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According to previous studies, many neuroanatomical alterations have been detected in patients with tinnitus. However, the results
of these studies have been inconsistent. The objective of this study was to explore the cortical/subcortical morphological
neuroimaging biomarkers that may characterize idiopathic tinnitus using machine learning methods. Forty-six patients with
idiopathic tinnitus and fifty-six healthy subjects were included in this study. For each subject, the gray matter volume of 61
brain regions was extracted as an original feature pool. From this feature pool, a hybrid feature selection algorithm combining
the F-score and sequential forward floating selection (SFFS) methods was performed to select features. Then, the selected
features were used to train a support vector machine (SVM) model. The area under the curve (AUC) and accuracy were used to
assess the performance of the classification model. As a result, a combination of 13 cortical/subcortical brain regions was found
to have the highest classification accuracy for effectively differentiating patients with tinnitus from healthy subjects. These brain
regions include the bilateral hypothalamus, right insula, bilateral superior temporal gyrus, left rostral middle frontal gyrus,
bilateral inferior temporal gyrus, right inferior parietal lobule, right transverse temporal gyrus, right middle temporal gyrus,
right cingulate gyrus, and left superior frontal gyrus. The accuracy in the training and test datasets was 80.49% and 80.00%,
respectively, and the AUC was 0.8586. To the best of our knowledge, this is the first study to elucidate brain morphological
changes in patients with tinnitus by applying an SVM classifier. This study provides validated cortical/subcortical morphological
neuroimaging biomarkers to differentiate patients with tinnitus from healthy subjects and contributes to the understanding of
neuroanatomical alterations in patients with tinnitus.

1. Introduction

Tinnitus, the perception of sounds in the absence of any
external sound stimuli, is experienced by 15% of the global
population. Tinnitus presents as a variety of sounds, and it
is typically sensed as ringing, hissing, or buzzing, among
other sounds, in the ears or the head [1, 2]. For most patients,
the etiology of tinnitus is not quite clear, and this type of tin-
nitus is usually defined as idiopathic tinnitus in the clinic.
Patients with tinnitus often suffer from hearing loss, stress,
and sleep disturbance [3]. Since there are no effective treat-
ments for tinnitus, it is important to understand the sensory

and cognitive mechanisms that may directly or indirectly be
associated with alterations in the cortical/subcortical archi-
tecture [4].

With the use of advanced neuroimaging techniques,
previous studies have suggested that patients with tinnitus
may exhibit anatomical alterations in auditory- and non-
auditory-related brain areas, as detected by voxel-based mor-
phometry (VBM) analysis [5–9]. Brain morphological
changes in auditory-associated brain areas, including the
primary and secondary auditory cortex (PAC/SAC) located
in the temporal gyrus, as well as in non-auditory-related
brain areas (especially the limbic system), have been
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commonly reported in previous studies [10, 11]. Several
inherent networks—including but not limited to the default
mode network (DMN), dorsal attention network (DAN),
and frontal-parietal network—have also been implicated in
tinnitus [12, 13]. Brain morphology studies in tinnitus have
generally been widespread, and the results obtained by differ-
ent studies show only partial agreement. It is quite difficult to
reconcile previous results due to their inconsistency and het-
erogeneity. The inconsistency may be related to different
groups of enrolled patients, small sample sizes, and differ-
ences among patients in terms of the kind of perceived
sound, degree of distress, disease duration, presence of
hyperacusis, and hearing loss status. The key cortical/subcor-
tical morphological neuroimaging biomarkers that charac-
terize tinnitus remain unclear.

Morphological neuroimaging biomarkers may not be
best explored in only one research study. Rather, it would
be better to combine the results with those of previous stud-
ies, comprehensively summarize various published results,
and then extract the key features of tinnitus patients.
Machine learning, an artificial intelligence methodology con-
cerned with the implementation of computer software that
learns autonomously, is a promising approach for extracting
features from large information sources [14]. Specifically, the
support vector machine (SVM) is a supervised learning
model with associated learning algorithms that maximize
the distance of a hyperplane for classification and regression
analysis. Both linear and nonlinear data can be processed by
the SVM method with superior generalization performance
[15]. It has been successfully applied to explore morphologi-
cal neuroimaging biomarkers for the classification and diag-
nosis of different subsets of neurological diseases, including
Alzheimer’s disease (AD) and schizophrenia [16, 17]. Based
on published morphological studies of patients with tinnitus,
the SVM method could also effectively extract neuroimaging
biomarkers for tinnitus.

