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A B S T R A C: T We investigated receptive field properties of cat retinal ganglion 
cells with visual stimuli which were sinusoidal spatial gratings amplitude 
modulated in time by a sum of sinusoids. Neural responses were analyzed into 
the Fourier components at the input frequencies and the components at sum 
and difference frequencies. The first-order frequency response of X cells had a 
marked spatial phase and spatial frequency dependence which could be ex- 
plained in terms of linear interactions between center and surround mechanisms 
in the receptive field. The second-order frequency response of X cells was much 
smaller than the first-order frequency response at all spatial frequencies. The 
spatial phase and spatial frequency dependence of the first-order frequency 
response in Y cells in some ways resembled that of X cells. However, the Y first- 
order response declined to zero at a much lower spatial frequency than in X 
cells. Furthermore, the second-order frequency response was larger in Y cells; 
the second-order frequency components became the dominant part of the 
response for patterns of high spatial frequency. This implies that the receptive 
field center and surround mechanisms are physiologically quite different in Y 
cells from those in X cells, and that the Y cells also receive excitatory drive from 
an additional nonlinear receptive field mechanism. 

I N T R O D U C T I O N  

Until  recently the receptive fields of  ganglion cells were thought to be 
relatively simple and homogeneous in structure (Kuffler, 1953; Rodieck and 
Stone, 1965). But the discovery that there were at least two distinct types of  
retinal ganglion cells, X and Y, with radically different receptive field prop- 
erties has reopened this subject (Enroth-Cugell and Robson, 1966). Later 
research has begun to reveal a wealth of  fine detail about  the many physio- 
logical mechanisms which underlie retinal ganglion cell responses to visual 
stimuli (Hochstein and Shapley, 1976 a, b; Victor et al., 1977). This work has 
shown that the retinal network contains nonlinearities, but  that the nonlin- 
earities are embedded  in a complex spatial structure. To  develop insight into 
what  tasks the cat retina is performing we have undertaken nonlinear systems 
analysis of  retinal responses, using the sum-of-sinusoids method (cf. Victor et 
al., 1977; Victor and Knight, 1979). 

The  ult imate goal of  our work is a model of  the cat retina which is accurate, 

J. GEN. PHYSIOL. (~ The Rockefeller University Press �9 0022-1295/79/08/0275/24 $I.00 275 
Volume 74 August 1979 275-298 



2 7 6  T h E  JOURNAL OF GENERAL PHYSIOLOGY �9 VOLUME 74 �9 1 9 7 9  

concise, and heuristically useful in the sense that it models the retina in terms 
of a few well-defined neural mechanisms. Such a model should specify major 
qualitative features of  the retina as a sensory network. This in turn will 
illuminate the tasks the retina performs. Thus, we have tried to find answers 
to the following basic questions: 

(a) To what extent is the response of the ganglion cell similar to the 
response of a linear transducer? To what extent is its response nonlinear? 
(b) What  are the spatial characteristics of  the linear retinal transductions? 
Can these transductions be related to the classical notions of  receptive field 
center and surround mechanisms? 
(c) What  are the dynamic characteristics of the linear transductions? 
(d) Are the nonlinearities in the retina before or after spatial pooling? 
The  answers to these questions are given in this paper. A more detailed 

study of  the nonlinear retinal pathways will be presented in another  report. 

E X P E R I M E N T A L  S T R A T E G Y  

The responses of retinal ganglion cells are quite complicated. Standard 
techniques of stimulation with spots flashed for long or short periods are 
inadequate to dissect apart  the responses of separate mechanisms which 
overlap in space, and whose responses overlap in time. For instance, visual 
stimulation with a spot placed in the middle of the receptive field necessarily 
must excite the overlapping center and surround receptive field mechanisms. 
Furthermore,  the impulse response or step response of a ganglion cell often 
contains components from linear and also nonlinear transductions superim- 
posed in time. It is difficult to tease apart  these components. Therefore, we 
have used a set of  visual stimuli which allow us to separate linear and 
nonlinear components. The stimuli are stationary spatial sine gratings which 
are ampli tude-modulated in time by a sum of sinusoids. At this point we will 
provide a rationale for the use of this class of  stimuli in the analysis of  the 
retina. 

Sum of Sinusoids 

The temporal modulat ion signal we have used is a sum of six or eight 
sinusoids. The  frequencies were integer multiples of  common fundamental .  If  
one chooses the input frequencies properly, Fourier analysis of  neural responses 
over the period of the common fundamental  provides a clean separation of 
the responses at those frequencies present in the input from other response 
components. If  the retina were linear, these responses would constitute discrete 
samples of the transfer function of the retina. The reason that the transfer 
function is important  is that it contains within it the entire linear behavior of 
the system under  study. One  can obtain the impulse response of  a linear 
system by Fourier transformation of the transfer function. Other  methods 
would also suffice to obtain these system-descriptive functions, e.g., cross- 
correlation with a white noise input (Lee and Schetzen, 1965; Schellart and 
Spekreijse, 1972), or sequential presentation of single sinusoids. In a system 
with significant autonomous noise, such as the retina, the sum-of-sinusoids 
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technique is at least as efficient as these other methods in the measurement of 
the linear transfer function (Victor, 1979). 

However, we already know the retina is not a linear system. It is difficult 
but revealing to study the nonlinear behavior of  the retina. The theoretical 
approach we have followed, in spirit, originates with Wiener (1958). In essence, 
Wiener's idea is to approximate a given nonlinear system by a sum of systems, 
such that each partial sum accounts for nonlinear interactions up to a specific 
order of nonlinearity, and such that each system is orthogonal to all the rest 
(Wiener, 1958; Barrett, 1963; Marmarelis and Naka, 1973; Victor and Knight, 
1979). The  functions which describe the t ime dependence of the different 
systems which make up Wiener's orthogonal expansion are known as the 
Wiener kernels. (They are called kernels because they enter into the functional 
expansion as kernel functions in integrals.) Like the impulse response of a 
linear system, the Wiener kernels of  a nonlinear system are useful because 
they very strongly constrain acceptable theoretical models for the internal 
structure of  the system. The  Fourier transforms of  the Wiener kernels are 
useful for theoretical studies because theoretical expressions for simple l inear/  
nonl inear/ l inear  cascade models assume a simple algebraic form in the 
frequency domain (Victor et al., 1977; Spekreijse et al., 1977). 

