate microenvironments to maintain cell function. In vitro exper-
iments showed that MC3T3-E1 cells remained viable (more than 90%) after bioprinting
for at least 14 days and displayed uniform cell distribution, which indicated that the cells
could withstand the mechanical stress and pressure exerted on them during the printing
process [175].

A wide variety of marine biomaterials have been explored to produce tissue engi-
neering scaffolds able to regenerate the bone and cartilage [176]. It is worth emphasizing
that most studies only performed a short-term evaluation after material implantation [177].
Hence, the long-term biological performance of the marine biomaterial scaffolds needs to
be further determined to verify that these combinations are safe and effective materials.
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Figure 9. (A) Immunofluorescence detection of representative chondrogenic-related markers, SOX-
9 and ACAN under basal and chondrogenic conditions after 21 days of culture on the Coll and
Coll: Hya structures (Scale bar: 50 µm). (B) Representative microscopic observation of the repaired
tissues at 3 and 6 months postoperatively. Red circles indicate the defect area. (C) ICRS score for
macroscopic assessment. Data are presented as the mean ± SD (n = 8). (D) Antibacterial activity
of TiO2 nanoparticles and scaffolds. ((A) was reproduced from Ref. [170] with permission from
the publisher; (B,C) were reproduced from Ref. [171] with permission from the publisher; (D) was
reproduced from Ref. [174] with permission from the publisher).

3.4.2. Skin Tissue Engineering

Skin transplantation is still a traditional gold-standard treatment method for large
area skin injury caused by physical trauma or chemical burns, but the problems of insuf-
ficient supply, scar, pain, and infection risk make the transplantation complicated [178].
Marine biomaterials can play an important role in skin tissue repair. They have obvious
biological activities and can replace the damaged skin, provide temporary barrier functions
and avoid wound healing [179]. Pallabi Pal et al. extracted type I collagen from the scales
of mrigal fish (Cirrhinus cirrhosus) and freeze-dried it into porous sponges [180]. The ex-
pansion rate of sponges was about 410% and the degradation rate was 18 days. In vivo
experiments found that on the 15th day, even though the control wound had unhealed
the de-epidermized region, the collagen-treated group had completely healed all dermal
components, mature collagen matrix, and stratified epidermis [180]. However, these single
component biomaterials lack effective control in mechanical properties, water absorption
capacity and sensitivity of internal and external stimuli, so their application performance
contains certain limitations. HuanCao et al. prepared fish collagen/chitosan/CS scaf-
folds using the freeze-drying method and combined them with polylactic acid-co-glycolic
acid microspheres loaded with a basic fibroblast growth factor [181]. In vitro experiments
showed that the scaffold had good biocompatibility and could promote fibroblast prolif-
eration and skin tissue regeneration [181]. Current research has sufficiently proven that
marine-derived biological macromolecules such as collagen, alginate, chitin, chitosan, and
other molecules have significant abilities to enhance the healing process and reestablish skin
tissue [178]. Sellimi et al. investigated the topical application of a cream based on the brown
algae Cystoseira barbata laminaran [182]. It could improve the wound healing process in rats
by accelerating the collagen deposition and increasing fibroblast and vascular densities, as
well as protecting the cells against free radical oxidative damage [182]. Although these skin
repair biomaterials have certain wound repair ability, it is still difficult for most materials to
achieve the perfect regeneration of skin composition, structure, and function. In addition,
the skin repair process cannot be monitored in real-time, and thus, it is difficult to obtain
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feedback on abnormal conditions. Therefore, improving the timeliness of wound monitor-
ing and repair and realizing complex diagnoses as well as special treatment functions will
be important trends in the development of skin repair materials in the future.

3.4.3. Nerve Tissue Engineering

Peripheral nerve injury is caused by various reasons, such as sensory disorder, motor
disorder, and nutritional disorder in the area dominated by the nerve. When the dam-
aged nerve gap is too large to repair through the end-to-end connection of the damaged
nerve stumps, a nerve graft is needed to bridge the gap and guide the growth of nerve
fibers [183,184]. Autologous nerve transplantation is the gold-standard technique for re-
pairing peripheral nerve injury. However, due to the limitations of tissue availability, donor
site morbidity, secondary malformation, and potential differences in tissue structure and
size, synthetic nerve conduits seem to be a more appropriate choice. Marine biomaterials
have great application potential in nerve repair due to their better biocompatibility, cell
affinity, and non-cytotoxicity. Jiang et al. prepared a nerve graft consisting of microp-
orous chitin conduits and internal carboxymethyl-CHS fibers using the solution coating
method [185]. This nerve transplantation was applied to the sciatic nerve bridge on a
10 mm defect in SD rats and could effectively promote the recovery of damaged neurons,
which was similar to the effect of autologous transplantation [185]. Itai et al. prepared a
CHS/collagen hydrogel catheter consisting of two coaxial hydrogel layers of chitosan and
collagen through molding and mechanical anchoring [186]. The CHS layer mechanically
strengthened the catheter, while the collagen layer provided a scaffold for cells supporting
axon extension, and the conduit properly induced the axonal extension of the neuron cells
in the conduit direction using the cellular support from the cells in the conduit [186]. To help
patients achieve functional recovery as much as possible, marine biomaterials in scaffolds
are mainly functionalized to improve their binding specificity, with different ligands and
compounds such as growth factors and neurotrophic factors, or seeded with different
cells such as mesenchymal cells or neural stem cells [187]. In conclusion, these marine
biomaterials can effectively support nerve repair and regeneration, but the optimization
of nerve function recovery remains to be further studied. The reported literature focused
more on the nerve regeneration in nerve grafts and local effects of implanted biomaterials
and lacked systematic research on overall functional recovery. Therefore, more reasonable
animal models and optimal design were needed to support clinical treatment.

