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ABSTRACT Multicellular organisms interact with resident microbes in important
ways, and a better understanding of host-microbe interactions is aided by tools such
as high-throughput 16S sequencing. However, rigorous evaluation of the veracity of
these tools in a different context from which they were developed has often lagged
behind. Our goal was to perform one such critical test by examining how variation
in tissue preparation and DNA isolation could affect inferences about gut micro-
biome variation between two genetically divergent lines of threespine stickleback
fish maintained in the same laboratory environment. Using careful experimental de-
sign and intensive sampling of individuals, we addressed technical and biological
sources of variation in 16S-based estimates of microbial diversity. After employing a
two-tiered bead beating approach that comprised tissue homogenization followed
by microbial lysis in subsamples, we found an extremely minor effect of DNA isola-
tion protocol relative to among-host microbial diversity differences. Abundance esti-
mates for rare operational taxonomic units (OTUs), however, showed much lower re-
producibility. Gut microbiome composition was highly variable across fish— even
among cohoused siblings—relative to technical replicates, but a subtle effect of host
genotype (stickleback line) was nevertheless detected for some microbial taxa.

IMPORTANCE Our findings demonstrate the importance of appropriately quantify-
ing biological and technical variance components when attempting to understand
major influences on high-throughput microbiome data. Our focus was on under-
standing among-host (biological) variance in community metrics and its magnitude
in relation to within-host (technical) variance, because meaningful comparisons
among individuals are necessary in addressing major questions in host-microbe ecol-
ogy and evolution, such as heritability of the microbiome. Our study design and in-
sights should provide a useful example for others desiring to quantify microbiome
variation at biological levels in the face of various technical factors in a variety of
systems.

KEYWORDS DNA isolation, fish model, host-microbe systems, microbial ecology,
repeatability, reproducibility

From early development through senescence, animal and plant hosts interact with
their resident microbiota through complex host-microbe relationships, resulting in

a diversity of both positive and negative outcomes for host health and fitness. For
example, outstanding questions regarding the mappings of host genetic variation to
microbiome variation and their role in diseases such as diabetes, obesity, and inflam-
matory bowel disease (IBD), are a major focus of host-microbe systems biology (1).
Indeed, the recognized importance of host-microbe interactions has led to a recent
spike in interdisciplinary research efforts, complete with accelerated tool development
both molecular and computational in nature. This rapid progress, however, has in some
cases meant a lag in the thorough evaluation of the veracity and efficacy of these tools.

Understanding host-microbe relationships from ecological, evolutionary, and dis-
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ease perspectives hinges on estimation of microbial diversity in samples from various
host body sites. Although quantification of the microbiome may now be achieved using
shotgun metagenomic approaches (2), for instance to measure disease-microbiome
associations (3), marker-based techniques such as high-throughput 16S rRNA amplicon
sequencing are still the most cost-effective, straightforward, and commonly applied
methods for microbial community profiling. However, as researchers extend their work
beyond routinely characterized environments such as soil and human fecal samples
and into new, diverse study systems (4–6), the adoption and extension of previously
optimized techniques should occur cautiously and intentionally. Methodologies for 16S
amplicon sequencing should ideally be evaluated at multiple stages (i.e., sample
collection and handling through analysis), compared with multiple alternative options,
and evaluated with respect to the discriminatory power and precision of diversity
analyses based on them. The Microbiome Quality Control Project (7), for example, has
addressed some of these issues for human stool and artificial microbial communities,
including an effective quantification of laboratory-to-laboratory variation. Other diverse
endeavors have evaluated effects of DNA isolation attributes on sequencing-based
community inference in corals (8), fleas (9), human saliva (10), and marine biofilms (11),
for example, but the foci of these studies did not include quantifying reproducibility
and its uncertainty using large samples of among-individual variation.

Research aims may require the direct sampling of whole host organs in animal
models, such as the gastrointestinal tract, to obtain an unfiltered view of internal
host-microbe relationships. However, with these shifts in sampling strategy come a
slew of considerations and obstacles, in part because commercially available kits are
designed and optimized for a narrow range of sample types such as soil or human stool.
Potential problems with sample processing and library preparation based on these
unrefined protocols may include poor DNA integrity, inadequate DNA quantity, host
and reagent contamination, and low repeatability, all of which may vary depending on
the sample type.

We compared the gut microbiomes of two divergent populations of threespine
stickleback (Gasterosteus aculeatus) that have been maintained in the same lab envi-
ronment to evaluate whether our biological conclusions could be affected by the use
of three popular DNA isolation protocols. Threespine stickleback fish have repeatedly
colonized a diversity of freshwater habitats from ancestral marine populations, resulting
in exceptional degrees of within- and among-population genetic and phenotypic
variation for countless traits (12–17). As in humans, stickleback populations segregate
genetic variation that has arisen and been shaped by natural processes in the wild,
unlike the variation generated via laboratory-induced mutations in many model organ-
isms (18). This feature makes stickleback an excellent model for understanding the role
of standing host genetic variation in determining phenotypes germane to host-microbe
interactions, including microbial community structure itself (19–21). In our initial at-
tempts to isolate DNA from adult stickleback guts for 16S sequencing, we found
commonly used DNA isolation protocols, including one specifically designed for mi-
crobial samples, untenable owing to low quality and high variance of DNA yield, and
fragmentation both within and among protocols. This outcome prompted us to
optimize these DNA isolation protocols for adult stickleback guts.

We employed careful experimental design and thorough sampling of laboratory-
raised hosts to address both technical and biological sources of variation in 16S-based
estimates of microbial diversity (Fig. 1). The relative contributions of individual host and
DNA isolation protocol to variation in 16S-based diversity estimates have not been
satisfactorily measured in previous studies, due to insufficient biological (individual-
level) replication, inadequate parameter estimation, or both. To address this, the
technical objectives of our study included a careful comparison of operational taxo-
nomic unit (OTU) relative abundance and diversity (both alpha and beta) across libraries
generated from three DNA isolation protocols, followed by formal quantification of
reproducibility and its uncertainty. The biological objective of our study was to test for
differences in relative OTU abundance and diversity arising from genetic differences
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between two stickleback laboratory lines, one descended from a freshwater lake
population and the other from an oceanic population, but both raised and housed in
a common environment. The factorial nature of our study design also permitted
assessment of statistical interactions between DNA isolation protocol and host geno-
type, that is, whether any dependency of biological inferences on DNA isolation
protocol choice might exist. We also performed a separate experiment in which we
measured the precision of each DNA isolation protocol using replicate samples from
the same individual.

In general, we found the stickleback gut microbiome to be highly variable even
among full siblings reared together and that variation due to the two host genetic
backgrounds (population of origin) was detected but smaller than individual-level
variation. Unoptimized tissue processing had a major effect on the yield and integrity
of DNA isolated using different protocols. However, after employing a two-step bead
beating approach consisting of initial tissue homogenization followed by microbial lysis
in homogenate subsamples, we found an extremely minor effect of DNA isolation
protocol on the ability to understand microbial diversity using 16S data. This is an
important finding for those researchers faced with the decision of having to choose
among available protocols. Our results indicate that so long as bias during initial tissue
processing steps is minimized, the actual choice of kit may be relatively unimportant.
Our protocol optimization, study design, and insights both technical and biological
should be useful to others who seek to quantify microbial community structure in fish
guts and other tissue types using high-throughput 16S sequencing.