The  sum-of-sinusoids method is useful because it allows one to estimate the 
first few Wiener kernels in the frequency domain with great precision (Victor 
et al., 1977; Victor and Knight, 1979). Many  of the inherent difficulties 
associated with the measurement  of  Wiener kernels by cross-correlation with 
white noise (Lee and Schetzen, 1965; Marmarelis and Naka, 1973) can be 
avoided with Fourier analysis of  the response to a sum of sinusoids. For 
example, the signal-to-noise consideration to which we alluded previously in 
reference to the first-order (linear) responses applies equally well to the 
nonlinear responses (Victor, 1979). Quanti tat ive questions such as those in 
which we are interested may  be answered by considering the relative strength 
of  response at the input frequencies compared to the responses at cross-talk 
frequencies (sum and difference frequencies). The measurement of  first- and 
second-order frequency kernels is also advantageous for the evaluation of 
theoretical modelsJ  One  major prerequisite for the use of  the sum ofsinusoids 
is that the nonlinear transductions under  study must be smooth in frequency 
space. We have verified that this condition is satisfied for retinal ganglion 
cells. 

SPATIAL GRATINGS The  use ofsinusoidal spatial gratings as visual stimuli 
is widespread in physiology and visual psychophysics (cf. Robson, 1975). The 
spatial parameters of a grating are spatial frequency and spatial phase, or 
position. By varying spatial frequency one can sift the retinal spatial mechanisms 
on the basis of spatial resolution (Shapley and Gordon, 1978). For example, 
only the neural mechanism with the smallest effective summing area will 

a There are many mathematical intricacies that must be dealt with in any discussion or 
application of nonlinear systems analysis. These are considered elsewhere by ourselves and 
others (for example, Bedrosian and Rice, 1971; Marmarelis, 1977; Palm and Poggio, 1977; 
Victor and Knight, 1979). 
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respond  to the  grat ings o f  the  highest  spatial  frequencies.  By vary ing  spatial 
phase one can test the proper t ies  o f  the co m b in a t i o n  o f  neura l  signals f rom 
different  locations in the  recept ive field. A sinusoidal spatial  phase  d ep en d en ce  
indicates addi t ive  combina t i o n  o f  neura l  signals wi th in  a single neura l  pool  
(Enro th-Cugel l  and  Robson ,  1966; Hochs te in  an d  Shapley ,  1976 a, b). 

M E T H O D S  

Physiological Preparation 
Recordings were made from the optic tract of anesthetized or decerebrate paralyzed 
adult cats, weighing 2.5-4.0 kg. Our methods of surgical preparation and single fiber 
recording in the optic tract have been described in detail (Hochstein and Shapley, 
1976 a). 

For recording, anesthesia was maintained with urethane (0.2 g a g  i.v. loading, 0.06 
g a g  per h i.v. for the next 8 h, and repeated after 24 h). Alternatively, in some cats 
a midcollicular decerebration was performed. Paralysis was accomplished with gal- 
lamine triethiodide (10 mg/kg per h i.v.) and diallylbis-(nortoxiferine) (0.35 mg/kg 
per h i.v.). Ventilation was adjusted so that end-expiratory COz was about 3.5%, as 
measured with a Beckman Medical gas analyzer, model LB2 (Beckman Instruments, 
Inc., Fullerton, Calif.). Every few hours, pure oxygen was administered for several 
minutes. Glucose was infused periodically for a total dosage of 2.5 g/24 h, i.v. EEG, 
EKG, blood pressure, core temperature, and end-expiratory COz were monitored 
during the experiment. 

Contact lenses with + 2D correction and a 3-mm artificial pupil were affixed to 
both eyes. Optic discs were mapped on a tangent screen with a hand-held halogen 
lamp ophthalmoscope (Welch Allyn Inc., Skaneateles Falls, N.Y.). If  necessary, optics 
were corrected with spectacle lenses to be in focus at 57 cm, the distance of the visual 
stimulus. 

Units were classified as X or Y by their response to contrast reversal of a just- 
resolvable luminance grating (see below; cf. Hochstein and Shapley, 1976 a). After 
classification, the unit was studied quantitatively as described below. 

Visual Stimuli 

The patterned visual stimuli were displayed on a cathode ray tube (CRT) (model 
1321A, Hewlett-Packard Co., Palo Alto, Calif.). The  total display area subtended a 
visual angle of 20 ~ • 20 ~ at a distance of 57 cm. The mean luminance was 10-20 cd/  
m ~ as measured with a Spectra brightness spot meter (Photo Research Div., Kollmor- 
gen Co., Burbank, Calif.). The control voltages for the x,y, and z inputs to the cathode 
ray tube were produced in the following manner. (For details on the electronic 
circuitry, see Shapley and Rossetto [1976]). The x axis input consisted of a sawtoGth 
wave at 200 Hz, the frame rate of the display. The y axis input was a triangle wave, 
at 90 kHz. Thus, there were 900 raster lines in the display, 450 from each phase of the 
triangle wave. The waveform fed to the z (intensity) input was synchronized to the x 
input. Modulation of the z input led to patterns which were constant along vertical 
raster lines, but which varied along the horizontal axis. 

In these experiments, the pattern wave form was multiplied in an analog multiplier 
by a temporal modulation signal that was slow in comparison to the frame rate. The 
resulting spatio-temporal product was then fed to the z input of the display. When 
the temporal modulation signal was zero, the display produced diffuse light at the 
mean luminance. When the temporal modulation signal changed sign, the contrast of 
the display reversed. 
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THE MODULATION SIGNAL The temporal modulation signal was produced by 
a PDP 11/20 computer (Digital Equipment Corp., Marlboro, Mass). The computer 
also recorded the times of occurrence of the nerve impulses. In these experiments, the 
temporal signal consisted of a superposition of six or eight sinusoids. Each sinusoid 
could be adjusted individually in frequency, amplitude, and relative phase. In the 
experiments described here, all sinusoids were equal in amplitude for any given 
stimulus presentation. The contrast per sinusoid varied from 0.0125 to 0.10. Thus, 
with eight sinusoids in the input signal, each at the highest contrast level, the pattern 
reached a contrast of 0.80 when all sinusoids reinforced. However, the root-mean- 
squared (rms) contrast for this signal was only 0.10.,r = 0.20. 