In this study, we hypothesized that there may be several
cortical/subcortical morphological neuroimaging biomarkers
that can characterize tinnitus. To test our hypothesis, we first
summarized brain regions with significant morphological
alterations reported in previous studies and extracted the
gray matter (GM) volume of these brain regions as an origi-
nal feature pool. Then, a stable and efficient classifier was
generated to analyze the summarized brain areas, followed
by fivefold cross-validation to evaluate the accuracy of the
classifier in forty-six tinnitus patients and fifty-six healthy
controls based on the SVM model. The brain regions that
may effectively differentiate patients from healthy subjects
were then extracted as the key cortical/subcortical morpho-

logical neuroimaging biomarkers. Our study provides
validated evidence of neuroanatomical biomarkers for differ-
entiating patients with tinnitus from healthy subjects.

2. Materials and Methods

2.1. Subjects. This study was approved by the medical
research ethics committees and institutional review board.
Written informed consent was obtained from each subject.

For feature selection and model training, forty-six
patients with tinnitus were recruited in this study. All of the
subjects were recruited from Beijing Friendship Hospital.
The inclusion criteria were as follows: (1) patients without
significant hearing loss (the subjects had hearing thresholds
less than 25 dB HL at frequencies of 0.250, 0.500, 1, 2, 3, 4,
6, and 8 kHz determined by pure-tone audiometry (PTA)
examination) and (2) patients with a symptom duration lon-
ger than 3 months. The exclusion criteria were as follows: (1)
patients diagnosed with pulsatile tinnitus; (2) patients with
hyperacusis; (3) patients with neurological disease, such as
dementia or AD; (4) patients with any kind of otological con-
dition, such as Meniere’s disease or otosclerosis; and (5)
patients contraindicated for magnetic resonance imaging
(MRI) examination. The Tinnitus Handicap Inventory
(THI) score was also acquired in the patient group to assess
the severity of tinnitus and tinnitus-related distress. Accord-
ing to the score, tinnitus was divided into five levels: mild (1-
16), light (18-36), moderate (38-56), severe (58-76), and cat-
astrophic (78-100) [18]. Fifty-six age- and sex-matched
healthy controls were also enrolled as healthy subjects. The
exclusion criteria for the healthy controls were the same as
those listed above. The characteristics of the subjects are pre-
sented in Table 1.

2.2. MRI. Images were acquired using a 3.0T GE Signa Excite
MR scanner (General Electric Medical Systems, Milwaukee,
WI, USA) equipped with an eight-channel, phased-array
head coil. Parallel imaging was employed in data acquisi-
tion. High-resolution 3D structural images were acquired
using a 3D-BRAVO pulse sequence with the following
acquisition parameters: TR ðrepetition timeÞ = 8:5ms; TE
ðecho timeÞ = 3:3ms; TI ðinversion timeÞ = 450ms; matrix
= 256 × 256; field of view ðFOVÞ = 24 cm × 24 cm; and
slice thickness = 1mm without gap. In total, 196 slices
were obtained from each subject.

2.3. Image Processing. Image preprocessing was performed
with the VBM8 toolbox in the SPM8 software package
(Statistical Parametric Mapping, Wellcome Department of

Table 1: Characteristics of the participants.

TP (n = 46) HC (n = 56) p value

Age (years) 22-63 (45:9 ± 11:9) 23-64 (41:6 ± 10:9) 0.059a

Gender (male/female) 20/26 19/37 0.413b

Tinnitus duration (months) 4-192 (62:5 ± 72:5)
THI score 0-98 (48:8 ± 27:8)
Data are presented as the ranges of min-max (means ± standard deviations). TP: tinnitus patients; HC: healthy controls. aTwo-sample two-tailed t-test. bChi-
square test.
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Cognitive Neurology, London, UK) running in MATLAB
(MathWorks, Natick, MA, USA). The procedures for
image preprocessing have been described in detail [19].
Briefly, image processing in this work included spatial nor-
malization using the Montreal Neurological Institute
(MNI) 152 template and segmentation of the GM, white
matter (WM), and cerebrospinal fluid (CSF). Only the
GM images were analyzed in this study.