RESULTS
Tissue subsampling and two-tiered bead beating improve gut DNA yield and

integrity. We compared DNA yield and fragment size distribution between guts first
homogenized with steel beads, subsampled, and then treated with a second bead
beating step aimed at microbial lysis against guts handled without these modifications.
By reducing tissue mass through measured, consistent subsampling and by including

FIG 1 Experimental design to evaluate technical (DNA isolation protocol) and biological (individual and popula-
tion) variation in 16S sequencing-based diversity metrics (A) and within-individual precision for these metrics (B).
The stickleback lines (populations), families, and sample processing steps, and sample sizes used in the current
study are shown. In the first experiment (A), we assigned one of three homogenate subsamples from each fish gut
to one of the three DNA isolation protocols, phenol-chloroform protocol (PCP), PowerFecal protocol (PFP), or
DNeasy protocol (DEP), for a total of 108 extractions across 36 fish. In the second experiment (B), we assigned all
six homogenate subsamples from a given fish gut to one of the three DNA isolation protocols. Each protocol was
represented by two fish, for a total of 36 extractions.
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the second bead beating step, we achieved higher DNA yield and integrity and lower
variance among individuals (Fig. 2). Subsampled, double-beat DNA isolates contained
more micrograms of DNA on average (Fig. 2A and B). For column-based DNA isolation
protocols (PowerFecal protocol [PFP] and DNeasy protocol [DEP]), median yield in-
creased at least twofold. DNA integrity also improved with the modifications (Fig. 2C
and D), especially in the case of phenol-chloroform protocol (PCP) isolations. Because
whole guts were used for the unmodified protocols, within-fish comparisons of these
unmodified protocols and testing of protocol-by-fish interactions were not possible.

Importantly, the among-sample variation, as estimated by the coefficient of varia-
tion for all three DNA isolation protocols, was also lower after subsampling and double
bead beating (values of 0.557 versus 0.223 for PCP, 0.610 versus 0.509 for PFP, and 0.517
versus 0.214 for DEP [values for single versus double bead beating, respectively]). The
coefficient of variation for DNA yield across all singly beat, whole-gut samples was
1.244, compared to 0.527 for doubly beat, subsampled guts. This difference was
significant based on the asymptotic test described by Feltz and Miller (22), which
assumes a �2-distributed test statistic (D’AD � 37.376; df � 1; P � 9.742e�10).

Bacterial phyla of the stickleback gut microbiome are similar across studies
and rearing environments. Rarefaction curves based on samples from 10 to 150,000

FIG 2 Gut homogenate subsampling and double bead beating improves DNA yield and integrity. (A)
DNA yield boxplot for three protocols with single beating and no gut subsampling. (B) DNA yield boxplot
for three protocols with double beating and subsampling. (C) Fragment analysis traces for two protocols
with single beating and no subsampling. (D) Fragment analysis traces for three protocols with double
beating and subsampling. Bands at 1 and 200,000 bp in panels C and D are lower and upper size
standards. Dark green corresponds to approximately 400 relative fluorescence units (RFU), whereas dark
red corresponds to approximately 2,300 RFU. Fragment analysis data were unavailable for singly beat PFP
samples owing to insufficient DNA quantity. PCP, phenol-chloroform protocol; PFP, PowerFecal protocol;
DEP, DNeasy protocol.
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sequences per library indicated that our final downsampling threshold of 105,000
sequences captured reasonable alpha diversity, given the rate of increase with sam-
pling effort (see Fig. S1A and B in the supplemental material). Considering all 41
experimental fish (35 from the reproducibility experiment and 6 from the repeatability
experiment) for which our sequence number threshold of 105,000 was reached, we
recovered a mean per-individual OTU richness of 4,378.122 (standard error of the mean
[SEM] � 291.360), which reflects OTUs summed across all libraries (each library down-
sampled to 105,000 sequences) per individual. At the phylum level, we observed a
mean richness of 28.146 (SEM � 0.786). The major constituent phyla among the fish in
our experiment included Proteobacteria, Firmicutes, Chloroflexi, Bacteroidetes, and Cya-
nobacteria, but we observed extensive among-individual variation (Fig. S1F). Phylum-
level membership was comparable between the lab-reared fish in our study and both
lab-reared and wild-caught fish from Bolnick et al. (23), with the exception of the
greater relative abundance of the phylum Chloroflexi in our study (Fig. S1E).

Effects of individual hosts on microbial diversity are much larger than those of
DNA isolation protocols. We evaluated the relative contributions of individual fish and
DNA isolation protocol to overall variance in diversity metrics by treating the libraries
from the three different protocols as repeated measurements of each fish. The contri-
bution of DNA isolation protocol to variation in community composition was quite
small relative to that of individual fish at the class (Fig. 3; see Fig. S2A in the
supplemental material) and species (Fig. S2B) levels, as quantified by high reproduc-
ibility estimates for all five alpha diversity metrics (Table 1). Similarly, the effect of DNA
isolation protocol on beta diversity was weak relative to the effect of individual (Fig. 4;
Fig. S3), as reproducibility with respect to class and species Bray-Curtis dissimilarity and
weighted UniFrac was high. Interestingly, reproducibility was substantially lower for
unweighted UniFrac (Table 1; Fig. 4G to L). We also observed low reproducibility
(although not as extreme as in the QIIME 1 analysis) for unweighted relative to
weighted UniFrac after QIIME 2/Deblur denoising (Table 1), a method that should
minimize the effects of erroneous sequences. In general, the QIIME 1 and QIIME 2
workflows yielded very similar patterns with respect to relative taxon abundance
(Fig. S2A) and beta diversity (Table 1; Fig. 4; Fig. S3A to F). Last, confidence intervals
(95% bootstrap) for reproducibility calculated separately for the two stickleback pop-
ulations overlapped for all nine diversity metrics (see Data Set S1D in the supplemental

FIG 3 16S-based, class-level profiles of the stickleback gut microbiome vary substantially more by individual host than by DNA isolation method. Class relative
abundances demonstrate substantial variation across individuals, families, and populations, but little variation among DNA isolation protocols within
individuals. Each bar triplet denotes an individual fish gut, with individual bars representing PCP, PFP, and DEP DNA isolation methods, in that order. Individuals
are sorted by mean Gammaproteobacteria abundance within each family. One individual from family 4 and the PCP library from an individual in family 6 were
not analyzed owing to insufficient coverage.
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material), suggesting that reproducibility was consistent for the two different host
genetic backgrounds.

Although the overall variance in diversity metrics explained by differences in DNA
isolation protocol was small relative to that explained by among-individual differences,
we detected a significant effect of DNA isolation protocol for some measures via
likelihood ratio tests comparing full and reduced linear mixed models (Table 2; Fig. S4
and Fig. S5). For example, total variation in class richness was explained significantly
better by a model including DNA isolation protocol than by a model excluding the
term. This effect size was small, however (Fig. S4A). Libraries from DNA isolated using
DNeasy (DEP) yielded a modest increase in mean class richness from 52.663 to 54.892,
with respect to PowerFecal (PFP), and 53.528 to 54.892 with respect to phenol-
chloroform (PCP). We observed a similar trend for species richness and Faith’s phylo-
genetic diversity (Table 2; Fig. S5A and C).

Beta diversity (as measured by class- and species-level Bray-Curtis dissimilarity,
unweighted UniFrac, and weighted UniFrac) was significantly influenced by DNA
isolation protocol, on average, in all cases (P � 0.001; see Data Set S1A for factorial
permutational analysis of variance [PERMANOVA] hypothesis test statistics). The effect
sizes were once again quite small in the context of among-individual variation, as
reflected in nonmetric multidimensional scaling (nMDS) ordinations and pairwise li-
brary dissimilarity distributions (Fig. 4; Fig. S3A, C, D, and F).