The first-order responses corresponded to Fourier components in the output at one 
of the Qinput  frequencies,f1,. . .  , fQ.  The formal definition of the first-order frequency 
kernel is: 

K s ( F )  -- 2 < r(t)e -2"/m >, 

where r( t)  is the impulse train of the neuron, F is the temporal frequency and < > 
denotes averaging over a period of the common fundamental of the Qinput frequencies 
./'1, . . .  , f o  and over the relative phases of the input sinusoids. The nonlinear part of the 
response corresponded to Fourier components at sums and differences of the input 
frequencies. There are Q2 second-order frequencies, consisting of three types. There 
are �89 sum frequencies J~ + f l ,  J~ 4- j~,J~ 4- .~, . . .  , f o  + fo-1. There are Q 
second-harmonic frequencies 2j], 2fi, . . . ,  2fq. Finally, there are ~ ( Q - 1 )  difference 
frequencies: ./'2 - f l ,  fa - fa, fa - f z ,  . . . ,  f q  - fo- -v  Thus, the second-order frequency 
kernel is defined as: 

K2(Fx, F2) ffi 2 < r(t)e-Z"~FIte -2~tig~t >, F1 ~ F2; 

Kz(F,  F )  -- 4 < r ( t )e  z'u't2et~ >; 

where < > denotes averaging over time and over relative phases of the input sinusoids. 
The input frequencies were chosen so that the Q fundamental frequencies and the 

Q2 second-order frequencies were all different. The  frequency sets we used, each of 
which satisfied this condition, are listed in Table I. In all cases, the frequencies are 
approximately equally spaced on a logarithmic coordinate axis and include the range 
1-15 Hz. Unless otherwise stated, all data shown were obtained using set 5A of Table 
I. For mathematical background on the use of a superposition of sinusoids to analyze 
nonlinear systems, see Victor and Knight (1979). 

Data were collected in episodes of 35-70 s, or slightly more than one repeat period. 
For each spatial pattern, the temporal modulation signal was presented routinely at 
four contrasts: 0.0125, 0.025, 0.05, and 0.10 per sinusoid. Several seconds elapsed 
between the onset of each new contrast level and the beginning of data collection. 
Each contrast level was presented several times, and runs with different contrasts were 
interleaved. 

PHASE AVERAGING W e  varied the relative phases of the input sinusoids on 
successive repeats of each contrast level. This was done to remove fourth- (and perhaps 
higher) order even interactions from the measured second-order frequency kernel. An 
efficient algorithm for varying the relative phases to remove these higher-order 
interactions exists for the frequency sets that are related to powers of two: sets 5A, 5B, 
6, and 7 of Table I. In eight repeats of the same contrast level, the relative phases of 
the component sinusoids were presented in the eight combinations indicated by the 
8 • 8 Hadamard  matrix (Beauchamp, 1975) given in Table II. An entry of 4- 1 in 
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row i, c o l u m n j  indicates that thej th  sinusoid was presented in the ith episode so that 
it was rising through zero at time zero, and an entry o f -  I indicates that it wasfaUing 
through zero at time zero. 

T A B L E  I 

SUMS OF SINUSOIDS USED IN THESE EXPERIMENTS 

Set 

Freq~qmc,/ 
Frequencies (as multiples of the funda- Repeat 

Frequencies Formula mental) period Low 

ranHe Geemetrk mean 
ratio of me.m-  

High ire frequencla 

1 
2A 
2B 
3 
4 
5A 
5B 
6 
7 

n s Hz 

6 Empirical 41,71,161,351,801,1401 65,536 0.626 21.38 
6 Empirical 21,36,81,176,401,701 32.768 0.641 21.39 
6 Empirical 21,36,81,176,401,701 21.845 0.961 32.10 
6 Empirical 29,50,113,246,561,981 65.536 0.443 14.97 
8 Empirical 55,79,131,195,295,463,691, 1055 65.536 0.839 16.10 
8 4.2J-1 7,15,31,63,127,255,511,1023 32.768 0.214 31.22 
8 4.2~-I 7,15,31,63,127,255,511,1023 21.845 0,321 46.8"2 
8 8 . 2 / ' - 1  15,31,63,127,255,511,1023,2047 65.536 0.229 31.23 
8 12 -2~ -5  19,43,91,187,379,763, 1531 ,~67 65.536 0.290 46.80 

2.02 
2.02 
2.0"l 
2,02 
1.53 
2.04 

2.04 
2.02 
2.07 

T A B L E  II 

HADAMARD MATRIX 

Frequency  n u m b e r  
Re la t ive  phase  in 
episode  n u m b e r  1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 1 
2 1 --1 1 - - I  1 1 --1 --1 

3 1 --1 1 1 --1 --1 --1 1 

4 1 1 1 --1 --1 --1 I - - I  

5 1 1 --1 --1 --1 1 --1 I 

6 1 --1 --1 1 --1 1 l --1 

7 1 --1 --1 --1 1 --1 1 1 

8 1 1 --1 1 1 --1 - - |  --1 

T h e  H a d a m a r d  matr ix  used in the  a lgor i thm for shif t ing the  relat ive phases o f  the 
s inusoids in the  sum o f  s inusoids to remove  higher-order  overlaps.  As entry o f  + 1 

m e a n s  zero phase  shift; an  entry  o f - I  indicates  a phase  shift o f  h a l f  a cycle.  

Data Analysis 
An off-line procedure on a PDP 11/45 computer calculated exact Fourier coefficients 
by Fourier transformation of  the impulse train. For this purpose, the impulse train 
was considered to be a time series of  delta functions. Data obtained using frequency 
sets 2A, 2B, 3, 5A, or 5B of  Table I were analyzed by a Fast Fourier Transform 
(Cooley and Tukey, 1965) on 8,192 -- 213 points. The other frequency sets required 
16,384 -- 214 points for an adequate sampling of  the second harmonic of  the highest 
input frequency. This exceeded the storage capacity of  the computer, so a slower 
algorithm was used to analyze the data obtained with frequency sets 1, 4, 6, and 7 of  
Table I. After adjustment for the variation in input phases, Fourier components  at 
corresponding output frequencies were averaged over runs identical in both contrast 
level and spatial pattern. 

CALCULATION OF KERNELS FROM RESPONSES The  extraction of  the first- and 
second-order responses from the impulse train is illustrated in Figs. 1-3. 
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In Fig. I A, a portion of  the Fourier transform of the input signal is illustrated. 
Since the input signal is a sum of  discrete sinusoids, its Fourier transform is zero 
except at frequencies corresponding to each of the component sinusoids, where the 
Fourier transform has sharp peaks. These peaks occur at large integer multiples of the 
repeat frequency of the stimulus (about 0.03 Hz in the present study). The determi- 
nistic component of the response of a transducer to this input signal must share the 
same repeat period as the stimulus. Thus, the Fourier components of the response 
must all occur at integer multiples of the repeat frequency of the input, as shown in 
Fig. 1 B. Dissection of the linear and nonlinear components of the response is made 

A 

F 
B 

L ,j, ,,I 
II I,i 
H , I  

" i! 
C " 

] l 

I i l  I 
t I ~  I 

F ' l l I 
D I 1 J 

t I 

L a l l  

fl ~ f3 

I f  I 
I I I 
I ! I 

HIIIIIIIIIIIHIIIIHHIIHIHIIIIIIIIIIIIIIHilHIHIIIIHIIII 
1 . . . . . .  6 4  

Fourier components 
in the input 

Possible Fourier 
components in 
the response 

, J,J 
I I  
h 
,1! 