In this study, several morphologically relevant papers
published with five years before the start of the study were
summarized, and the results of the papers were collated
[4, 5, 8, 20, 21]. Based on the purpose and method of this
study, the methods used in previous studies were not lim-
ited. Finally, sixty-one cortical/subcortical brain regions
were summarized as the targeted structures for analyzing
the anatomical changes in tinnitus patients (listed in
Table 2). These brain regions roughly cover the findings
of existing studies. Brain regions reported to be associated
with hearing loss were not included in this study. The
peak intensity of each brain region was labeled in MNI
space. For each brain region, the region of interest (ROI)
was defined as a sphere with a radius of 5mm with its peak
MNI coordinates as the center using the MarsBaR toolbox
[22]. The ROI volumes were measured and recorded as the
original features of each patient for classification.

2.4. Feature Selection Algorithm. Feature selection plays an
important role in the classification process. Feature selection
algorithms are mainly divided into two categories: the filter
and wrapper methods [23]. The filter method is independent
of the classifier and allows rapid training. The wrapper
method requires a long training time since it depends on
the classifier, and the performance of the selected feature sub-
sets is evaluated by the accuracy of the classifier. However,
the classification performance of the wrapper method is
superior to that of the filter method. A hybrid feature selec-
tion algorithm containing both types of methods was used
in this study. In general, stable and efficient classifiers were
generated by the following steps [24]. First, the filter method
was adopted to rank the features according to the F-score, as
described below. Next, sequential forward floating selection
(SFFS) was used as the wrapper method to select features
according to the accuracy of the SVM classifier. Finally, the
features that optimized the performance of the SVM classifier
were obtained. Fivefold cross-validation was used in the cur-
rent study. Figure 1 illustrates the main procedures of the
hybrid feature selection algorithm.

The F-score is a criterion used to rank the importance of
a feature between different sets of real numbers [25]. The F
-score was used to rank the features according to two sets
of feature values in this study. Given the training vector xi
∈ Rmðk = 1, 2,⋯, nÞ, the sample size of the positive and neg-
ative subset was n+ and n−, respectively. The F-score of the i

th

feature, Fi, was calculated as follows:

Fi =
�xi

+ð Þ − �xi
� �2 + �xi

−ð Þ − �xi
� �2

1/n+ − 1ð Þ∑n+
k=1 xk,i

+ð Þ − �xi
+ð Þ� �2 + 1/n− − 1ð Þ∑n−
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where �x, �xi
ð+Þ, and �xi

ð−Þ are the average value of the ith feature in
the whole dataset, in the positive subset, and in the negative sub-
set, respectively, and xk,i

ð+Þ and xk,i
ð−Þ are the ithfeature of the k

th instance in the positive and negative subsets, respectively.
The larger the Fi, the more discriminative the ith feature.

After determining the F-score, the features were ranked
in descending order according to their Fi value. The SFFS
feature selection strategy was then used, as previously pro-
posed by Pudil et al. [26]. The features were added in feature
sets in sequence, and feature retention was based on the accu-
racy of the SVM classifier at each step. If the accuracy of the
SVM classifier with a new feature set did not increase, the
new feature was removed from the feature set.

The SVM method is a machine learning technique ini-
tially proposed by Vapnik in the 1990s [27]. The basic
idea of the SVM method is to obtain the largest-margin
classifier using a kernel function. To determine the opti-
mal SVM classifier, the radial basis function (RBF) kernel,
defined asKðxi, xjÞ = exp ðγjxi − xjj2Þ, was adopted here
[28]. The grid search algorithm with 5-fold cross-validation
was used to search for the best parameter pairs (C, γ)
for the RBF kernel. The search range for C and γ was
log2C = f−5,−4,⋯, 4, 5g and log2γ = f−5,−4,⋯, 4, 5g,
respectively.

Feature selection was performed with MATLAB code
written in-house. The pseudocode of the feature selection
procedure is described here:

Step 1.Group subjects: the tinnitus patients were divided into
five groups, consisting of 10, 9, 9, 9, and 9 patients. Similarly, the
56 healthy subjects were divided into five groups, consisting of
12, 11, 11, 11, and 11 subjects. Then, the patients and healthy
subjects were combined together into groups of 22, 20, 20, 20,
and 20, respectively. During the feature selection and training
process, four groups were selected as the training set at each
step, and the remaining group was selected as the test set.