Relative abundances of individual taxon groups were in some cases affected by DNA
isolation protocol, based on comparison of lognormal Poisson generalized linear
models. For 20 class-level and 89 species-level OTUs, the model including protocol was
a better fit than the model excluding it based on Akaike information criterion (AIC),
Bayesian information criterion (BIC), and the false discovery rate (FDR)-controlled
likelihood ratio test (Data Set S1B and C). For instance, the class-level groups Actino-
bacteria, BD1-5 (“Gracilibacteria”), and Thermomicrobia tended to vary in abundance
among DNA isolation protocols within fish consistently (Fig. S6A to C), albeit with quite
small effect sizes. The mean downsampled read count for Actinobacteria, for example,
was 1.317 times higher for PCP than for PFP methods. At the species level, taxonomy
groups including Agromyces spp., an unassigned species from family Rodobacteraceae,
and Tsukamurella spp. were among the most likely taxa affected by DNA isolation
protocol (Fig. S7A to C), also to a minor degree.

We wanted to evaluate the potential for DNA isolation protocol differences to
influence the ability to consistently measure among-host differences in relative OTU
abundances and to ascertain whether this ability varied as a consequence of the
scarcity of a given OTU. We found that reproducibility was indeed positively associated

TABLE 1 Among-fish variation greatly exceeds within-fish (among-protocol) variation for several diversity metrics, as indicated by high
reproducibility estimatesa

Diversity variable Among-fish variation Within-fish variation Reproducibility (95% CI)

Class richness 77.409 11.080 0.875 (0.792, 0.917)
Class evenness 0.011 0.001 0.920 (0.885, 0.965)
Species richness 6606.324 123.393 0.982 (0.946, 0.991)
Species evenness 0.009 0.001 0.923 (0.886, 0.945)
Phylogenetic diversity 287.929 18.949 0.938 (0.870, 0.969)
Class Bray-Curtis 0.082 0.004 0.958 (0.912, 0.979)
Class Bray-Curtis

(QIIME 2 with Deblur)
0.081 0.004 0.957 (0.921, 0.979)

Species Bray-Curtis 0.112 0.004 0.966 (0.938, 0.982)
Weighted UniFrac 0.070 0.003 0.955 (0.907, 0.978)
Weighted UniFrac

(QIIME 2 with Deblur)
0.023 0.001 0.959 (0.926, 0.978)

Unweighted UniFrac 0.056 0.158 0.263 (0.207, 0.292)
Unweighted UniFrac

(QIIME 2 with Deblur)
0.055 0.046 0.542 (0.466, 0.583)

aVariance component and reproducibility estimates considering all individuals in experiment 1, along with bootstrap 95% confidence intervals (CIs) are shown. The
reproducibility values are shown in boldface type.
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FIG 4 Phylogenetic dissimilarity based on 16S profiles of the stickleback gut microbiome shows a greater effect of individual, relative to DNA
isolation protocol. The strength of this pattern varies, depending on whether weighted (A to E) or unweighted (G to L) UniFrac is applied.

(Continued on next page)
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with average log10 OTU abundance, based on a fitted logistic model (Fig. 5; Fig. S8A).
The slope at inflection (�) was significantly greater than zero (� � 0.352; standard error
[SE] � 0.015; t � 23.977; P � 0.0001). A similar relationship was observed for upper and
lower 95% confidence interval (CI) bounds on reproducibility (Fig. 5). We also observed
that the relationship between amplicon sequence variant (ASV) reproducibility and
mean ASV abundance based on the QIIME 2 analysis was very similar to that for OTUs
(Fig. 5; Fig. S8B), suggesting that erroneous sequences are not the fundamental cause
of this pattern.

We noted a similar pattern when measuring OTU rarity in a different way: the
number of individual hosts in which the OTU was detected. We once again observed
that reproducibility of relative OTU abundance estimates was higher for common OTUs
(Fig. S8C), and that the lower bound for reproducibility in our sample of hosts increased
substantially when the OTU was present in at least 32 of 35 fish (Fig. S8D).

Effects of stickleback population on microbial diversity estimates are subtle
and in limited cases contingent on DNA isolation protocol. We did not detect a
statistically significant effect of host population (stickleback line) on any of the five
alpha diversity metrics using likelihood ratio tests comparing nested full and reduced
linear mixed models (Table 2), although class richness, class evenness, and species
richness trended toward higher values in the oceanic population relative to the
freshwater population (Fig. S4 and S5). We did detect a statistically significant interac-
tion between stickleback population and DNA isolation protocol for species-level and
phylogenetic alpha diversity metrics (Table 2). This implies that the effect of isolation
protocol may differ depending on biological context, but these effect sizes were also
quite small (Fig. S5B and C). For example, the maximum species evenness difference
between protocol-population combinations was 0.070, and the maximum phylogenetic
diversity difference was 5.370.

Beta diversity, as measured by class- and species-level Bray-Curtis dissimilarity,
unweighted UniFrac, and weighted UniFrac, was not significantly influenced by host
population after accounting for the nested nature of the data introduced by family
structure (Fig. 4; see Data Set S1A for protocol-specific nested PERMANOVA hypothesis
test statistics). Family itself was a significant determinant of community dissimilarity for
all four metrics (Fig. 4; see Data Set S1A for factorial PERMANOVA hypothesis test
statistics), although it should be noted that family was confounded by tank in our
design. We did not detect a statistically significant interaction between host family and
DNA isolation protocol for any of the four dissimilarity metrics assessed (Data Set S1A).

FIG 4 Legend (Continued)
(A, D, G, and J) Nonmetric multidimensional scaling (nMDS) ordinations from weighted and unweighted UniFrac, showing the three DNA
isolation protocols from each individual connected as filled triangles. (B, E, H, and K) The same ordinations, but with individuals plotted as
the centroid of each triplet from panels A, D, G, and J, and with 95% confidence ellipses drawn separately for each family. (C, F, I, and L)
Pairwise dissimilarity matrix heatmaps representing all libraries. Panels A to C and G to I show QIIME 1-based analyses, and panels D to F and
J to L show QIIME 2-based (denoised ASV) analyses. The library order is the same as in Fig. 3. Green ordination symbols represent the
freshwater stickleback line, and blue symbols represent the oceanic stickleback line. Individual fish labeled by lowercase letters and
corresponding arrows point to outliers in community space.

TABLE 2 Likelihood ratio test statisticsa

Diversity variable

Protocol Population Interaction

�2
df � 2 P value �2

df � 1 P value �2
df � 2 P value

Class richness 8.469 0.015 0.306 0.580 0.878 0.645
Class evenness 0.051 0.975 0.043 0.835 4.324 0.115
Species richness 5.354 0.069 0.230 0.631 5.658 0.059
Species evenness 4.095 0.129 2.243 0.134 11.175 0.004
Phylogenetic diversity 8.642 0.013 0.066 0.798 7.195 0.027
aLikelihood ratio test (LRT) statistics with degrees of freedom (df) and P values for tests of effects of DNA
isolation protocol, stickleback population, and interaction between the two. LRTs were conducted by
comparing linear mixed models either including or excluding these fixed effects, plus random effects of fish
and fish nested within family (see Materials and Methods). Tests with P values of �0.05 are shown in
boldface type.
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Finally, among-fish community dissimilarity was highly correlated between DNA isola-
tion protocols based on Mantel tests (Data Set S1D).