I 
I t  

I '  
I 

I i ,J] 
I I ! i  
I I i I  
, i l l  

I I  
i I  

l I, 
I I 

Fourier components 
in the response 

First-order components 

Sum frequency components 

Difference frequency 
components 

FIGURE 1. Low-frequency portions of the Fourier transform of the sum-of- 
sinusoids signal and a hypothetical ganglion cell response. The Fourier transform 
of the input sum-of-sinusoids signal is shown in line A. Nonzero components 
occur only at integer multiples (J~ = 7,j~ = 15,J~ = 31,j~ == 63, etc.) of the 
repeat frequency. The Fourier components in a hypothetical response are shown 
in line B. The first-order components in the response, which occur at the input 
frequencyJi,J~,J~, . . . ,  are isolated in line C. The second-order components are 
isolated on line D, and consist of sum frequencies (upper trace: 2Ji, J~, + Ji, j ]  
+ Jl,J~ + J2, . . .  ) and difference frequencies (lower trace:j~ - f l , J ~  - j= , j~  - J i ,  

. . . ) .  

possible because the input frequencies themselves (Fig. 1 C), and their pair-wise 
additive combinations (Fig. 1 D) occur at separate output frequencies. 

The first-order frequency kernel K1 is composed of  the amplitudes and phases of 
the Fourier transform of the response at each of the first-order frequencies (input 
frequencies). These amplitudes [ Kl(j~)[ were displayed on a log-log plot, as shown in 
Fig. 2. Since the input frequencies themselves are approximately spaced by factors of 
two, their logarithms are spaced approximately evenly. The  curve connecting the 
discrete points of  data was generated by a standard cubic spline interpolation 
algorithm (Ahlberg et aI., 1967). This curve is an accurate estimate of  the transfer 
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function of the linear transducer that best approximates the given transducer under 
study. 

The second-order frequency kernel K2 was constructed in an analogous fashion. 
However, each of the second-order frequencies corresponds to a sum or a difference of 
a unique pair of the input frequencies. Thus, the second-order responses are best 
thought of as a two-dimensional array of responses, as shown in Fig. 3 A. Only the 
response amplitudes are represented in graphs like Fig. 3. The  coordinates ot a given 
response in this array are the two frequencies whose sum or difference is the output 
frequency of that response. For ease of interpretation and display, there is one array 
for responses at sum frequencies fi + j~, denoted K2(fi, fj), and another array for 

~ IO 

~ 3 
W 
a 

J 
D. 

f, fz fz~ f4 

= I :1 I' i,.,i I I.,i ( f ,  [ Fou.,.r m o. s /l '",n,he res oo  

I I I I I 
3 I0 30  I00  3 0 0  I 000  

FREQUENCY AS MULTIPLE OF REPEAT FREQUENCY 
(0.03 H~,) 

FIOURE 2. Construction of the first-order frequency kernel. The  amplitudes of 
the first-order components of the response (see Fig. 1) are plotted on log-log 
coordinates as a function of the input frequency. The eight data points are the 
experimentally determined values of the first-order frequency kernel. 

responses at difference frequencies fi -J) ,  denoted K2(j~, _j)).z As is evident by the 
construction, the values K2(JLJ)) and K2(J),J~) are identical. Furthermore, ]g=(~, - ~ )  
at Ks(J), -J~) have equal amplitudes but opposite phases. 

A smooth function of pairs of frequencies is interpolated onto this discrete array of 
data by means of a cubic spline (Fig. 3 A). The  resulting surface is plotted as a contour 
map, as shown in Fig. 3 B. This is the representation that we will use for the 
amplitudes of the second-order frequency kernel. The  diagonal lines of symmetry are 
consequences of the relations K2(J~,J)) = K2(J~,j~) and K2(~, - j~ )  = K2(-fj, j~). 

2 Combinatorial considerations dictate that the amplitudes of the responses at the pure second 
harmonics 2J; should be doubled, to obtain Kz(fi,fl). 
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For a purely linear system, there should be no second-order interactions--thus, the 
second-order frequency kernel should equal zero everywhere. We used this fact to test 
the linearity of our stimulus display with a photocell, and found no nonlinearities 
over the entire contrast range used. We also tested the analysis procedure with known 
analog nonlinearities and obtained the expected frequency kernels. 

R E S U L T S  

Ganglion cells of  the cat retina fall into separate classes distinguished mainly 
by their receptive field properties (Enroth-Cugell and Robson, 1966; Stone 
and Fukuda, 1974; Cleland and Levick, 1974; Hochstein and Shapley, 
1976 a). X cells are more "linear" and Y cells are more "nonlinear" (Enroth- 
Cugell and Robson, 1966; Hochstein and Shapley, 1976 a). Our  results on the 
first- and second-order kernels of  50 X cells (38 on-center, 12 off-center) and 
70 Y cells (51 on-center, 19 off-center) show that these two classes of  cells are 
quite distinct. We describe the results on X cells first, and then results on Y 
cells. 

Frequency kernels were usually measured at two spatial phases: peak and 
null. By the peak position we mean the spatial phase of the grating at which the 
modulated grating elicited the maximal modulated response. By the null 
position we mean the spatial phase of the grating at which there was negligible 
modulated response (cf. Enroth-Cugell and Robson, 1966; Hochstein and 
Shapley, 1976 a). The  experimenter located the null position by dialing an 
electronic position control of  a contrast reversal grating (with a single sinusoid 
as temporal modulat ion signal) and listening on an audio monitor for a null 
in the impulse modulation. The  peak position was always located exactly one 
quarter  of  a cycle of the grating, or 90 ~ in spatial phase, away from the null 
position. The  peak and null positions were separated by 90 ~ in spatial phase, 
one-quarter of  a cycle, as a consequence of the linearity of the mechanism 
which produced the response to the grating. A single linear mechanism will 
have a sinusoidal spatial phase dependence in response to a sine grating; 
therefore, peak and null positions must be one-quarter cycle apart  for such a 
single neural mechanism (cf. Hochstein and Shapley, 1976 a; Shapley and 
Gordon, 1978). Once the locations of the peak and null positions were 
established for a grating of a particular spatial frequency, first- and second- 
order kernels were measured with the sum of  sinusoids as t h e  temporal 
modulat ion signal. 

X Cells 
FIRST-ORDER FREQUENCY KERNELS The  first-order frequency kernels of  a 

representative cat X cell are displayed as ampli tude vs. frequency in Fig. 4 
and phase shift vs. frequency in Fig. 5. The  amplitudes of  the first-order 
kernels are shown for two spatial frequencies, 0.25 and 1.0 cycles/deg, and at 
two spatial phases, the peak position and the null position. 