Step 2. Calculate the F-score: for each training set, the F-score
was computed for each feature using equation (1), and the fea-
tures were ranked in descending order according to the F-score.

Step 3. Build a classifier: each training set was randomly
divided into five groups using a 5-fold cross-validation
method. Each time, four groups were selected as the training
subset, and the remaining group was used as the test subset.
For each training subset, the sorted features were added to
the feature set in turn; the feature set was initially empty.
The SVM classifier was constructed using the selected fea-
tures, and the optimal parameters (C, γ) of the SVM classifier
were determined using the grid search algorithm.

Step 4. Apply search strategy: according to the SFFS strategy
and the accuracy of the classifier, if the new accuracy was not
improved, the newly added feature was removed from the
feature subset. Otherwise, the feature was retained.

Step 5. Steps 3 and 4 were repeated until all features were
selected. The accuracy of the test set was calculated.

3Neural Plasticity



Table 2: Volumetric structures used in SVM classification model.

Brain region Peak MNI (x, y, z) References

Right hemisphere

Ventromedial prefrontal cortex 2, 21, -15
Leaver et al. [21]

Dorsomedial prefrontal cortex 2, 38, 39

Superior temporal gyrus

52, -41, 13 Boyen et al. [5]

51, -4, -2 Aldhafeeri et al. [20]

46, -15, -6
Schecklmann et al. [8]

51, -6, -9

59, -1, -4 Meyer et al. [4]

Cingulate gyrus

4, 49, -5

Aldhafeeri et al. [20]10, 30, 22

5, -55, 28

Middle temporal gyrus

48, -58, 6
63, 5, -17

Aldhafeeri et al. [20]

49, -70, 13 Boyen et al. [5]

46, -15, -6
51, -6, -9

Schecklmann et al. [8]

Parahippocampal gyrus
14, 5, -17 Aldhafeeri et al. [20]

37, -35, -15 Meyer et al. [4]

Inferior temporal gyrus
47, -32, -17 Aldhafeeri et al. [20]

55, -23, -24 Meyer et al. [4]

Rostral middle frontal gyrus
37, 51, 9

Meyer et al. [4]
16, 21, -17

Inferior parietal lobule

44, -63, 39

Meyer et al. [4]43, -66, 25

46, -56, 44

Insula
36, 3, 1

Meyer et al. [4]
39, 1, 1

Superior temporal gyrus (primary auditory cortex, BA41) 43, -30, 10 Aldhafeeri et al. [20]

Cuneus 5, -77, 16

Meyer et al. [4]Transverse temporal gyrus 43, -24, 3

Pars orbitalis 45, -55, 43

Supramarginal gyrus
59, -40, 24 Leaver et al. [21]

57, -57, 27

Boyen et al. [5]Occipital lobe 1, -84, -3

Hypothalamus 5, -5, -11

Superior frontal gyrus 11, 18, 59

Aldhafeeri et al. [20]Middle frontal gyrus 48, 35, 20

Inferior frontal gyrus 50, 19, -12

Left hemisphere

Superior temporal gyrus

-46, -34, 10 Boyen et al. [5]

-63, -6, 1 Aldhafeeri et al. [20]

-44, -12, -11
Schecklmann et al. [8]

-58, -16, 6

-48, 9, -25
Meyer et al. [4]

-47, 8, -26

Cingulate gyrus

-14, 23, -13

Aldhafeeri et al. [20]-20, 5, 43

-4, -43, 29

Middle temporal gyrus -44, -12, -11 Schecklmann et al. [8]
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2.5. Statistical Analysis. To obtain a generalized SVM classifi-
cation model, it was necessary to select the appropriate C and
γ; thus, the grid search and cross-validation methods were
adopted. The average classification accuracy in the training
set for each set of C and γ was calculated, and the set of C
and γ with the best classification accuracy in the training
set was selected as the optimal group of parameters for the
SVM model. Then, the corresponding test set was used for
performance testing, and the classification accuracy was cal-
culated. The feature (brain region) combination with the best
classification performance effectively differentiated tinnitus
patients from healthy subjects.

Additionally, the performance of the SVM classifier was
evaluated by creating the receiver operating characteristic
curve (ROC) and calculating the area under the curve
(AUC). Additionally, Pearson’s correlation analyses for
evaluating the THI score and the volume of brain regions
that could effectively differentiate tinnitus patients from
healthy controls were conducted using SPSS software (ver-
sion 20.0; SPSS, Chicago, IL). p < 0:05 was considered sta-
tistically significant.