We also evaluated whether relative abundances for taxonomic groups (class- and
species-level) might be affected by host population, based on comparison of lognormal
Poisson generalized linear models accounting for family nestedness. Although no
likelihood ratio tests were statistically significant after controlling the FDR at 0.1, 3
class-level groups and 25 species-level groups showed evidence for a population effect
by virtue of a delta AIC of �2, a delta BIC of � 0, and an uncorrected likelihood ratio
test (LRT) P value of �0.05 (Data Set S1B and C). Class-level groups BD-7, an unassigned
class from Bacteroidetes, and Clostridia were all three enriched in abundance in the
oceanic population relative to the freshwater population (Fig. S6D to F). The effect size
of population on the Clostridia group abundance, for example, was quite large. The
mean oceanic Clostridia count was 23259.559 (SEM � 3880.291), whereas the mean
freshwater Clostridia count was 3867.704 (SEM � 1417.775). Three species-level groups
with especially strong tendencies toward host population differences were the oceanic
enriched Sphingobacterium multivorum group, the freshwater-enriched Plesiomonas
shigelloides group, and an oceanic enriched, unassigned group from the family Clostri-
diaceae (Fig. S7D and F).

We detected a statistically significant interaction between host population (account-
ing for family) and DNA isolation protocol for six class-level and 25 species-level groups
(Data Set S1B and C), based on a delta AIC of �2, a delta BIC of �0, and an LRT FDR
controlled at 0.10. However, effect sizes for this interaction type were again relatively
small, as demonstrated by the abundance of a Sphingobacterium multivorum group
across population-protocol combinations (Fig. S7D). In this case, the mean population
difference in S. multivorum count was highest for DEP (4.497), followed by 1.688 and
2.912 for PCP and PFP, respectively.

Precision of gut microbiome diversity measurements is high and similar across
three DNA isolation protocols. We performed repeated measurements of individual
stickleback gut microbiomes obtained from replicate aliquots from whole-gut homo-
genates and using a single DNA isolation protocol per gut (see Fig. 1B). 16S data
generated from the same fish were extremely similar in taxonomic composition, relative

FIG 5 Reproducibility of OTU (and ASV) quantification across DNA isolation protocols increases nonlinearly
with log10-transformed mean relative OTU abundance. Vertical gray lines represent 95% confidence intervals
(CIs) for reproducibility estimates of 2,278 OTUs observed in at least 10 of 35 experimental fish. The solid black
line represents predicted reproducibility values from a logistic model fit to the OTU data. Dashed lines
represent predicted upper and lower bound CI values for reproducibility, also from logistic models fit to the
OTU data. The blue dotted line represents predicted reproducibility values from a logistic model fit to 783
ASVs resulting from the QIIME 2 analysis and observed in at least 10 of 35 experimental fish.
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to among-fish comparisons (Fig. S9A and D). We analyzed within-individual variation
based on the six gut subsamples per fish and found no significant effect of DNA
isolation protocol on precision for five alpha diversity metrics (Data Set S1E), including
class-level richness and evenness (Fig. S9), species richness and evenness (Fig. S9E and
F), and phylogenetic diversity (Fig. S9G). Similarly, we found no evidence for a signif-
icant effect of protocol on precision with respect to beta diversity (Data Set S1D),
including class- and species-level Bray-Curtis dissimilarity and weighted and un-
weighted UniFrac (Fig. 6; Fig. S9H to K). Furthermore, and consistent with our across-
protocol reproducibility analysis, the average degree of within-fish dispersion, relative
to among-fish dispersion, was especially low for unweighted UniFrac (Fig. 6).

DISCUSSION

One surprising insight from the recent characterization of microbiomes using high-
throughput sequencing has been the extensive diversity among individual hosts of the
same species (24–27). The fundamental sources of this interindividual variation remain
an active area of research. Rather than assuming that individual variation is vastly larger
than technical variation, and therefore insignificant, we and others (7, 28, 29) argue that
the relative magnitude of biological and technical variance components should be
measured using strong experimental design. This is particularly relevant in the context
of new and rapidly changing technologies for quantifying microbial diversity. Indeed,
variation in microbial diversity metrics may be heavily influenced by technical factors in
some cases, especially when molecular protocols are vastly different or suboptimal. For
instance, extremely low yields of microbial DNA exacerbate the influence of contami-
nant species (30, 31), which could negatively impact biological inference. Furthermore,
inferences based on some diversity metrics might be more susceptible to technical
variation, particularly those metrics that are more heavily influenced by sequences from
rare species whose abundance estimates may be more subject to sampling error.

In our experience, suspicions and intuition about the severe importance or unim-
portance of technical variation for 16S-based microbial ecology inference have been

FIG 6 Precision of beta diversity measurements is consistently high among DNA isolation methods, but the relative magnitude of
within- and among-fish community dissimilarity depends on the dissimilarity metric. Pairwise dissimilarity matrix heatmaps for the
precision experiment, including class- and species-level Bray-Curtis (A and B), and weighted and unweighted UniFrac (C and D),
illustrate low within-fish dissimilarity and higher among-fish dissimilarity. This pattern, however, is less evident for unweighted
UniFrac.
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extensively discussed. However, these effects have not been precisely quantified and
evaluated outside the purview of “mock communities” (30, 32) or differences among
research groups working on large-scale, collaborative efforts to understand the human
microbiome (7). While these studies and several others (for example, references 9, 10,
and 33 to 35), have been useful in identifying potential sources of technical variation
that may or may not restrict or bias biological inferences based on among-individual
variation, insufficient biological replication and/or inability to isolate specific technical
factors have limited their scope of inference. For example, authors working on the
Microbiome Quality Control Project point out that their carefully designed study was
“unable to assign significance to any specific fixed effects (i.e., individual protocol
variables), since in the small MBQC-base these were in large part confounded with
individual handling and bioinformatics laboratories” (7).

To our knowledge, no prior study has sampled dozens of individual hosts, in
combination with the controlled assignment of technical factor levels, to effectively
quantify reproducibility (and its uncertainty) in a biologically relevant context, although
smaller-scale studies have addressed similar themes (see above). We wanted to fill this
important void with a well-replicated comparison involving one potential source of
technical variation—DNA isolation protocol—and individual-level variation in the eco-
logical and evolutionary context of stickleback host genetic differences.

One of our significant findings is that the earliest steps in sample handling are
critical for improving downstream results. We found the process of dual bead beating
with tissue homogenate subsampling essential to the quantity and quality of DNA
isolated from adult threespine stickleback guts. Without this process, both lower yields
with higher variance and more-fragmented DNA were certain. The PowerFecal column-
based isolation protocol suffered most severely from a lack of double bead beating and
subsampling, perhaps owing to an overloading of the column and subsequent failure
to elute large DNA fragments. These results are significant, as low DNA yields are known
to amplify any effects of contamination (30, 31). Decreasing among-sample variance in
DNA attributes such as quantity, therefore, should reduce nonbiological variation
among 16S-based microbial profiles. In principle, this will increase the power of
statistical analyses, thereby reducing cost in the number of biological samples needed.
In the specific case of our study, these modifications were absolutely essential to
establishing a reasonable comparison of DNA isolation protocols. Before embarking on
16S sequencing for a large study, we recommend similar subsampling and optimization
for large sample types or sample types that have not yet been tested with commercial
kits. We also recommend that DNA yield and quality distributions for at least a random
subset of samples be reported in published 16S and metagenomic studies.

Our results confirm that among-individual differences in stickleback gut communi-
ties are extensive (23), consistent with work on the gut microbiome of humans (25) and
other hosts (27, 36). Although mean relative abundances of phyla in our experimental
fish were qualitatively similar to those of other stickleback populations and environ-
ments (23), we found substantial variation in community composition even among
male full siblings housed in the same tank. This is significant, as most ecological,
evolutionary, and biomedical studies of host-associated microbes rely on an under-
standing of among-host differences in the microbiome. However, previous studies have
not satisfactorily quantified the extent to which observed individual differences might
be due to technical variation introduced by factors such as the DNA isolation protocol.
We measured reproducibility (across three DNA isolation protocols) for a number of
commonly used microbial diversity metrics. We found that alpha and beta diversity
measurements of the stickleback gut microbiome were very reproducible, despite
having applied three fundamentally different DNA isolation protocols. As stated pre-
viously, this high reproducibility is predicated upon the proper initial treatment of
tissue through double beating and subsampling.