First, we consider the spatial phase dependence of the first-order kernels. It 
is clear in the ampli tude data  in Fig. 4 that the entire first-order frequency 
kernel goes to zero at the null position. The phase data  for the null position 
are not shown in Fig. 5, for they were random. This result implies that there 
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exist spatial mechanisms within which there are purely additive interactions, 
and that the linearity does not depend on temporal frequency. Furthermore, 
the data  sets in Fig. 4 are from two experimental runs with different spatial 
frequencies, and both reveal a similar spatial phase dependence of  the first- 
order frequency kernel. 
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FIGURE 4. Amplitudes of the first-order frequency kernel as a function of 
spatial frequency and spatial phase in a representative X cell. Mean luminance 
in this experiment and in all the experiments illustrated was 20 cd/m ~. The 
input sum-of-sinusoids signal produced a contrast of 0.05 per sinusoid. Data 
were obtained with the spatial sine gratings of 1.0 cycle/deg (peak, ; null, 
. . . . .  ), and 0.25 cycle/deg (peak, ---; null, -.-.). Data at both null positions 
were not significantly different from zero. Unit 24/2. 
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FIGUgE 5. Phases of the first-order frequency kernel as a function of spatial 
frequency in a representative X cell. Data shown are the phases of the responses 
of Fig. 4, for gratings of 1.0 cycle/deg ( ~ )  and 0.25 cycle/deg (--) in the peak 
position. Unit 24/2. 
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Next we consider the spatial frequency dependence of the first-order fre- 
quency kernels of X cells. The spatial frequency dependence of the first-order 
frequency kernels of an X cell are illustrated in Figs. 4 and 5. At 1.0 cycles/ 
deg, the decline in amplitude at low temporal frequencies is less pronounced 
than at 0.25 cycles/deg. It is as if the retinal pathway leading to the ganglion 
cell had been changed from a bandpass temporal filter at low spatial frequen- 
cies to a low-pass temporal filter at higher spatial frequencies. The high 
temporal frequency limb of the frequency kernel seems unaffected by changes 
in spatial frequency. 

As a measure of the change in shape of the first-order frequency kernel with 
temporal frequency, we chose the ratio of the amplitudes of response at 15.6 
and 1.9 Hz, I K1 (15.6)/K1 (1.9)[. This number may be viewed as a measure of 
"transientness" since it is the ratio of a fast component and a slow component 
in the response. As can be seen in Fig. 6, the "transientness" ratio declines 
monotonically with increasing spatial frequencies. The individual spatial 
frequency dependencies of the K1 (1.9) component and the Kx (15.6) compo- 
nent are also graphed in Fig. 6. Clearly, the change in their ratio with spatial 
frequency results from the fact that Kx (15.6) shows a much shallower decline 
with decreasing spatial frequency than does Kx (1.9). The standard explana- 
tion for spatial tuning like that shown by Kt (1.9) is that it is a consequence 
of additive combination of the responses of the receptive field center and its 
antagonistic surround (Enroth-Cugell and Robson, 1966). The weaker spatial 
tuning of Kt (15.6) may be taken to indicate that center and surround are not 
mutually antagonistic for higher temporal frequencies of modulation. 

There is an important effect of contrast on the spatial frequency dependence 
of the first-order frequency responses. The results of Figs. 4-6 were obtained 
with a contrast of 0.05 per sinusoid (rms contrast of 0.10). However, when we 
determined the sensitivity of the same ganglion cell with a low response 
criterion, we obtained qualitatively different results. These results are dis- 
played in Fig. 7. The response criterion in both cases was an amplitude of 4 
impulses/s. The reciprocal of the contrast required to give this response was 
multiplied by the criterion to give a sensitivity in units of impulses per second 
divided by contrast. The contrasts required to give such small response 
amplitudes were low in comparison with 0.05, the contrast used for Figs. 4-6. 
The 15.6 Hz sensitivity had about the same spatial frequency dependence as 
the 0.9 Hz sensitivity. Thus, the change in the "transientness" ratio with 
spatial frequency, and the different spatial tuning shown by 1.9 and 15.6 Hz 
components (Fig. 6), seem to be a consequence of the proposed contrast gain 
control (Shapley and Victor, 1978) rather than a result of center-surround 
antagonism. However, the spatial tuning of sensitivity, shown in Fig. 7, is 
probably due to center-surround antagonism. Fig. 7 also shows a direct 
comparison of spatial frequency sensitivity with the amplitude of K~(1.9) vs. 
spatial frequency, determined at 0.1 rms contrast. The amplitude curve lies 
below the sensitivities at low spatial frequencies; this is the work of the contrast 
gain control. 

A further illustration of the effect of contrast on spatiotemporal tuning is 
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offered in Table  III. There  is listed the "transientness" ratio, [K1(15.6)[/ 
IK1(1.9)}, at several spatial frequencies and at two rms contrasts, 0.025 and 
0.10. The  general t rend is that  the "transientness" ratio increases with 
decreasing spatial frequency but  increases more  at higher  contrast than  at 
lower contrast. These  results imply that  the contrast  mechanism and  center- 
surround antagonism are the major  determinants  of  the temporal  tuning of 
these ganglion cells. 

t o o -  X CELL 

50 

I0 

g. 5 
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r " t  

,,J ,r, I =E 

l lO.O 

5.0 RATIO 
K1(15.6) 
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1.0 

D 1K=(15.6)1 
z~ IKl(i.9)l 
o IKI (15.6)/K=(I.9)1 

I I I I 
O.l 0.5 10 t.5 

SPATIAL FREQUENCY (cyctes/deg) 

FIGURE 6. A summary of the dependence of the first-order frequency kernel of 
an X cell on spatial frequency. Responses at a low temporal frequency (1.9 Hz, 
A) show a higher spatial frequency optimum than do responses at a high 
temporal frequency (15.6 Hz, N). Consequently, the "transientness" ratio (O), 
which is the ratio of these two responses, declines with increasing spatial 
frequency. Unit 24/2. 

SECOND-ORDER FREQUENCY KERNELS OF X CELLS When the spatial pattern 
is a grat ing of  modera te  to high spatial frequency, some X cells produce 
negligible second-order responses. In other  X cells the second-order responses 
are present bu t  weak. 

The  characteristic of  X cells is that  the second-order frequency kernel is 
weaker than  the first-order frequency kernel at all spatial frequencies. This  is 
i l lustrated in Fig. 8 where the average ampl i tude  of  the eight first-order 
frequency components  and  the average ampl i tude  of  the eight second-har- 
monic  components  from our  representative X cell are plot ted vs. spatial 
frequency. The  two curves have a similar spatial frequency dependence,  but  
the average first-order response is always bigger than  the average second-order 
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response. T h e  m a x i m u m  o f  the rat io  o f  average  second-order  response to 
average  f irst-order response was 0.2. These  results indicate  tha t  the  X cell acts 
p r imar i ly  as a l inear  spa t io t empora l  t ransducer ,  wi th  only  a relat ively small 
second-order  non l inear  c o m p o n e n t  in its response. 

