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Abstract: The structural properties of GeSn thin films with different Sn concentrations and thicknesses
grown on Ge (001) by molecular beam epitaxy (MBE) and on Ge-buffered Si (001) wafers by chemical
vapor deposition (CVD) were analyzed through high resolution X-ray diffraction and cross-sectional
transmission electron microscopy. Two-dimensional reciprocal space maps around the asymmetric
(224) reflection were collected by X-ray diffraction for both the whole structures and the GeSn epilayers.
The broadenings of the features of the GeSn epilayers with different relaxations in the ω direction,
along theω-2θ direction and parallel to the surface were investigated. The dislocations were identified
by transmission electron microscopy. hreading dislocations were found in MBE grown GeSn layers,
but not in the CVD grown ones. The point defects and dislocations were two possible reasons for the
poor optical properties in the GeSn alloys grown by MBE.
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1. Introduction

Since the first planar silicon (Si) transistor was invented in 1959 [1], the Si electronic industry
has developed prosperously. According to the Moore’s law the number of components on integrated
circuits (ICs) has doubled every 18 to 24 months for the last 50 years [1]. However, the continuous
scaling of the transistors has led to several problems, such as signal delays, higher power consumption,
quantum limitations, etc. Moreover, without new technologies, the shrinking of the transistors will stop
around 2021 [2]. Si photonics, which utilizes photons instead of electrons for information transmission
and processing, is one of the promising solutions for these problems and shows a bright future [3,4].

It is difficult to fabricate light sources using Si due to its indirect bandgap nature. The light sources
used in the commercial Si based circuits are made of group III-V materials, and then bonded to the
circuits at present [5]. However, the bonding technology hinders the future large-scale integration [3].
Monolithic light sources compatible with the complementary metal-oxide-semiconductor (CMOS)
processing platform are in urgent need. Ge is also an indirect bandgap material, but the energy
difference between its Г and L valley is only 140 meV [6], much smaller than that of Si. It is found
that incorporation of Sn in Ge can reduce the energy of both the Г and the L valleys in the conduction
band, while the Г valley goes downward faster. Eventually, the Ge1-xSnx alloy becomes a direct
bandgap semiconductor with the Г valley lower than the L valley, when the Sn concentration is
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above about 8% [7]. When tensile strain is applied on Ge, a similar transformation of the band
structure in the conduction band can happen [7]. However, devices based on tensile-strained Ge require
complex processes, such as integration of Si3N4 stressor layers [8], or selective wet under-etching [9].
Moreover, GeSn is predicted to own high carrier mobility [10], making it a potential candidate for
fabricating both electronic and optoelectronic devices integrated on the Si platform. GeSn p-MOSFETs
on Si [11–13] and GeSn lasers [7,14–17] are already successfully realized. Especially, the successful
demonstration of the GeSn lasers has drawn significant attention and confidence on the realization of
CMOS technology compatible light sources monolithically integrated on Si platform.

The electrical property and (or) optical property of the as grown materials are critical for the
performance of devices, both of which are highly related to the structural properties. For GeSn alloys,
Sn incorporation is the largest growth challenge, due to the large miscibility gap of the Ge-Sn binary
system [18] and the large lattice mismatch between Ge and α-Sn [7]. Molecular beam epitaxy (MBE)
and chemical vapor deposition (CVD) are the main methods for the growth of GeSn alloys [19,20].
Generally speaking, the MBE-grown GeSn thin films hold advantages on high Sn concentration [21]
while the CVD grown ones show high optical property [7,14–17,22–24]. So far, to the best of our
knowledge, all GeSn lasers were grown by CVD [7,14–17,25,26]. The causes for the difference in the
optical properties of GeSn alloys grown by MBE and CVD are not fully clear. Structural property is
usually a fatal factor on optical property. Crystalline fluctuations on a microscopic scale, line defects
like dislocations and point defects such as vacancies can all result in degradation of optical property.

In this work, we investigate the structural property differences of GeSn alloys with different Sn
concentrations and thicknesses. The structural properties of two groups of GeSn samples grown by
MBE and CVD, respectively, are investigated through high resolution X-ray diffraction (XRD) and
cross-sectional transmission electron microscopy (XTEM). We further study the differences of optical
properties of GeSn samples grown by MBE and CVD and their connections with the structural properties.