Interestingly, we observed an exception to high reproducibility in the case of
unweighted UniFrac, although 95% CI lower bounds were still above zero. Because
unweighted UniFrac does not account for differences in 16S sequence abundance, it
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magnifies the effect of rare sequences (37). To evaluate whether this property was due
entirely to rare, artificial OTUs originating from sequencing error (38, 39), we reanalyzed
beta diversity reproducibility for unweighted and weighted UniFrac using a recent
denoising approach to OTU/ASV picking (Deblur via QIIME 2). We found a substantial
(�2-fold) increase in across-protocol reproducibility for unweighted UniFrac after
denoising. However, despite this increased reproducibility for unweighted UniFrac in
QIIME 2 compared to QIIME 1, a clear difference in reproducibility between weighted
and unweighted metrics persisted in the QIIME 2 analyses (Table 1).

We emphasize that our data do not suggest that unweighted UniFrac-based mea-
sures of beta diversity are not reproducible in the general sense, but rather in the case
of our study, they were lower than metrics that take abundance into account. The
interpretation of reproducibility is contingent on the level of variation researchers wish
to understand, and our objective was to study reproducibility across DNA isolation
protocols (and repeatability across tissue subsamples) with respect to among-individual
variation. Unweighted UniFrac is known to be especially sensitive to sampling bias (40).
One recent study showed that unweighted UniFrac applied to resampled sequences
from the same HMP tongue dorsum libraries projected large within-library variation
relative to among-library variation, when this should be very low (41). This insight,
along with our current study, suggests that sampling bias associated with rare se-
quences disproportionately affects the potential to explain among-individual variance
with unweighted UniFrac compared to other metrics, an important consideration that
researchers should make when interpreting microbiome data, especially in light of
differences between similar, individual hosts. For example, the repeatability of mea-
surement for a given trait has historically been understood as an upper bound on the
heritability estimate for that trait (42–44).

Although reproducibility among DNA isolation methods was extremely high, we
observed statistically significant effects of DNA isolation protocol on some measure-
ments of the microbiota, including class richness, Faith’s phylogenetic diversity, and
relative abundance for at least 20 classes. Of these 20 classes, information regarding
Gram stain was available for 17, and four of these (23.53%) were Gram positive. Of all
58 classes tested for an effect of DNA isolation protocol, Gram stain data were available
for 41, and 5 of these (12.20%) were Gram positive. The four Gram-positive classes we
identified as likely subject to an influence of DNA isolation protocol (Actinobacteria,
Acidimicrobiia, Bacilli, and Clostridia) were all more abundant in phenol-chloroform
(PCP) samples than in DNA samples isolated using column-based (PFP and DEP)
protocols, so it is possible that the chemical properties of organic compounds like
phenol subtly enrich representation from Gram-positive lineages. It should be noted,
however, that the effect sizes for DNA isolation protocol in the above analyses were
rather small (see Results), and our experimental design was well powered to detect
even minor effects of DNA isolation protocol owing to many within-individual com-
parisons. Nevertheless, if researchers are interested in specific microbial lineages for a
particular study, they should be aware that DNA isolation protocols may indeed
influence abundance estimates for individual taxa.

We also examined the relationship between average OTU abundance and among-
protocol reproducibility. On the basis of our stickleback data, a very clear, sigmoidal
relationship suggested that reproducibility was indeed lowest, on average, for rare
OTUs, and that it improved substantially up to a mean OTU count of 10. The nature of
this function will almost certainly vary among systems and among sequencing depths
(recall that these data were downsampled to 105,000 reads per library), but it provides
a general reference for those interested in the reliable measurement of rare taxa with
16S sequencing. Even with high biological replication and relatively deep sampling, low
repeatability for some organisms may be unavoidable. This pattern is fundamentally
related to the reduced reproducibility we observed for unweighted UniFrac, in that
increased sampling error for rare sequences makes among-individual comparisons less
tractable.

We designed a second, small experiment to compare precision of 16S-based com-
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munity measurements (six gut subsamples per fish) among the three DNA isolation
protocols. We observed no significant difference in precision for richness, evenness,
phylogenetic diversity, or beta dispersion, among DNA isolation protocols. It should be
noted, however, that our sample of individual fish per protocol was limited (just two),
and that among-fish variation in microbial community structure was extensive (see
Fig. S9D in the supplemental material). As a result, our power to detect among-protocol
differences in precision was limited.

Although between-experiment comparisons were not a focus of our study, we did
observe that one taxonomic group (family Phormidiaceae) was relatively high in abun-
dance among most samples from the precision experiment (Fig. S9D) and low among
most fish from the DNA protocol reproducibility experiment. This difference could
reflect a temporal shift in Phormidiaceae (a cyanobacterial lineage) in our stickleback
housing system, as these two experiments were conducted months apart.

With added confidence that optimized DNA isolation protocols contribute minimally
to among-library variation, we then explored whether several factors might explain
individual host differences in the stickleback gut microbiome, with a special interest in
host genetic background. Recent studies of animal hosts, mostly featuring mammals,
have reported a stronger influence of environmental variables relative to host genetic
variation on gut microbiome variation (45–47). In our study, host family significantly
explained beta diversity among individuals, but family effects were confounded by tank
effects. Although all tanks in our study shared a common water system, the immediate
tank environment is likely to influence host-associated microbes. Future studies should
address host genetic effects like those at the family level by raising individuals related
to different degrees in replicated common garden experiments informed by traditional
quantitative genetics principles.

The population of origin was not a statistically significant factor for most of the gut
microbiome traits we measured; however, individual species-level groups such as those
associated with Sphingobacterium multivorum and Plesiomonas shigelloides showed
strong evidence for an association with stickleback line. Taxonomic groups from the
phylum Firmicutes (namely, the family Clostridiaceae and the genus Turicibacter) also
differed in abundance between the two stickleback lines. Host genotype influences on
Firmicutes appear to be common in mammals (48), and Turicibacter has been shown to
be heritable in both humans and mice (49, 50). While a subtle effect of host genotype
on the stickleback gut microbiome is consistent with the aforementioned insights from
animal hosts, it should be interpreted with some caution, as the nested nature of our
design and sampling only three families per population limited our statistical power to
test population-level hypotheses. Future studies that experimentally control environ-
mental effects carefully and sample more genetic variation at the population level (e.g.,
genome-wide association studies and large-scale common garden experiments) should
provide the power to confirm these still largely untested contributions to among-
individual microbiome variation. Notably, we detected minimal evidence for statistical
interaction between host population and DNA isolation protocol. Again, although some
of these tests were statistically significant, the associated effect sizes were rather small
(Fig. S5B and C and Fig. S7D). The mechanistic causes of these subtle interactions are
unknown, but it is possible that inorganic or organic compounds in the guts differing
in concentration between freshwater and oceanic stickleback could copurify with DNA
and affect downstream steps in library construction such as PCR, in a manner specific
to DNA from some microbial lineages.

Our current study revealed high reproducibility across the three protocols we tested,
and minimal concern that choice of DNA isolation protocol interacts with biological
factors of interest. In our experience, the DNeasy protocol (DEP) required the shortest
handling time, so we have adopted it in current studies of the stickleback gut
microbiome. Negligible influence from these technical factors may not be the case for
other biological systems or sample types, however, so we strongly encourage other
researchers to design their studies in ways similar to those presented here in order to
properly measure and minimize sources of technical variance. The payoff in limiting
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technical variation is potentially large in terms of cost of reagents, time, and animal
resources, especially when true biological signal is subtle. This concept is, of course,
easily extended beyond 16S data sets to high-throughput RNA sequencing (RNA-Seq)
and other high-throughput sequencing data. In summary, the complexity of commu-
nities and the sampling process can affect reproducibility and repeatability, but as we
show, not always to a great extent. The magnitude of these effects depends on the
biology of the system at hand and the diversity metric in question. Without properly
quantifying relevant technical and biological variance components of sequencing-
based microbial diversity metrics, however, it is impossible for our research community
to move forward with confidence in addressing core questions about host-microbe
interactions and microbial ecology in general.