3. Results

The highest accuracy and corresponding parameters (C, γ)
were obtained. After the grid search during the feature selec-
tion procedure, the optimal parameters (C, γ) of the SVM
classifier were adjusted as follows: C was set to 2, and gamma
was set to 8.

In all, 13 features were selected from the 61 original fea-
tures. Table 3 shows that the accuracy of the training set
and the test set was 80.49% and 80.00%, respectively.

As shown in Figure 2 and Table 4, after controlling for
the effect of aging, the combined features with the highest
classification accuracy revealed the brain regions that could
effectively differentiate tinnitus patients from healthy con-
trols. Those brain regions included the bilateral hypothala-
mus, right insula, bilateral superior temporal gyrus (STG),
left rostral middle frontal gyrus, bilateral inferior temporal
gyrus (ITG), right inferior parietal lobule (IPL), right trans-
verse temporal gyrus, right middle temporal gyrus (MTG),
right cingulate gyrus, and left superior frontal gyrus (SFG).

The AUC was 0.8586 for the hybrid feature selection
algorithm. Figure 3 shows the ROC curve for the set of 13
brain regions (shown in Table 4) and the probability scores
for all 102 data points in our dataset.

Pearson’s correlation analyses revealed that THI score
was positively correlated with the volume of the right hypo-
thalamus (r = 0:830, p = 0:002), right insula (r = 0:832, p =
0:020), and left SFG (r = 0:772, p = 0:005) in light, moderate,
and severe tinnitus, respectively. Additionally, the THI score
was negatively correlated with the volume of the right trans-
verse gyrus in catastrophic tinnitus (r = −0:873, p = 0:010)
(Figure 4).

4. Discussion

Features were selected using the F-score and SFFS algo-
rithms. With an accuracy of 80% in distinguishing between
tinnitus patients and healthy subjects, our results show that
thirteen brain regions can effectively be used to differentiate
patients with tinnitus from healthy subjects. These regions
include the bilateral hypothalamus, right insula, bilateral
STG, left rostral middle frontal gyrus, bilateral ITG, right
IPL, right transverse temporal gyrus, right MTG, right

Table 2: Continued.

Brain region Peak MNI (x, y, z) References

Parahippocampal gyrus -20, 2, -23 Aldhafeeri et al. [20]

Inferior temporal gyrus

-62, -12, -26 Aldhafeeri et al. [20]

-44, -50, -12
Meyer et al. [4]

-45, -50, -12

Rostral middle frontal gyrus

-20, 56, -2

Meyer et al. [4]-23, 54, 16

-20, 55, -3

Superior frontal gyrus

-7, 27, 55
Meyer et al. [4]

-7, 52, 36

-11, 63, 19 Boyen et al. [5]

-12, 65, 6 Aldhafeeri et al. [20]

Superior temporal gyrus (primary auditory cortex, BA41) -42, -23, 10 Aldhafeeri et al. [20]

Transverse temporal gyrus -51, -21, 4 Meyer et al. [4]

Hypothalamus -4, -10, -6 Boyen et al. [5]

Middle frontal gyrus -36, 35, 28
Aldhafeeri et al. [20]

Inferior frontal gyrus -10, 63, 8

Postcentral gyrus -32, -31, 61 Meyer et al. [4]

MNI: Montreal Neurological Institute.
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cingulate gyrus, and left SFG. The AUC determined by ROC
curve analysis also indicates the superior performance of the
hybrid feature selection algorithm combining the F-score,
SFFS, and SVM methods.

4.1. Model Selection. Strategies for feature subset selection
can be divided into three categories: the exhaustion, heuristic,
and random strategies [29]. In theory, the optimal feature
subset can be found only using the exhaustion strategy. For

Original features

Filter

Calculate the f-score for each feature

Rank features in descending order
according to the f-score value

Feature selection procedures in SFFS
algorithm

Construct the SVM classifiers using the
current selected features and using 5-
fold cross validation to determine the

optimal parameters for RBF kernel
function of SVM on training subset

Evaluate the selected feature subset via
the new accuracy

NoGoing through
all the features?