I D 0 0  

5 0 0  

200 

~ I 0 0  

~ 4 0  r 

o 

i \ 
J 

_ ~ t  d ' f  \ 

I I I I I 
0,1 0.2 0.5 1.0 2.0 

SpatiQI frequency (cycles/deg) 

FIGURE 7. Sensitivity vs. spatial frequency for the responses at 1.9 Hz (A) and 
15.6 Hz (O). The criterion response was 4 impulses/s. The  sensitivity measure 
was the criterion response divided by the contrast required to reach criterion, 
which is a measure of the slope of the response vs. contrast curve at low contrast. 
Also shown for comparison is the dashed curve which is the value of IKI(I.9) [ vs. 
spatial frequency as measured at 0.05 contrast. The  curve was equated to the 
sensitivity at 1.0 cycle/deg. 

T A B L E  I I I  

IKx(15.6)l/lgl(1.9)l  ~ " T R A N S I E N T N E S S "  R A T I O  

Spa t ia l  f requency 
Cont ras t  

per  cycles/ deg 
Cell  s inusoid 0 O. 1 0.25 0.5 1.0 

: ~ / 2  0.0125 2.63 2.01 1.82 
(Y) 0.05 10.35 4.72 2.9 

29 /32  0.0125 2.0 0.53 - -  0.43 - -  
(Y) 0.05 5.97 1.32 - -  1.08 0.63 

24 /2  0.0125 - -  1.67 ! .43 1.05 0.94 
(X) 0.05 - -  4.12 2.87 1.74 1.05 

26 /2  0.0125 - -  - -  1.1 0.9 1.2 

(X) 0,05 - -  - -  1.7 1.4 1.3 

T h e  " t rans ien tness"  ra t io  a t  different  cont ras t  and  spa t ia l  frequencies. The  ra t io  
[KI(15.6)/KI(I.9)[ is t a b u l a t e d  as a funct ion of spa t ia l  f requency at  two different  
contrasts.  T h e  cont ras ts  were 0 .0125/s inusoid  or 0.025 rms,  and  0 .05/s inusoid  or 0.10 
rms. T h e  " t rans ien tness"  ra t io  is un i fo rmly  h igher  a t  h igher  contras t ,  hu t  the biggest  
effects are  a t  low to in t e rmed ia t e  spa t ia l  frequencies.  
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Y Cells 

There are many interesting similarities and differences between Y cells and X 
cells of the cat retina. One major difference is that it is impossible to find a 
null position for contrast reversal of a sine grating in Y cells (Enroth-Cugell 
and Robson, 1966; Hochstein and Shapley, 1976 a). Nevertheless, one can 
find a position at which the fundamental  component  of the Y cell's response 
to contrast reversal has a null, in analogy with X cells. This analogy between 
X and Y in the "linear" components of the response was explored by studying 
the frequency kernels of Y cells. The first-order kernels of Y cells resemble 

X CELL 
5o 

I0 

.E 

Ld 

-J I 
0. 

�9 RMS amplitude Ist order 
o RMS amplitude 2nd harmonic 

I I I ] ] 
O.I 0 ,25  0.5 1.0 

SPATIAL FREQUENCY (cycles/deg) 

FIGURE 8. A summary of the relative strengths of the first- and second-order 
frequency kernels of an X cell as a function of spatial frequency. The root-mean- 
squared amplitude I KI(F) [ is used as an index of the total first-order strength 
(0), and the root-mean-squared amplitude [ K2(F, F) [ is used as an index of the 
total second-order strength (O). At all spatial frequencies, the first-order strength 
exceeds the second-order strength by a factor of 5-10. Unit 24/2. 

those of X cells. For example in Fig. 9, the spatial phase dependence of the 
first-order kernel of a Y cell is similar to the first-order kernels of the X cell 
presented above. The amplitudes of all the frequencies have the same peak in 
spatial phase and the same null; indeed, the graph shows that the amplitude 
variation is approximately sinusoidal with spatial phase. Another aspect of 
this spatial phase dependence is that the shape of the ampli tude vs. input 
frequency curve does not change with spatial phase; all the amplitudes are 
multiplied by the same spatial phase-sensitive factor. Also, the temporal phase 
shifts of the first-order kernel are spatial phase invariant; at the null position, 
the temporal phase of the first-order responses jumps by exactly Ir radians. 
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This invariance with spatial phase is illustrated in Figs:. l0 and 11. In these 
figures, the amplitudes and phases of first-order frequency kernels from a Y 
cell at two spatial phases are shown. One  spatial phase was the peak position. 
The  other spatial phase was what we refer to as a "quasi-null". The  grating 
was near, but  not right at, the position at which first-order responses were 
nulled out; thus there were small first-order responses. Note that the ampli tude 
curves for 0.25 cycle/deg in Fig. 10 are parallel, and that  the phase curves in 
Fig. 11 superimpose. 

The  spatial frequency dependence of the first-order kernels of  Y cells is 
different from that  of  X cells. The  spatial resolution of the receptive field 
mechanisms which produce the first-order responses is lower in Y cells than in 
X cells, as seen in Fig. I0. First-order responses in Y cells are usually weak for 

4O 

so 

2o 

} io 

-~ -IO 

~ -20  

0 45 90 155 

SPATIAL PHASE (decj) 

FIGURE 9. The dependence of the first-order frequency kernel of a Y cell on 
the spatial phase of a 0.2 cycle/deg sine grating. The six-frequency set 2A of 
Table I was used, with each sinusoid producing a peak contrast of 0.05. This 
gave estimates of the tint-order frequency kernel at 0.64 Hz (O), 1.1 Hz (Q), 2.5 
Hz (ID), 5.4 Hz ( I ) ,  12.2 Hz (A), and 21.4 Hz (&). Responses varied sinusoidally 
with spatial phase and passed through a simultaneous null. The phases of the 
tint-order responses were independent of the spatial phase of the grating 
stimulus (except for a phase shift of r upon crossing the null position). Unit 
513. 

sine gratings finer than 0.5 cycle/deg in spatial frequency. However, at lower 
spatial frequencies the first-order responses of Y cells resemble those of X cells. 
For instance, compare Figs. 10 and 11 with Figs. 4 and 5. Furthermore,  the 
"transientness" ratio for Y cells, i.e. the ratio of  lKl(15.6)/Kl(I.9)[, has a 
spatial frequency dependence similar to that of  X cells, as shown in Fig. 12. 
Thus, if one chooses a spatial frequency near the Y cell resolution limit for 
first-order responses, the Y cells are not more "transient" than X cells, at that 
spatial frequency. Also, under  these same conditions, Y cells do not respond 
to higher temporal frequencies than X cells, nor do they have less phase lag 
at high temporal frequencies. However, if one uses gratings of  spatial frequency 
less than 0.5 cycle/deg, and also uses high contrast, then Y cell first-order 
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kernels are much more narrowly tuned than the corresponding X kernels, i.e. 
the Y cells become more "transient". 