MATERIALS AND METHODS
Rearing of adult stickleback, evaluation of DNA quality, and experimental design. (i)

Threespine stickleback husbandry and collection of gut samples. We collected guts from male adult
threespine stickleback (Gasterosteus aculeatus) derived from wild-caught Alaskan populations, which
have been maintained in the laboratory for at least 10 generations. All individuals were raised to an age
of 12 to 16 months, using standard protocols described in a previous publication (14). Briefly, fish were
raised from embryos fertilized in vitro, and larvae were fed twice daily with brine shrimp nauplii and
Zeigler larval AP100 diet. An equal parts mixture of Golden Pearl 800 –1000 micron juvenile diet, Otohime
C1, Zeigler zebrafish diet, and Hikari tropical micro pellets was fed twice daily to fish as juveniles and
adults. Fish were housed in a large, single-source recirculating system (5 ppt salinity) with a 10% daily
water change, in 20-liter tanks at a density of 20 to 30 fish per tank. Tanks were randomly positioned on
a single shelving rack roughly equidistant from the incoming water source. We maintained fish in an
approximately 1:1 sex ratio, with a photoperiod of 8-h light and 16-h dark (including 30-min dawn and
dusk).

To reduce among-individual variation owing to sex (23), we sampled males only, as confirmed by
DNA isolation from caudal fin clips and a PCR-based sex genotyping procedure (see reference 20). Fish
were also not fed for 24 h prior to sampling to reduce the amount of food in the gut. Upon euthanasia
by a lethal dose of MS222, the entire gastrointestinal tract of each fish, including the esophagus to just
anterior of the urogenital opening, was carefully removed, weighed, and quickly flash frozen in liquid
nitrogen in a screw-top tube containing nuclease-free homogenization beads (see below).

(ii) Initial assessment of DNA quality from three unmodified DNA isolation protocols. We
evaluated yield and quality of DNA isolated using a standard phenol-chloroform-isoamyl alcohol protocol
(PCP) and two commercial kit protocols commonly used in microbiome studies: MO BIO’s PowerFecal kit
(PFP) and the Qiagen’s DNeasy Blood and Tissue kit (DEP). We dissected whole guts from 52 adult
stickleback in our fish facility, randomly assigning 20 each to PCP and PFP, and 12 to DEP. In this initial
assessment of unmodified DNA isolation protocols, we used the entire gut to be consistent with previous
studies of stickleback gut microbiota (21, 23). In the case of PCP and DEP, each whole gut was dissected
and flash frozen (see above) in a tube containing five nuclease-free 3.2-mm stainless steel beads (catalog
no. SSB32; Next Advance). In the case of PFP, each gut was frozen in a tube containing �1-mm garnet
beads, which are standard issue for the kit. Next, we removed each tube containing a gut and beads from
�80°C and followed the manufacturer’s recommendations, with a few exceptions. We added 400 �l of
Qiagen buffer ATL in the case of PCP and DEP, and 750 �l of Bead Solution in the case of PFP. We then
homogenized guts in a Thermo Savant FastPrep FP120 with three 40-s bouts of beating at intensity level
6.5. Using the entire homogenate for each sample, we followed the instructions in the manuals of the
DEP and PFP kits. In the case of PCP, we followed the same posthomogenization lysis instructions as for
DEP, then combined a 650-�l aliquot of the lysate with 650 �l of 25:24:1 equilibrated phenol-chloroform-
isoamyl alcohol in a phase-lock gel tube, mixed by inversion, and centrifuged at 18,000 � g in a
bench-top microcentrifuge for 5 min. We transferred the aqueous layer to a new phase-lock gel tube,
added 500 �l of 24:1 chloroform-isoamyl alcohol, mixed by inversion, centrifuged again, and transferred
the aqueous layer to a 1.5-ml tube. We precipitated the DNA using 450 �l of isopropanol and 5-min
centrifugation at 5,800 � g, washed the pellet once with 70% ethanol and twice with 95% ethanol, air
dried the pellets for 10 to 15 min, and resuspended the pellet in 100 �l of Qiagen buffer EB. We
quantified DNA resulting from all three protocols using a Qubit 2.0 fluorometer (Invitrogen) and
evaluated fragment length distributions using a fragment analyzer (Advanced Analytical).

(iii) Design of experiments. After optimizing these protocols (see below), we designed two separate
experiments to evaluate the effects of several variables on inferred microbial community structure. For
these experiments, we used two entirely different sets of fish sampled from our fish facility at different
times and obtained multiple subsamples per fish gut. For the first experiment, each one of the 36
individual intestinal tracts was homogenized and then divided into three separate subsamples to be
analyzed using different DNA isolation protocols. This design effectively allowed us to measure among-
protocol technical variation based on within-host comparisons (reproducibility). These 36 fish were from
two different lab lines, specifically a freshwater (FW) line derived from the natural population “Boot Lake,”
and an oceanic (OC) line derived from the natural population “Rabbit Slough.” We sampled three
different full-sib families from each line and six fish per family. Each family was housed in a different tank
but in the same recirculating system. Our study design therefore enabled an assessment of the influence
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of host genetic background on the microbiota, a topic of great interest for the field of host-microbe
interactions (45, 46, 51). Figure 1A illustrates these components of the experimental design. Finally, using
a sample of six FW males from a seventh full-sib family, we sampled two guts for each protocol type (six
guts total), but we repeated six measurements (six subsamples) per homogenized gut to evaluate the
within-fish repeatability (precision) of each DNA isolation protocol. Figure 1B reflects the precision
assessment inherent in our study design.

Modified DNA isolation methods and Illumina 16S amplicon sequencing. (i) Standardized
preprocessing with 20-mg subsampling. In order to effectively compare the three DNA methods using
our experimental design, we standardized tissue preprocessing and introduced uniform mass tissue
subsampling for all gut samples. We removed each gut (in a screw-cap tube with five nuclease-free
3.2-mm stainless steel beads) from �80°C, added 800 �l of prewarmed Qiagen buffer ATL (with 0.5 �M
EDTA), and homogenized using the FastPrep FP120. We used three bouts of 40-s beating at intensity
level 6.5 to achieve a homogeneous mixture and then pipetted volumes from each sample to achieve
20-mg subsamples, as calculated from the original mass of each gut. For the reproducibility experiment
(Fig. 1A), three subsamples from each gut were taken, one for each of the three DNA isolation protocols
described below. For the repeatability experiment (Fig. 1B), six subsamples from each gut were taken, all
for a single DNA isolation protocol. Subsamples were transferred to screw-top tubes containing 100 �l
of 0.15-mm zirconium oxide beads (catalog no. ZrOB015; Next Advance) for future mechanical lysis of
microbes, flash frozen in liquid nitrogen, and stored at �80°C. These aliquots then received one of the
three DNA isolation treatments below. We also performed two “negative-control” DNA isolations for each
isolation protocol, in which the protocol was conducted starting with no gut and with or without the
addition of proteinase K (see below). Because our objectives did not include comparisons of accuracy
among DNA isolation protocols, as others (30, 32) have evaluated this, we did not incorporate controlled
assemblages of microbes (“mock communities”) in our experimental design.