2. Materials and Methods

The first group of six GeSn samples (M1-M6) were grown on Ge (001) substrate by MBE with
Sn concentrations varying from 3.4% to 7.6%. The Ge (001) substrate was firstly deoxidized at 550 ◦C
for 30 min. Secondly, a Ge buffer layer of about 100 nm was grown on the Ge (001) substrate at
500 ◦C. Thirdly, the temperature was lowered to 200 ◦C and the GeSn layer was grown. The detailed
growth procedure was described elsewhere [27]. Another group of three GeSn samples (C1-C3) were
grown by CVD with the Sn concentrations of 6.8%, 7.6% and 10.4%, respectively. A relaxed Ge virtual
substrate (VS) of about 2.5 µm was firstly grown on the Si (001) substrate at 750 ◦C and 20 Torr.
Secondly, to reduce the dislocation densities in the Ge-VS, the Ge-VS was annealed at 890 ◦C for 5 min
and then the annealing was repeated for three times. Thirdly, the GeSn layer was deposited under a
fixed precursor partial pressure ratio for the digermane (Ge2H6): tintetrachloride (SnCl4) = 220. The Sn
content was controlled by adjusting the growth temperature. The detailed growth methods for Ge-VS
and the GeSn layer can be found in [28] and [29], respectively.

Figure 1 shows the sample structures grown by MBE (a) and CVD (b), respectively. The six GeSn
samples grown by MBE are of different thicknesses and different Sn concentrations. For the CVD
grown GeSn thin films, the three samples are grown on fully relaxed Ge VS. Threading dislocations
were found in the annealed Ge VS, with the density of about 107 cm−2 [28]. If the dislocation densities
in the Ge VS is significantly reduced or the GeSn thin films are directly grown on Ge substrate by CVD,
the structural and optical properties of the GeSn thin films might be further improved. The thicknesses
and Sn contents of all the samples can be found in Table 1.

Crystallographic properties were measured by high resolution XRD with an X’Pert PRO
diffractometer (Philips/Panalytical, Almelo, The Netherlands). An X-ray source with Cu Kα1 (λ = 1.54 Å)
was used and traveled to the GeSn samples and then diffracted. There were two different optical
paths (Optics1 and Optics2) for the detections. In Optics1, the diffracted beam directly traveled to the
detector. In Optics2, the diffracted beam traveled to a three-crystal Ge (002) analyzer and then reached
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the detector. The thicknesses of GeSn layers were inferred from the calibrated growth rate and the
XTEM data. The Sn concentrations were extracted from the Pendellösung interference fringes from
symmetric (004) rocking curve (ω-2θ) scans. When getting the (004) ω-2θ rocking curves, Optics1 was
used. The applied voltage and current were 30 KV and 25 mA, respectively. The angle step in the
ω-2θ direction were both 0.0005◦ while the time for each step was 0.5 s. Then the broadenings of the
GeSn epilayer features were investigated by two-dimensional reciprocal space mapping (2DRSM)
around the asymmetric (224) reflections. When collecting the 2DRSM, Optics2 was used. The applied
voltage and current were 40 KV and 40 mA, respectively. The angle steps along the ω direction and the
ω-2θ direction were both 0.002◦ while the times for each step were 1.2 s. Furthermore, the structural
properties of the GeSn layer were analyzed through XTEM using a Tecnai G2 F20 system (FEI, Hillsbro,
OR, USA).Materials 2020, 13, x FOR PEER REVIEW 3 of 11 
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Figure 1. The sample structures of GeSn thin films grown by MBE (a) and CVD (b), respectively.

Table 1. The Sn content, thickness, calculated critical thickness and degree of strain relaxation of the
GeSn epilayers grown by MBE and CVD.

Sample Number Sn Content (%) Thickness (nm) Critical Thickness (nm) Relaxation (%)

MBE

M1 3.4 200 691.5 0
M2 3.6 200 578 0
M3 5.6 200 205.5 0
M4 7.2 200 115.4 0
M5 7.5 200 103.3 7.2
M6 7.6 400 98.7 14.2

CVD
C1 6.8 700 132.3 82.7
C2 7.6 750 98.7 80.7
C3 10.4 420 45.8 72.5

3. Results and Discussion

The mismatch dislocation density is related to the critical thickness of the epilayer. According to
People-Bean’s model, the critical thickness hc is:

hc =
1

16π
√

2

( 1− v
1 + v

) b2

a f 2 ln
hc

b
(1)

where v is the Poisson’s ratio (v~0.26) [30], a is the lattice constant of Ge1−xSnx, f is the misfit between
Ge and Ge1−xSnx and b is the Burgers vector (b~0.4 nm) [31]. The Sn content, thickness and degree of
strain relaxation and the calculated critical thickness of the GeSn layers are listed in Table 1.