An important feature of the spatial frequency dependence in Fig. 12 is the 
behavior of [K1(1.9)[ at low spatial frequency. This amplitude declines with 
decreasing spatial frequency below 0.2 cycle/deg. This evidence implies 

I 0 0 . 0 0  - 
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FIGURE 10. Amplitudes of the first-order frequency kernels as a function of  
spatial frequency and spatial phase in a representative Y cell. The  input sum of 
sinusoids produced a root-mean-square contrast of  0.1 (0.05 contrast per sinu- 
soid). The spatial frequencies of the gratings were 0.75 cycle/deg (- .- .)  and 0.25 
cycle/deg (peak - - . ;  quasi-null, �9 . . . .  ). Response amplitudes at 0.75 cycle/  
deg were not significantly different from zero at any spatial phase. Unit 28/2. 
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FIGURE 11. Phases of the first-order frequency kernel as a function of spatial 
phase in a representative Y cell�9 Data shown are the phases of the response of 
Fig. 9, for a grating of 0.25 cycle/deg (peak, ; quasi-null, �9 . . . . . .  ). Unit 
28/2. 
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spatially distinct antagonistic mechanisms: a receptive field center and sur- 
round. As in the case of  the X cell, the spatial frequency dependence of  the 
amplitude [Kl(1.9)I is affected by contrast. At low contrast, the amount  of  
at tenuation of I Kl(1.9)I at low spatial frequencies is about  half  as much as at 
0.05 contrast. 

S E C O N D - O R D E R  K E R N E L S  O F  Y C E L L S  The large second-order frequency 
responses of  Y cells also set them apart  from X cells. This is illustrated in Fig. 

Y CELL 

00 I 13- . . . . . .  ~. . /  

5O 

I0 ~ _~ "~ IO 

E K1(15.6) 

2 

<Z 

: iiiii?L, ,, , 

O, I 0 .5  I.O 

FULL FIELD SPATIAL FREQUENCY 
(cycles/deq) 

FIGURE 12. A summary of the dependence of the first-order frequency kernel 
of a Y cell on spatial frequency. Responses at a low temporal frequency (1.9 Hz, 
A), have an optimal spatial frequency of 0.2 cycle/deg. Responses at a high 
temporal frequency (15.6 Hz, F-I) decrease monotonically with increasing spatial 
frequency. Consequently, the "transientness" ratio (O), which is the ratio of 
these two response, declines with increasing spatial frequency. Unit 28/2. 

13 which shows the second-order frequency kernels of  a representative Y cell 
at two spatial frequencies, 0.75 and 0.2 cycle/deg. The  amplitudes of  the 
kernels are represented as contour maps, and above them are plotted second- 
harmonic amplitudes vs. input frequency. 

The amplitudes of the second-order frequency kernels I K2(F1, Fz)l form a surface 
when plotted against pairs of input frequencies. The height of this surface at the point 
(F1, F2) is the amplitude of the kernel at the pair of frequencies (Fl, Fz). This is also 
the amplitude of the component in the ganglion cell's response at the cross-talk 
frequency F1 + F2, as indicated in Fig. 3. 
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FIGURE 13. The  amplitudes of the second-order frequency kernel of  a repre- 
sentative Y cell as a function of spatial frequency. These data  are the amplitudes 
of the second-order components corresponding to the first-order responses plotted 
in Figs. I0 and 11. At each spatial frequency (0.75, 0.25 c/d),  the second-order 
frequency kernels were plotted as a contour map, as described in Fig. 3 and the 
text. Each contour line represents 0.5 impulse/s. Above each contour map  is a 
plot of  a slice of  the second-order frequency kernel along the diagonal F1 =, F2 
of second harmonics. With decreasing spatial frequency, the second-order re- 
sponse becomes tuned to higher input temporal frequencies. Unit 28/2. 
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The second-order frequency kernels of ganglion cells are surfaces characterized by 
(usually) two well-defined peaks. Simple linear/nonlinear/linear cascades, in which 
the nonlinearity is preceded by a bandpass temporal filter, generate second-order 
frequency kernels with just these features. This has motivated our study of such 
linear/nonlinear/linear cascades as models of the nonlinear pathway in the retina. 
We will pursue this approach in detail in a subsequent paper. 
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FIGURE 14. A summary of the relative strengths of the first- and second-order 
frequency kernels of a Y cell, and the shape of the second-order frequency 
kernel, as a function of spatial frequency. The root-mean-squared amplitude 
I KI(F) I is used as an index of the total first-order strength (O), and the root- 
mean-squared amplitude J K2(F, F) I is used as an index of the total second- 
order strength (O). At low spatial frequencies, the first-order components 
dominate, but at high spatial frequencies, the second-order components domi- 
nate the response. The shift of the second-order response to higher temporal 
frequency with decreasing spatial frequency is shown by a comparison of a 
second-order response at low temporal frequency (KK1.9 , 1.9), A) with a second- 
order response at high temporal frequency (K2(15.6, 15.6), rl). The low temporal 
frequency response has a spatial frequency optimum of 0.5 cycle/deg; the high 
temporal frequency response declines monotonically with increasing spatial 
frequency. 

At high spatial frequencies the second-order frequency responses become 
the dominant  component  of the Y cell response. There  is almost no spatial 
phase dependence of the second-order frequency kernel in Y cells. (The 
exception to this statement is when the spatial frequency is low and the 
contrast is high enough to produce truncation of first-order responses due to 
"bot toming out" of the impulse rate at 0 impulses/s). There  is a significant 
spatial frequency dependence of  the second-order frequency kernel, as illus- 
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trated in Fig. 13. The peak second-order response at 0.75 cycle/deg is around 
the second harmonic of I Hz, whereas the peak second-order response to the 
0.2 cycle/deg grating is around the second harmonic of 8 Hz. 

The relative strengths of linear and nonlinear receptive field mechanisms of 
Y cells are presented in Fig. 14. The average first-order ampli tude and the 
average second harmonic amplitude for a Y cell are plotted there vs. spatial 
frequency. Also drawn in this figure are the amplitudes of selected second 
harmonics; the harmonic of a low temporal frequency (1.9 Hz) and of a higher 
temporal frequency (15 Hz). Note that the average second-order amplitudes 
are higher than the average first-order amplitudes at high spatial frequencies 
(_-~'0.5 cycle/deg). The ratio of average second- to first-order amplitudes is as 
high as 3; in other Y cells it may be as great as 10. 