(ii) Phenol-chloroform-isoamyl alcohol protocol (PCP). We removed homogenate subsamples
from �80°C and added prewarmed Qiagen buffer ATL to bring the total ATL volume in the tube to 676
�l. We then homogenized the samples by two 40-s bouts in the FastPrep FP120 at level 6.5, briefly spun
tubes, added 20 �l of proteinase K (20 mg/ml), mixed by aspiration, and incubated at 56°C for 30 min.
We added 4 �l of RNase A (100 mg/ml), mixed by aspiration, incubated at 37°C for 30 min, and then
transferred the entire volume of lysate to a new 1.5-ml tube, to which 500 �l of 25:24:1 equilibrated
phenol-chloroform-isoamyl alcohol was added. At this point, we carried out the remainder of the
phenol-chloroform protocol exactly as described above.

(iii) MoBio PowerFecal protocol (PFP). We removed homogenate subsamples from �80°C and
added prewarmed PowerFecal bead solution to bring the total volume of solution (ATL plus bead
solution) in the tube to 750 �l. We then added 60 �l of PowerFecal C1 solution, incubated at 65°C for
10 min, and then homogenized for two 40-s bouts in the FastPrep FP120 at level 6.5. We briefly spun
tubes, added 20 �l of proteinase K (20 mg/ml), mixed by aspiration, and incubated at 56°C for 30 min.
Then we added 4 �l of RNase A (100 mg/ml), mixed by aspiration, incubated at 37°C for 30 min, and
followed the instructions in the PowerFecal manual, starting with step 7, which is a centrifugation for 1
min at 13,000 � g to pellet and remove solids from the lysate. Finally, we eluted with 50 �l Qiagen buffer
EB and quantified DNA concentration as described above.

(iv) Qiagen DNeasy protocol (DEP). We removed homogenate subsamples from �80°C and added
prewarmed Qiagen buffer ATL to bring the total ATL volume in the tube to 776 �l. We then homogenized
samples by two 40-s bouts in the FastPrep FP120 at level 6.5, briefly spun tubes, added 20 �l of
proteinase K (20 mg/ml), mixed by aspiration, and incubated at 56°C for 30 min. We added 4 �l of RNase
A (100 mg/ml), mixed by aspiration, and incubated at 37°C for 30 min. We combined the entire volume
of lysate with 800 �l of Qiagen buffer AL and 800 �l of 100% ethanol to a new 15-ml screw-cap tube to
ensure adequate volume for the additional reagents. After briefly mixing the tube contents by aspiration,
we transferred 600 �l of the mixture to a DNeasy spin column, spun at 6,000 � g in a bench-top
microcentrifuge for 1 min, discarded flowthrough, and repeated four times, for the remainder of the
mixture. Next, we added 500 �l of Qiagen solution AW1, spun at 6,000 � g for 1 min, added 500 �l of
Qiagen solution AW2, spun at 18,000 � g for 3 min, added 500 �l of 80% ethanol, and spun at 18,000 � g
for 3 min. Finally, we eluted DNA with 100 �l buffer EB and quantified DNA concentration as described
above.

(v) Construction of 16S rRNA gene amplicon libraries and Illumina sequencing. We submitted
a 25 ng/�l dilution from each gut DNA sample to the University of Oregon Genomics and Cell
Characterization Core Facility (GC3F) for library amplification, cleanup, and sequencing. All six negative-
control samples were not diluted, as the level of DNA in these samples was lower than the detection limit
of our fluorometer. The GC3F generated 16S libraries from 200 ng of DNA template per sample using
custom primers 515F (5=AATGATACGGCGACCACCGAGATCTACACxxxxxxxxTATGGTAATTGTGTGCCAGCM
GCCGCGGTAA3=) and 806R (5=CAAGCAGAAGACGGCATACGAGATxxxxxxxxAGTCAGTCAGCCGGACTACHV
GGGTWTCTAAT3=), which are based on the primers described by Caporaso et al. (68) and which amplify
the “V4” 16S region but enable dual indexing (indexes represented by x’s in the above sequences). A
cocktail including 12.5 �l NEBNext Q5 Hot Start HiFi PCR master mix, 4.5 �l of 2.79 �M primer mix, and
8 �l of DNA template, was used for each library PCR. The thermal profile was as follows: initial
denaturation at 98°C for 30 s, followed by 22 cycles, with 1 cycle consisting of 98°C for 10 s, 61°C for 20 s,
and 72°C for 20 s, followed by a final extension step at 72°C for 2 min. Each library was cleaned twice
using 20 �l of Omega Mag-Bind RxnPure Plus beads and quantified by a Qubit fluorometer, at which
point 9.235 ng of DNA from each library (less for negative controls) were pooled. The GC3F
quantified the library pool using quantitative PCR (qPCR), combined it with a complex RNA-Seq
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library from an unrelated project, and sequenced 161-nucleotide (nt) paired-end reads in two
Illumina HiSeq 2500 lanes.

Processing of Illumina 16S data and statistical inference. (i) Sequence filtering and OTU
picking. Processing of sequences and OTU picking were primarily achieved using accessory scripts
from QIIME version 1.9.1 (52) and to a lesser extent our own custom scripts. We overlapped ends of
read pairs using QIIME’s join_paired_ends.py, and we demultiplexed the merged reads using QIIME’s
extract_barcodes.py and split_libraries_fastq.py. We used default arguments, except that we allowed
a maximum of two barcode errors when demultiplexing and invoked read truncation at 30 or more
consecutive low-quality base calls. This filtering process yielded 119.94 million total reads from the
144 gut libraries, and 4,957 total reads from the six negative-control libraries. We performed open
reference OTU picking using QIIME’s pick_open_reference_otus.py with default settings (53, 54),
which uses the Greengenes version 13.8 database as its reference (55). We then parsed OTUs by
taxonomic assignment and removed all OTUs of mitochondrial or chloroplast origin to exclude the
influence of host- and food-derived DNA. The total number of filtered OTU-assigned reads from gut
libraries was 87.109 million (mean � 604,920.326; SEM � 26,291.498). Negative-control libraries
produced exceedingly small numbers of OTU-assigned reads (418 for PCP, 348 for PCP_proK, 1,201
for PFP, 1,115 for PFP_proK, 644 for DEP, and 367 for DEP_proK). Given such a small likely
contribution of contaminating template to gut libraries, we did not exclude gut OTUs based on
information from the negative-control libraries.

To normalize coverage, we downsampled all libraries in the OTU table (including those from both
reproducibility and repeatability experiments) to 105,000 sequences each, which we deemed an optimal
trade-off between sequencing depth and retention of samples for analysis. This lead to the exclusion of
four libraries from the reproducibility study: all three samples from one FW fish (bringing the total
number of fish analyzed in this experiment to 35) and the PCP library from a second FW fish. We then
generated count summary tables for all taxonomy levels using QIIME’s summarize_taxa.py, but down-
stream analyses described in this report feature phylum, class, species, or individual OTU counts (see
Results). We used QIIME’s core_diversity_analyses.py to generate phylogenetic diversity metrics separately
for the reproducibility and precision studies, including Faith’s phylogenetic diversity (56), unweighted
UniFrac (57), and weighted UniFrac (37).