Wrapper
Yes

Optimal features

Figure 1: Hybrid feature selection algorithms.
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small-scale feature subsets, the exhaustion method is one
of the best choices for optimal feature selection. However,
with increasing feature number, the computational com-
plexity of the exhaustion method increases exponentially.
Thus, for relatively high-dimensional data, as in this study,
the exhaustion strategy cannot feasibly be applied. The
random strategy includes a genetic algorithm, a simulated
annealing algorithm, and a beam search algorithm [30]. It
is suitable for studies with a flexible number of features.
However, this strategy could not be used in the present
study since the number of features was predefined accord-
ing to previous reports.

The heuristic strategy was applied in this study. This
strategy combines the advantages of the former two strate-
gies. It is characterized by high accuracy and efficiency in fea-
ture subset searching. This strategy supports forward,
backward, and combined search methods according to the
direction of the search. Typically, the sequential forward
search (SFS), SFFS, and sequential backward floating search
(SBFS) strategies are commonly used [26, 31]. SFS is a
bottom-up search strategy. During the feature subset search
procedure, it adds the top feature to the selected feature sub-
set until it meets the defined criteria. However, features that
have been added cannot be excluded in the SFS strategy,
which leads to a local maximum and may not be conducive
to the extraction of an optimal feature set. SFFS and SBFS
are flexible strategies for feature selection (i.e., features may
be included and excluded flexibly) that avoid the generation
of local maxima to a certain extent [32–34]. The purpose of
this study was to select a limited number of brain regions
among many that have been previously reported to effec-
tively differentiate tinnitus patients from healthy subjects.
Thus, it was of importance to first add brain regions with
the most effectiveness in the selection model and then modify
the features flexibly. Considering the F-scores calculated
prior to the feature subset search procedure, the SFFS strat-
egy was more suitable. Thus, the bottom-up SFFS strategy
was applied. Based on the superior classification performance
and good generalization performance of the SVM classifier,
the SVM method was further applied in this study.

In this study, 5-fold cross-validation and a grid search
were applied to train data during the calculations for optimal
parameter (C, γ) selection. The search range of C and γ was
defined as log2C = f−5,−4,⋯, 4, 5g and log2γ = f−5,−4,⋯,
4, 5g, respectively. Due to the limited number of features
and enrolled subjects, i.e., 61 features and 102 subjects, a
more detailed search range for optimal parameter definition
and increased K-fold number may not generate better feature
combinations. This hypothesis was further supported by our

results. The optimal parameters (C, γ) and feature combina-
tions with the highest average classification accuracy were
detected. In this circumstance, combinations with more fea-
tures should be discarded to limit the number of features.
Thus, the combination of thirteen brain regions could be
regarded as a superior result in this study.

4.2. Regions of Altered Brain Volume in Patients with
Tinnitus. The pathophysiology of tinnitus is not limited to
auditory brain regions but also includes nonauditory cortical
and subcortical brain areas. Previous studies have reported
various brain morphological alterations in patients with tin-
nitus. However, due to the inconsistency of those reported
brain regions, it was difficult to generalize features of alter-
ation in tinnitus patients. In this study, for the first time, we
demonstrate a characteristic pattern of brain volume alter-
ation using the SVM classifier. On the basis of sixty-one pre-
viously reported brain regions, 13 regions with the highest
accuracy in classifying patients and healthy subjects in this
study were selected and may indicate generalized features of
alteration in tinnitus patients. This approach revealed the
most likely cortical/subcortical morphological neuroimaging
biomarkers characterizing tinnitus.

Among the brain regions listed in Table 4, both the
right and left STG are listed as critical for SVM prediction.
The anatomical proximity of these regions indicates that
the brain volume of the STG may serve as a neuroanatom-
ical biomarker in differentiating patients with tinnitus from
healthy subjects. Our results are also in line with those
reported by Meyer et al., who examined a large and homo-
geneous sample of tinnitus patients [4]. This group also
found that a decreased cortical volume in the left STG
was closely related to tinnitus distress. However, we should
note that the left STG labeled in this study was not situated
in the typical region of the primary auditory cortex. We
also did not detect any anatomical changes in the primary
auditory cortex, defined as the bilateral transverse temporal
gyrus, or Heschl’s gyrus, by the atlas of Desikan et al. [35].
Therefore, STG is a sensitive region but may not be the
most important region [4]. However, studies of functional
brain activity have demonstrated functional alterations in
the STG and MTG in both chronic tinnitus and pulsatile
tinnitus patients [36, 37]. As these regions are part of the
self-perception network, which is also connected with the
salience network, such anatomical alterations may also be
part of a plastic effect associated with the functions of
self-perception and awareness of tinnitus [38].