3.4.4. Other Biomedical Applications

The wide application of marine biomaterials also includes the treatment of osteoarthri-
tis, diabetes [188] and diabetic foot ulcers [189], anti-inflammatory materials [190], and
some applications in organ tissue engineering such as liver regeneration [191], intesti-
nal replacement [192,193], tendon regeneration [194], and myocardial regeneration [195],
etc. Kyojin Kang et al. fabricated alginate hydrogel and mouse-induced hepatocyte-like
cells (miHeps) dispersed in hydrogel and generated a 3D hepatic scaffold via 3D bioprint-
ing [191]. The results showed that the hepatic scaffold expressed albumin, and ASGR1
and HNF4a expression gradually increased for 28 days in vitro [191]. The cells in hepatic
scaffolds implanted in vivo grew more and exhibited higher albumin expression than
in vitro scaffolds [191]. It was demonstrated that the scaffolds facilitated hepatic cell prolif-
eration without the loss of hepatic function, and this could be promising for liver therapy.
Lina R. Nih et al. used HA hydrogel that is both hyaluronidase biodegradable and matrix
metalloproteinase (MMP) degradable as a scaffold to construct an artificial extracellular
matrix to promote brain repair after stroke, and the scaffolds were loaded with VEGF
loaded heparin nanoparticles (nH) [196]. The results showed that heparin granules could
counteract the inflammatory effect caused by VEGF and lead to the formation of a pre-repair
environment leading to the de novo formation of brain tissue [196]. This approach can
directly produce neurovascular structure in the infarct cavity and modulate inflammatory,
scar, and neural stem cell responses in the adjacent brain. Li, KY et al. seeded corneal en-
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dothelial cells (CEC) on fish scale collagen membrane (FSCM) and transplanted them [164].
After FSCM was implanted into the anterior chamber of rabbit cornea, it was found that
the corneal transparency and thickness were normal at all time points, and no edema or
turbidity was observed [164]. FSCM was suitable as a cell carrier for corneal transplantation.
In conclusion, in a wide range of biomedical fields, the superior characteristics of marine
materials need to be explored and utilized by the majority of scientific researchers to design
the performance required in the corresponding field to fill the field of tissue engineering.

4. Conclusions and Prospects

The use of marine materials has undergone a long process. Marine biological materials
have become a research hotspot in the field of materials science and biomedicine as they
might have novel characteristics and unique biochemical properties. This attention is also
attributed to the research and technological progress in material extraction and processing.
There have been detailed studies on the activities of marine biological materials such as
enhancing immunity, antitumor, lowering blood lipid, antioxidation, and anticoagula-
tion [197–199]. However, due to the lack of industrial-scale extraction and purification of
many of these compounds, there are few market-oriented products. Medical devices and
advanced therapy medicinal products need to undergo very demanding regulation, so
the realization of the clinical potential of marine materials will be a long and challenging
process [200]. It is exciting that with the development of science and technology and the
application of various new technologies, marine biological materials will be expected to
achieve industrialization, development of nutraceuticals [199], drugs [201], and medical
devices [202] and realize the high-value utilization of marine biology.

While promoting the development, commercialization, and application of marine
biomedical materials, their safety is also a concern. Marine biomedical materials mostly
contain active biological macromolecules with unknown immunogenicity, and their com-
position and molecular structure will also affect their applicability and safety [1]. Due to
strict biosafety requirements, the applications of these biomaterials in the biomedical field
are not easy. Hence, we should establish physical and chemical characterization methods
suitable for marine biomaterials and medical devices, according to the expected use of
biomaterials, the contact mode with the human body, and the contact time, etc. It is of great
significance to the development and use of marine materials.

Continuing research on the oceans has revealed a wide range of biomedical mate-
rials with excellent properties, and we should continue to optimize the exploration of
marine resources to ensure the sustainability of the identified biomedical material produc-
tion [203]. Fully considering the actual clinical needs and developing novel materials based
on the combination of biology and advanced methods, the research on marine biomedical
materials will better benefit humankind.
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Abbreviations

Hydrogen peroxide(H2O2); ethylenediamine tetraacetic acid (EDTA); degree of acetylation
(DA); molecular weight (MW); chitosan (CHS); β-D-mannuronic acid (M unit); α-L-guluouronic acid
(G unit); microwave assisted extraction (MAE); ultrasonic assisted extraction (UAE); pressurized
liquid extraction (PLE); enzyme extraction (EAE); glycosaminoglycan (GAG); deep eutectic solvents
(DES); ulvanobiuronic acid 3-sulfate (A3s); ulvanobiuronic acid 3-sulfate (B3s); carrageenan (CG);
hyaluronic acid (HA); chondroitin sulfate (CS); heparin/heparin sulfate (HS); dermatan sulfate (DS);
keratan sulfate (KS); D-glucuronic (GlcA); N-acety1-galactosamine (GalNAc); L-iduronic acid (IdoA);
D-glucosamine (GlcN); D-galactose (Gal); fraction V (FV); homogenization-assisted extraction (HAE);
silk fibroin (SF); 5—fluorouracil (5—Fu); poly(ε-caprolactone) (PCL); three dimensions (3D); nanopar-
ticles (NPs); mesenchymal stem cells (MSCs); extracellular matrix (ECM); synovial MSCs (SMSCs);
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senescence marker protein (SMP-30); recombinant human bone morphogenetic protein-2 (rhBMP-2);
nerve growth factor (NGF); vascular endothelial growth factor (VEGF); tetrahedral framework nucleic
acid (TFNA); matrix metalloproteinase (MMP); heparin nanoparticles (nH); corneal endothelial cells
(CEC); fish scale collagen membrane (FSCM).
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