To evaluate the robustness of our primary results to different OTU picking strategies, we also
performed ASV (amplicon sequence variant) definition and enumeration using the Deblur denoising
approach (38), implemented in QIIME 2 (version 2018.8.0). Briefly, using QIIME 2, we merged the
demultiplexed read pairs with vsearch (join-pairs), quality filtered using default settings of quality-filter
(q-score-joined), and denoised using deblur (denoise-16S) with a trimming length of 251 nt. To assign
taxonomy to the ASVs, we first trained a sequence classifier based on the GreenGenes 13_8 99%-
clustered OTU database using feature-classifier (fit-classifier-naive-bayes), then applied it to our ASVs using
feature-classifier (classify-sklearn). ASVs were filtered and enumerated in samples as described above,
leading to 5852 ASVs and 58.598 million total ASV-assigned reads across gut libraries. Subsequent
analyses relied on downsampling to 74,300 reads per sample, which was the deepest downsampling
level that would allow direct comparison with the samples used in the primary (QIIME 1) analyses.
Phylogenetic diversity metrics were calculated using diversity (core-metrics-phylogenetic) and based on a
phylogenetic tree inferred for ASVs using phylogeny (align-to-tree-mafft-fasttree). Downstream analyses
using the QIIME 1-generated OTUs (and a subset of these analyses using the QIIME 2-generated ASVs)
were based on the respective downsampled count tables and phylogenetic diversity metrics described
above and were conducted using version 3.3.2 of the R statistical language (58).

(ii) Reproducibility of alpha and beta diversity metrics. We evaluated relative contributions of
biological (among-fish) and technical (within-fish) variation using a repeated-measures linear model
framework. In particular, and following Lessels and Boag (59), we calculated “repeatability” (reproduc-
ibility in this case) as:

rprotocol �
sA
2

(sW
2 � sA

2 )

where sA
2 is the among-fish variance component and sW

2 is the within-fish (among-protocol) variance
component, as calculated from mean squares in an analysis of variance (ANOVA) (59). rprotocol ranges from 0
to 1, with high values indicating increasingly small contributions of DNA isolation protocol relative to
individual host contributions, which are of interest to ecologists and evolutionary biologists. A perfect
reproducibility of 1.0, for example, would indicate zero within-fish variance, that is, no effect of protocol in this
situation. Alternatively, a repeatability of 0.5 would be interpreted as equal variance contributions from
individual and protocol. We calculated reproducibility for class richness, class evenness, species richness,
species evenness, and Faith’s phylogenetic diversity using variance components estimated by the lmer
function from the R package lme4 (60). For each metric, we also resampled (with replacement) 35 individual
fish 500 times and used the distribution of reproducibility values from the 500 bootstrap replicates to
calculate 95% confidence intervals (CIs). We also applied this approach to multivariate measures of commu-
nity dissimilarity (class- and species-level Bray-Curtis dissimilarity and weighted and unweighted UniFrac) by
extracting the above variance components using the R function nested.npmanova from the BiodiversityR
package (61). Furthermore, we calculated population-specific reproducibilities (and confidence intervals) for
all of the above variables to evaluate whether reproducibility differed depending on host population. We also
estimated reproducibility for weighted and unweighted UniFrac based on denoised ASVs generated from the
QIIME 2 workflow to evaluate the potential influence of error introduced by OTU picking.
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(iii) Testing effects of DNA isolation protocol, host population, and their interaction on alpha
diversity, beta diversity, and relative taxon abundances. For the same five alpha diversity variables
mentioned above, we evaluated significance of the fixed effects of protocol and stickleback population
using mixed linear models that included the random effect of individual nested within family. Note that
family is indistinguishable from tank in our design, so family and tank effects cannot be separated. We
fit full and reduced models using lmer from the R package lme4 (60) and tested null hypotheses of no
population, protocol, and population-by-protocol interaction effects on each diversity variable using
likelihood ratio tests.

We also tested the influence of these factors on four measures of community dissimilarity (beta
diversity) using two permutational analysis of variance (PERMANOVA) tests (62), as necessitated by
the complexity of our experimental design. First, we evaluated the effects of DNA isolation protocol,
family (tank), and their interaction using the adonis2 function from the R package vegan (63),
allowing within-fish comparisons by stratified permutation. Second, we evaluated the effect of
population, accounting for nonindependence of individuals within the same family (tank), separately
for the three DNA isolation protocols using the function nested.npmanova from the BiodiversityR
package (61). Finally, to test whether among-fish community dissimilarity was correlated between
DNA isolation protocol pairs, we performed Mantel tests using the mantel function from the R
package vegan (63).

To evaluate effects of DNA isolation and stickleback population on relative abundances of class-level
and species-level OTU groups (“L3” and “L7,” respectively, from summarize_taxa.py), we fit generalized
linear mixed models that included the random effect of individual nested within family. We considered
only those taxonomy groups represented by at least five counts in at least nine libraries. Given the
overdispersed nature of these count data, we fit Poisson lognormal models using the glmer function
from the R package lme4 (60) by including an observation-level effect in each model and by specifying
the “Poisson” family of generalized linear model. Because 16S data provide information about relative,
as opposed to absolute, abundances of the organisms in each sample, it should be acknowledged that
differences in OTU and taxonomic group counts among samples could reflect compositional differences
in the community as opposed to organism-specific ones. We evaluated the potential importance of each
effect for each taxonomy group using false-discovery rate-controlled (64) likelihood ratio tests, Akaike
information criterion (AIC) and Bayesian information criterion (BIC), in combination with interpretation of
effect sizes.

(iv) OTU rarity and reproducibility of relative OTU abundance estimates. We measured the
reproducibility of relative abundance estimates for 2,278 individual OTUs that were present in one or
more libraries from at least 10 of the 35 fish from our reproducibility experiment. We estimated
reproducibility using the same general repeated-measures framework above, except that we used the R
package rptR (65) to calculate reproducibility and its 95% confidence interval for each OTU. We used the
rpt function of rptR because it allows the flexibility of fitting an overdispersed Poisson generalized linear
model and implements computationally efficient CI construction by parametric bootstrapping. We
characterized the relationship between OTU abundance reproducibility and average OTU abundance by
fitting three logistic models: one for the point estimate, one for its 95% CI upper bound, and one for its
95% CI lower bound. The logistic model parameterization was as follows:

yi �
�

1 � e(�	xi)⁄�

where y is the reproducibility of abundance, its CI upper bound, or its CI lower bound for OTU i, x is the
logarithm to base 10 of the among-library mean abundance of OTU i, � is the asymptote, � is the
inflection point in units of x, and � is the steepness of the relationship at inflection. We fit these logistic
models using the R package nls2 (66). To evaluate whether denoised, QIIME2 sequence variants (ASVs)
showed a similar relationship between reproducibility and mean abundance, we performed the same
type of analysis as described above, but with reproducibility point estimates among 783 individual ASVs
that were present in one or more libraries from at least 10 of the 35 fish.

(v) Diversity metric precision. We measured the precision with which each of several alpha and
beta diversity metrics was estimated, comparing across the three DNA isolation protocols. This was made
possible by sampling two guts for each protocol and six technical replicates per gut (Fig. 1B). In this case,
within-fish variance was attributable only to tissue subsampling and technical differences among the six
libraries prepared identically, and not protocol differences. Because we sampled only two fish for each
DNA isolation protocol, we could not effectively apply the repeatability framework used in the repro-
ducibility study (see above), which relies on adequately sampling across-individual variation. Instead, we
conducted Levene’s tests according to Sokal and Rohlf (67) to test whether the average absolute
deviation from group (individual gut) medians was significantly different among the three DNA isolation
protocols. We applied this test to class- and species-level richness and evenness and to Faith’s phylo-
genetic diversity. We conducted the same type of test for class- and species-level Bray-Curtis dissimilarity
and for weighted and unweighted UniFrac, but we considered distance between observation and group
(individual gut) centroid as the response variable.

Data accessibility. Merged, cleaned 16S sequences for all individuals and sample metadata are
available via the following figshare doi links: https://doi.org/10.6084/m9.figshare.7616264.v1 and https://
doi.org/10.6084/m9.figshare.7616276.v1, respectively.
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