The MTG has also generally been reported in previous
studies. Although the MTG is listed as one of the cortical
morphological neuroimaging biomarkers characterizing tin-
nitus in this study, it did not have a high F-score for differen-
tiating tinnitus patients from healthy controls. Boyen
suggested that the GM volume of the MTG is increased in
tinnitus patients with hearing impairment [5]. Since tinnitus
is a very heterogeneous condition with respect to hyperacusis
and the hearing loss status, we paid special attention to the
clinical symptoms of the patients enrolled in this study. Tin-
nitus patients who applied for training and testing all had a
normal hearing threshold without hyperacusis. Thus, this

Table 3: The computation results with the highest classification
accuracy from hybrid feature selection algorithms.

Dataset
# of original
features

# of selected
features

Accuracy (%)
Training

set
Test
set

TP+HC 61 13 80.49 80.00

TP: tinnitus patients; HC: healthy controls.
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consideration may be the reason that the MTG was not
selected earlier as one of the biomarkers in this study. Other
brain areas that may be associated with hearing loss in the
tinnitus groups, including the ventromedial prefrontal cortex
(vmPFC) and cerebellum [9, 21], were also not identified in
our study. Thus, our study also supports the idea that it is
necessary to investigate tinnitus patients according to their
clinical characteristics to minimize possible confounding fac-
tors induced by heterogeneous clinical conditions.

Anatomical and functional alterations in the limbic
network in regions including the insula, parahippocampal
gyrus, thalamus, amygdala, hippocampus, and cingulate
gyrus [14, 39, 40] have commonly been reported in previ-

ous studies. This network may not be directly associated
with the generation of the tinnitus sound; however, it is
closely related to negative emotional reactions to tinnitus
(i.e., tinnitus-related distress) [11]. Additionally, the limbic
network is responsible for the signal processing of tinnitus
based on the “noise cancellation” mechanism. When the
limbic network is compromised, tinnitus can be perceived
by patients. Thus, morphological changes in the limbic
network are considered critical indicators of tinnitus. As
reported by Professor Leaver et al. [21], the morphology of
the anterior insula is more closely related to tinnitus distress
rather than tinnitus sound perception, anxiety, or depression.
The parahippocampal gyrus and amygdala appear to be more
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Figure 2: Brain regions that could effectively differentiate tinnitus patients from healthy controls with the highest accuracy. The color bar
indicates the degree of importance of brain region for classification. The hotter the color and the larger the ball, the more significant the
brain region is for classification. R = right hemisphere; L = left hemisphere; STG= superior temporal gyrus; SFG= superior frontal gyrus;
RMF= rostral middle frontal gyrus; IPL = inferior parietal lobule; ITG= inferior temporal gyrus; MTG=middle temporal gyrus;
SFG= superior frontal gyrus.

Table 4: SVM-derived brain regions that are critical to SVM prediction, ranked by their importance in SVM model.

Brain region Peak MNI (x, y, z) Volume in patients (mm3) Volume in HC (mm3)

R hypothalamus 5, -5, -11 349:0 ± 45:5 383:5 ± 56:1
L hypothalamus -4, -10, -6 89:4 ± 7:4 95:9 ± 10:0
R insula 36, 3, 1 306:9 ± 32:5 328:0 ± 39:9
R superior temporal gyrus 52, -41, 13 414:2 ± 65:3 438:8 ± 69:8
L rostral middle frontal gyrus -20, 56, -2 372:7 ± 99:23 372:7 ± 99:23
R inferior temporal gyrus 55, -23, -24 313:4 ± 51:2 330:8 ± 49:0
R inferior parietal lobule 43, -66, 25 503:8 ± 77:0 469:9 ± 54:5
L superior temporal gyrus -47, 8, -26 317:7 ± 33:4 310:4 ± 39:2
L inferior temporal gyrus -62, -12, -26 207:0 ± 28:2 214:2 ± 22:2
R transverse 43, -24, 3 382:8 ± 43:3 400:5 ± 48:7
R middle temporal gyrus 49, -70, 13 280:7 ± 28:5 267:4 ± 50:1
R cingulate 10, 30, 22 370:0 ± 61:8 392:7 ± 66:6
L superior frontal gyrus -11, 63, 19 347:4 ± 66:8 364:0 ± 67:5
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responsive to sound in severe tinnitus patients than in mild-
to-moderate tinnitus patients [41]. Additionally, according
to the tinnitus model proposed by Husain et al., the insula
is much more likely to be affected in tinnitus patients than
the parahippocampal gyrus or amygdala, especially in cases