The degree of strain relaxations for M1-M4 are 0, indicating the GeSn layers in M1-M4 are fully
strained to the Ge substrate. The degree of strain relaxations for M5 and M6 are 7.2% and 14.2%,
respectively, while for C1-C3 are 72.5%–82.7%, indicating that the GeSn layers in M5-M6 are partially
relaxed to the Ge substrate and the GeSn layers in C1-C3 are almost fully relaxed to the Ge-VS.



Materials 2020, 13, 3645 4 of 11

For all the GeSn samples grown by CVD, the thickness exceeds the corresponding critical thickness
and the relaxation rates are high. For the ones grown by MBE, the thickness of M1–M3 with low Sn
content is below the critical thickness without strain relaxation, while the thickness of M4–M6 with
high Sn content is above the critical thickness, experimentally. For M4, although its thickness exceeds
the calculated critical thickness, the measured relaxation rate is still 0, indicating an underestimation
by the theoretical model. For the GeSn samples with the same Sn content of 7.6%, the CVD grown
one (C2) shows much higher relaxation rate than that of the MBE grown one (M6). The difference is
probably caused by the much thicker thickness of C2 than M6.

The structural properties of all the GeSn samples are further analyzed by 2DRSM around the
asymmetric (224) diffractions by high resolution XRD. All the mappings are collected using ω-2θ scans
offset along the ω directions. The 2DRSMs of C2 and M6 are shown in Figure 2. Figure 2a,b show the
features of Ge layer and GeSn layer, while Figure 2c,d show the features of GeSn layer. The broadening
of the diffraction peaks in 2DRSM in different directions are caused by different origins. It is commonly
accepted that the broadenings in the ω direction, along the ω-2θ direction and parallel to the surface
are due to the wafer curvature and/or mismatch dislocations, the variation in d-spacing through the
layer and the lateral incoherence, respectively [32].
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Figure 2. The 2DRSMs of two representative GeSn samples of C2 (left column) and M6 (right column),
respectively. (a,b) are the 2DRSMs including the peaks of Ge layer and GeSn epi-layer. The vertical and
diagonal black dotted lines represent the lattices pseudomorphically and fully relaxed to the substrate,
respectively. (c,d) show the 2DRSMs of only the GeSn epilayer. The red dashed lines and solid curves in
the figures indicate the cross-sections where and how the intensity is extracted and fitted by Gaussian
equation, in the directions of parallel to the surface.

Figure 3 shows the broadenings of GeSn layers parallel to the surface (a), along the ω-2θ direction
(b) and in the ω direction (c). The different broadening data are extracted as follows. The 2DRSM
is plotted in Qx and Qy axes, as shown in Figure 2c,d. The diffraction peak is auto selected by the
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“X’Pert Epitaxy’ software. The diffraction intensity data on the line parallel to the Qx axis and cross
the diffraction peak are extracted. The data are then fitted by a Gaussian equation. The full with at
half maxima (FWHM) of the fitted Gaussian curve is extracted to be the broadenings parallel to the
surface. Then the diffraction intensity is plotted in the axes of ω-2θ scan axis and the ω scan axis.
The diffraction peak is also auto selected. Two sets of data on the line parallel to the ω-2θ scan axis
crossing the diffraction peak and parallel to the ω scan axis crossing the diffraction peak are extracted,
respectively. The FWHM of the Gaussian fitting to the two sets of data are the broadenings along the
ω-2θ direction and in the ω direction, respectively.
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Figure 3. The broadening of the GeSn epilayer features parallel to the surface (a), along the ω-2θ
direction (b) and in the ω direction (c). The red and blue curves represent the samples grown by CVD
and MBE, respectively. The green and purple dotted square frame marked samples M1-M4 and M5-M6,
of which the GeSn layers are fully strained and partially relaxed to Ge substrate, respectively. The CVD
grown samples C1-C3 are almost fully relaxed to Ge-VS.