Second harmonics at different temporal frequencies show different spatial 
frequency dependence. Second harmonics of low temporal frequencies (_~4  
Hz) show a spatial frequency opt imum of 0.3 cycle/deg. Second harmonics of 
high temporal frequencies grew monotonically with decreasing spatial fre- 
quency, as can be seen in Fig. 14. Also, in different Y cells there are differences 
in how the average second-order amplitudes depend on spatial frequency. In 
some Y cells even the average second-order ampli tude has a spatial frequency 
opt imum, whereas in others there is a monotonic increase with decreasing 
spatial frequency as in Fig. 14. The difference between cells seems to be due 
to different relative amounts of high and low temporal frequency components 
in the second-order frequency kernels. 

D I S C U S S I O N  

Our results on the responses of ganglion cells to spatial gratings modulated by 
a sum of sinusoids clearly delineate the X and Y classes of ganglion cells and 
identify several basic properties of their receptive fields. We discuss these 
features in the framework of the questions asked in the Introduction. 

X Cells 

The responses of X cells to spatial sine gratings are primarily contained in the 
first-order frequency kernels. In many units, second-order nonlinear compo- 
nents were absent, and in all cases they were much smaller than the first-order 
components. This implies that the X cell may be considered a linear transducer 
to a first approximation. 

All of the X cells we studied had their highest sensitivity at some optimal 
spatial frequency. At spatial frequencies above and below the opt imum, the 
sensitivity declined. A single compact receptive field mechanism, like the 
receptive field center, would only show attenuation at high spatial frequency. 
Thus, the decline in response at low spatial frequency is evidence for a (linear) 
surround in X cells (Enroth-Cugell and Robson, 1966). However, the magni- 
tude of the decline at low spatial frequency depends critically on contrast. 
This is evidence for a contrast-dependent nonlinearity. The nature of the 
contrast effect has been considered in detail elsewhere (Shapley and Victor, 
1978). At low contrast (rms contrast of 0.025) all of the decline of the X cell 
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response at low spatial frequency is due to linear, presumably center-surround, 
interaction. At an rms contrast of 0.10, approximately as much low spatial 
frequency attenuation is due to the contrast gain control as is due to center- 
surround interaction. This is indicated in Fig. 7. In order to provide a 
satisfactory explanation of stronger spatial tuning at higher contrast, one must 
postulate that the contrast gain control has a larger effect at lower spatial 
frequencies. This has indeed already been found experimentally (Shapley and 
Victor, 1978). 

We can infer the dynamic characteristics of the center and surround of X 
cells from the dependence of the first-order frequency kernels on spatial 
frequency. As spatial frequency increases, neural mechanisms with large 
summation areas drop in sensitivity because these mechanisms cannot resolve 
fine patterns from uniform illumination. Thus, the first-order frequency kernel 
at high spatial frequencies is the transfer function of the receptive field center, 
the mechanism with the smallest summation area in an X cell-receptive field. 
The transfer function of an X cell center is thus illustrated by the 1 cycle/deg 
first-order frequency response in Figs. 4 and 5. The  transfer function is broad, 
with a small amount  of low temporal frequency attenuation and a high 
temporal frequency cutoff between 16 Hz and 32 Hz. 

When spatial frequency is decreased, the first-order frequency response of 
the X cell becomes more bandpass ("transient"). There are two reasons for 
this, we think. One is the difference between the transfer functions of the 
center and surround mechanisms. If these two mechanisms had exactly the 
same transfer functions, the combined response of center minus surround 
would also have the same transfer function. Thus, there would be no change 
in transfer function with spatial pattern. Since there is a change in the transfer 
function with spatial pattern, we conclude that there must be some difference 
between the transfer function of  center and surround. Evidence in support of  
this point has also been offered by Maffei et al. (1970). The second explanation 
for the increased temporal tuning shown in response to coarse patterns is the 
nonlinear contrast gain control mechanism mentioned above. We deduce that 
contrast is important from the fact that at low spatial frequency, the first- 
order frequency kernel becomes more sharply tuned at higher contrast (Table 
III; cf. Shapley and Victor, 1978). Thus, there are two mechanisms which 
contribute to the increased temporal tuning of X cells at low spatial frequency. 

Y Cel& 

The responses of Y cells to modulated sine gratings contain strong second- 
order components at all spatial frequencies, and strong first-order components 
at sufficiently low spatial frequencies. At low spatial frequencies, we have 
shown that these two kinds of responses are generated by independent,  parallel 
pathways: the first-order response varies sinusoidally with spatial phase, 
whereas the second-order response is independent of spatial phase (Figs. 10- 
12; Victor et al. 1977). Thus, the first-order response represents an approxi- 
mately linear retinal pathway. Like the X cell first-order responses, the Y cell 
first-order responses are qualitatively explained by a pair of concentric, 
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antagonistic mechanisms that  correspond to the classical notions of center and  
surround. It is interesting that  the first-order frequency responses to a grat ing 
of  the highest spatial frequency which can elicit first order responses is about  
as lowpass ("sustained") in Y cells as in X cells (cf. Cleland et al. 1971). This 
implies that  the Y cell center has about  the same dynamics as the X cell 
center. However,  at any part icular  retinal location, the first-order spatial 
resolution of  a Y cell is poorer than  that  of  an X cell by a factor of  about  two 
or three. This  implies the Y center is two to three times larger in d iameter  than 
the X cell center. 

The  second-order response of Y cells, which is large over a wide range of  
spatial frequencies, distinguishes this class of  ganglion cells from the X cells. 
The  second-order response persists at spatial frequencies too fine for resolution 
by the receptive field center. Therefore, the second-order response is generated 
by mechanisms that  have summing  areas small in comparison to that  of the 
Y cell center, and  these mechanisms must  contain a nonlineari ty before final 
spatial pooling of  their responses. The  constancy of  the second-order response 
as the spatial phase of a sine grat ing is varied is a striking feature of the Y 
cell's response (Victor et al., 1977). It implies that  there are a large n u m b e r  of 
subunits,  scattered th roughout  the receptive field, that  contr ibute  to the 
nonlinear  response (cf. a rguments  in Hochstein and Shapley, 1976 b). The  
shape of  the second order frequency kernels (Fig. 12) and their spatial 
frequency dependence  (Fig. 13) give indications of  the spatial a r rangement  of  
the neural  connections of these subunits,  and  allow us to relate them to other 
neural  mechanisms of the retina. This  will form the basis for subsequent work 
on the analysis of the cat retina. 

Received for publication 15 November 1978. 
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