of mild or habituated tinnitus [42]. This idea is further sup-
ported by our study. Since the average THI score of tinnitus
patients in our study was 48.8, patients with severe, bother-
some tinnitus did not account for the majority of our
research group. Pearson’s correlation analyses also revealed
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Figure 3: ROC (receiver operating characteristic) curve for SVM classification.
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Figure 4: Correlations between THI score and volume of brain regions. (a) Correlations between THI score and volume of the right
hypothalamus in light tinnitus (r = 0:830, p = 0:002). (b) Correlations between THI score and volume of the right insula in moderate
tinnitus (r = 0:832, p = 0:020). (c) Correlations between THI score and volume of the left SFG in severe tinnitus (r = 0:772, p = 0:005). (d)
Correlations between THI score and volume of the right transverse in catastrophic tinnitus (r = −0:873, p = 0:010). R = right hemisphere;
L = left hemisphere; SFG= superior frontal gyrus.
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that the THI score was positively correlated with the volume
of the right insula in moderate tinnitus. Thus, this may be the
reason the insula was found as one of the most likely anatom-
ical biomarkers in our group of tinnitus patients. However,
the THI score cannot effectively measure the psychiatric state
of tinnitus patients. We did not measure the psychological
distress of the tinnitus patients. Additional studies are needed
to further analyze the degree of distress in such patients and
discuss the function of the limbic system.

Previous studies have mainly focused on measuring the
cortical volume in the brain. However, subcortical structural
changes, such as changes in the hypothalamus, have also
been detected. In our study, the bilateral hypothalamus was
identified as a critical structure in SVM prediction
(Table 4). The hypothalamus is also part of the limbic system.
Boyen et al. [5] found both decreased brain volume and
decreased concentration in the bilateral hypothalamus in tin-
nitus patients with hearing impairment. However, few previ-
ous studies have reported anatomical changes in the
hypothalamus. The meaning of the plastic effect on the bilat-
eral hypothalamus is still unclear. Its clinical relevance needs
to be investigated in future research.

We also recognize several limitations in this study. First,
only brain region volumes were included as features in this
study. However, the cortical/subcortical volume can also be
revealed by two distinct neuroanatomical traits: thickness
and surface area [4]. Achieving better results may rely on
the use of distinct kinds of features; yet, in most previous
studies, only volumetric changes were identified in tinnitus
patients. As a result, we could apply only volume as a mor-
phological feature due to the limited thickness and surface
area data. Second, the datasets used for training and testing
were relatively small. Abundant data diminish the risk of
overfitting during the calculations. Due to the strict criteria
applied for inclusion and exclusion, the amount of data in
this study met the minimum standard for training. However,
more robust results could be obtained with the enrollment of
more subjects. Much more validated evidence of neuroimag-
ing biomarkers for tinnitus patients might be extracted in
future studies if more detailed features are included and cal-
culations are based on larger datasets. Additionally, there was
no measure of psychological distress or any psychiatric diag-
nosis for the tinnitus patients or healthy controls. The evalu-
ation of distress is essential for analyzing the mechanism of
brain structure alteration, especially in the limbic system.
Additionally, further studies that specifically focus on the
effect of aging in elderly tinnitus patients may be necessary.

5. Conclusions

By applying the machine learning SVM classification algo-
rithm, we were able to differentiate tinnitus patients from
healthy subjects. In more detail, our study provides a new
and valuable method for the study of brain morphology in
tinnitus—a hybrid feature selection algorithm combining
the F-score and SFFS methods. Based on the SVM classifica-
tion results, 13 cortical/subcortical brain regions that could
effectively differentiate patients with tinnitus from healthy
subjects were obtained. Although this method needs to be

improved before it is applied in the clinic, these brain regions
can serve as morphological neuroimaging biomarkers for
patients with tinnitus. These findings contribute to the
understanding of neuroanatomical alterations in tinnitus.
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