GeSn layers in M1–M4, M5, M6 and C1–C3 are fully strained, partially relaxed and almost fully
relaxed to Ge substrate and (or) Ge-VS, respectively. The broadenings parallel to the surface of the
GeSn epilayer feature of the M1-M6 are found monotonically increase with the Sn concentrations
varying from 3.4% to 7.6%, as shown in Figure 3a. It sharply increases when the Sn concentration
is above 7%, where the strain of GeSn layer starts to relax. C1-C3 show larger broadenings than
M1–M6, indicating a worse lateral incoherence in C1–C3. This is mostly due to the fact that C1–C3
have large amount of edge dislocations concentrated at the GeSn/Ge interface causing local strain
variation. However, the broadenings along the ω-2θ direction (seen in Figure 3b) of the GeSn feature of
C1–C3 are smaller than that of M4–M6. It implies that the Sn distribution is quite nonuniform in the
samples with high Sn content grown by MBE, which is in consistence with the EDX line-scan result
shown in Figure 4b. A gradual increase of Sn concentration is observed from the bottom to the top of
the GeSn thin film.
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Figure 4. (a) XTEM and (b) the energy dispersive spectroscopy (EDX) of the GeSn sample with the Sn
concentration of 7.6% grown by MBE. The EDX is collected from the surface of GeSn layer down to the
Ge layer.

The broadening in the ω direction shows a similar trend to the broadening parallel to the surface.
Since the thickness of the GeSn epilayers is very small compared with that of the Ge substrates or
Ge-VS, the wafer curvature caused by strain in the GeSn layer is negligible. Therefore, dislocation is the
most probable reason for the ω broadening. When the Sn concentration is above 7%, the density of the
mismatch dislocations significantly increases indicating that the critical thickness of strain relaxation
is reached. The ω-broadenings of C1–C3 are larger than that of M1–M6, due to larger relaxations of
C1–C3. However, the strain relaxation through dislocation process is complicatedly associated to lattice
mismatch, film thickness, type of dislocations, etc. A three-dimensional plot of the variations of the
broadenings with different Sn contents and thicknesses can be found in Figure A1 in the ‘Appendix A’
section. A more intensive analysis is as follows.

Figure 4a shows the XTEM results of the M6. The blue circle is the threading part of 60◦ dislocations.
Yellow circles are the edge dislocations or the misfit part of 60◦ dislocations. For the CVD grown GeSn
samples, mostly pure edge dislocations together with small amount of 60◦ dislocations bending into
the Ge layer were observed in TEM measurements, as shown in reference [7]. Figure 4b shows the EDX
line-scan result of Sn content in M6. Sn content increases from the bottom of the GeSn layer to the
surface, indicating a segregation of Sn atoms. Due to the low thermal equilibrium solid solubility of Sn
in Ge, Sn segregation is a big challenge for the GeSn growth [27]. The nonuniform distribution of Sn
atoms in M6 explains the large broadenings along the ω-2θ direction measured by the 2DRSM.

The mismatch dislocation density ρ is calculated as follows, according to Hu’s expression [33]:

ρ =
f

bsinθsin∅

(
1−

hc

h

)
(2)

In the above expression, θ is the angle between the dislocation line and the Burgers vector and φ
is the angle between the slip plane and the interface. In GeSn systems, there are basically two types of
dislocations, 60◦ and pure edge dislocations [34]. For 60◦ dislocations, θ is 60◦ and the slip plane is the
(111) plane, so φ is 54.7◦. For edge dislocations, θ is 90◦ and the slip plane is the (010) plane, so φ is 90◦.
Considering the relaxation rate measured by XRD, the contents in the bracket in expression (2) could
be equivalent to the degree of strain relaxation (R), so the mismatch dislocation density is estimated
as follows:

ρ =
f R

bsinθsin∅ (3)

The broadening in the ω direction (blue) and the dislocation density based on all 60◦ (red) and all
edge dislocation (green) assumptions of the samples are shown in Figure 5. A three-dimensional plot of
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the variations of the broadenings and dislocation densities with different Sn contents and thicknesses
can be found in Figure A2 in the in ‘Appendix A’ section. The dislocation density and the broadening in
theω direction are both normalized and share the z axis. The real dislocation density should lie between
the two extremes, while the data points for C1–C3 would be fairly close to the pure edge dislocation
case. The calculated dislocation density of both types of C1–C3 are significantly larger than that of
M1–M6, due to the larger mismatch, thickness and relaxation. For C1–C3, a consistent trend is found for
theω-broadening and the dislocation density with the Sn content. While a large discrepancy is observed
for the M1–M6. Firstly, for M1–M4 who are fully strained to the Ge substrate, considerableω-broadening
exists. Secondly, although the ω-broadening follows the calculated dislocation density for M5, M6,
the ω-broadening is much larger compared with the trend of C1–C3. With the exclusion of the possible
reasons of wafer curvature and peak broadening due to very thin film, other factors should exist,
causing the broadening in the ω direction. High density of point defects might be one possible reason.
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The CVD grown samples discussed above show strong photoluminescence (PL) at room
temperature [29], while the MBE-grown ones show no PL. It is always complicated to relate the
optical properties of semiconductors to structural properties. The commonly believed major factors are
dislocation density, point defect density, overall crystalline quality, etc. Through the analysis above,
the CVD grown samples on Ge-VS have much larger density of dislocations than the MBE-grown ones.
However, the dislocations in the CVD grown samples distributes majorly at the GeSn/Ge interface
or inside the Ge buffer layer, without threading dislocations extending upwards in the GeSn layer.
To the contrary, MBE-grown ones have considerable amount of threading dislocations in the GeSn
layer although the overall dislocation density is lower. The MBE-grown samples show no PL, but when
we etched the GeSn films into suspended cantilever microstructures to relax the strain, week PL
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was obtained [35]. For other lattice properties, such as lateral incoherence, the CVD grown samples
show no advantages. Although MBE-grown GeSn shows a higher compositional nonuniformity, it is
commonly believed not an important factor for optical property. Local states may even enhance
photoluminescence. Another important factor, which can’t be directly measured by XRD, is the point
defect density. The point defects, such as vacancies, can act as nonradiative recombination centers.
The CVD process to grow GeSn uses a much higher growth temperature than that by MBE. It is
generally true that the higher growth temperature the lower point defect density. The “hidden” factor
who causes the broadening in ω direction for the MBE samples could be an important factor. To sum
up, the high density of threading dislocation and point defects could be the most probable reasons for
the worse optical property of MBE-grown GeSn than the CVD grown ones.

The major limitation of this experiment is that the substrates and the sample structure of the MBE
and the CVD grown samples are different, leading to difficulty in direct comparison.

4. Conclusions

In this paper, structural properties of GeSn alloys with different Sn contents and thicknesses
grown by MBE (low relaxation) and CVD (high relaxation) are analyzed through XRD and XTEM.
The GeSn layers fully strained to Ge substrate shows the best structural properties. The structural
properties, such as lateral incoherence and the density of mismatch dislocations of GeSn layers
partially relaxed to Ge substrate are found better than that of GeSn layers almost fully relaxed to
Ge-VS. However, the GeSn alloys grown by MBE has higher threading dislocation density than that
grown by CVD. Meanwhile, GeSn layers partially relaxed to Ge substrate grown by MBE show larger
compositional nonuniformity than that of GeSn layers almost fully relaxed to Ge-VS grown by CVD.
Point defects and the threading dislocations are two possible reasons for the poor optical property of
the GeSn grown by MBE.
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Appendix A

Figure A1 shows the variations of the broadenings of the GeSn epilayer features with different Sn
contents and thicknesses. The tendency for the variations of the broadenings parallel to the surface,
along the ω-2θ direction and in the ω direction for M1–M6 are similar. The thicknesses for M1–M5 are
200 nm, the broadenings increases with the Sn contents. For M5 and M6, the Sn contents are 7.5% and
7.6%, almost the same, the thicknesses are 200 nm and 400 nm, respectively. The larger broadenings of
M6 than that of M5 is mainly due to the increases of the thickness. In Figure A1a,c, C1–C3 show larger
broadenings parallel to the surface and in the ω direction than M1–M6, respectively. It indicates a
worse lateral incoherence and larger amount of mismatch dislocations in C1–C3.

In Figure A1b, C1–C3 show smaller broadenings along theω-2θ direction than M5,M6, indicating a
nonuniform distribution of Sn atoms in the MBE samples with high Sn content, which is in consistent
with the EDX line-scan result shown in Figure 4b.

Figure A2 shows the variations of the broadening in the ω direction and the dislocation density
based on all 60 degree and all edge dislocation assumptions of the samples with different thicknesses
and Sn contents. The dislocation density and the broadening in the ω direction are both normalized
and share the z axis.
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