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Abstract
The ultimate aim of proteomics is to fully identify and quantify the entire
complement of proteins and post-translational modifications in biological
samples of interest. For the last 15 years, liquid chromatography-tandem mass
spectrometry (LC-MS/MS) in data-dependent acquisition (DDA) mode has
been the standard for proteomics when sampling breadth and discovery were
the main objectives; multiple reaction monitoring (MRM) LC-MS/MS has been
the standard for targeted proteomics when precise quantification,
reproducibility, and validation were the main objectives. Recently,
improvements in mass spectrometer design and bioinformatics algorithms have
resulted in the rediscovery and development of another sampling method:
data-independent acquisition (DIA). DIA comprehensively and repeatedly
samples every peptide in a protein digest, producing a complex set of mass
spectra that is difficult to interpret without external spectral libraries. Currently,
DIA approaches the identification breadth of DDA while achieving the
reproducible quantification characteristic of MRM or its newest version, parallel
reaction monitoring (PRM). In comparative  identification andde novo
quantification studies in human cell lysates, DIA identified up to 89% of the
proteins detected in a comparable DDA experiment while providing
reproducible quantification of over 85% of them. DIA analysis aided by spectral
libraries derived from prior DIA experiments or auxiliary DDA data produces
identification and quantification as reproducible and precise as that achieved
by MRM/PRM, except on lowabundance peptides that are obscured by
stronger signals. DIA is still a work in progress toward the goal of sensitive,
reproducible, and precise quantification without external spectral libraries. New
software tools applied to DIA analysis have to deal with deconvolution of
complex spectra as well as proper filtering of false positives and false
negatives. However, the future outlook is positive, and various researchers are
working on novel bioinformatics techniques to address these issues and
increase the reproducibility, fidelity, and identification breadth of DIA.
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Introduction
For the last 15 years, liquid chromatography-tandem mass spec-
trometry (LC-MS/MS)-based proteomics has provided broad detec-
tion and relative quantification—through chemical or metabolic 
labeling—of thousands of proteins across a variety of biological 
samples using a data-dependent acquisition (DDA) strategy1–4. In 
recent years, alternative LC-MS/MS targeted acquisition strategies, 
such as multiple-reaction monitoring (MRM)5–7 and parallel reac-
tion monitoring (PRM)8, have provided precise and reproducible 
absolute quantification of up to hundreds of proteins. The ultimate 
goal of proteomics is the development of acquisition strategies that 
have both the breadth of DDA and the precision of MRM/PRM 
to provide reproducible identification and quantification of every 
protein in any biological sample. Although no single acquisition 
strategy can yet achieve this goal, recent advances in hardware and 
software show that a recently resurfaced strategy9, data-independent 
acquisition (DIA), may provide a viable path to this goal10. Below 
is a discussion of DDA, MRM/PRM’s shortcomings, DIA’s circum-
vention of these shortcomings, current software to analyze DIA 
spectra, and efforts to further improve DIA analysis.

All LC-MS/MS methods discussed in this article are bottom-up pro-
teomics: Proteins are enzymatically digested into peptides which 
then are separated using high-performance liquid chromatography 
(HPLC), ionized, isolated, fragmented, and detected in the mass 
spectrometer as they elute from the HPLC. HPLC delivers peptides 
into the mass spectrometer for a period of time (tens of minutes 
to a few hours, depending on the application), separating the pep-
tides according to their physicochemical characteristics4,11, thus 
increasing sample coverage. In LC-MS/MS methods, three events 
occur in the mass spectrometer: (a) ionization: peptides elute into 
the mass spectrometer from the HPLC and are ionized; (b) MS1 
scan: the abundance and mass-to-charge ratios (m/z) of all ions 

eluting at a given time are measured; and (c) MS2 scan: some or 
all detected ions are fragmented, and the abundances and m/z’s of 
the fragments are measured and recorded. Different LC-MS/MS 
methods vary in how ions are selected and measured in the MS2 
scan. Figure 1 shows a cartoon schematic of how peptides are iso-
lated, fragmented, and analyzed by a mass spectrometer working 
on DDA, MRM, PRM, or DIA modes.

In DDA, a subset of the most abundant ions reaching the mass 
spectrometer detector during an MS1 scan are individually isolated 
and fragmented in sequential MS2 scans (Figure 1 and Figure 2A), 
and each MS2 scan (Figure 2C) can be analyzed with a database 
search algorithm1,4. Currently, most instruments can perform a DDA 
cycle with one MS1 scan and 10 MS2 scans within 2 seconds. DDA 
typically yields thousands of protein identifications. Unfortunately, 
irreproducibility and imprecision are fundamental to DDA’s design; 
if too many peptide species co-elute and appear in a single MS1 
scan, then DDA stochastically samples only the most abundant 
peptides and misses the rest. This approach diminishes reproduc-
ibility and prevents the measurement of low-abundance peptides9. 
Additionally, to survey as many peptides as possible, DDA deliber-
ately samples each peptide species only once or twice, preventing 
precise absolute quantification that requires multiple measurements 
per peptide. DDA analysis has been used for a variety of studies, 
including the characterization of epidermal growth factor receptor 
(EGFR) signaling networks12,13, the characterization of the proteome 
on different mouse organs14,15, identification of protein interaction 
partners16–18, and description of the role of viral infections in modu-
lating host proteomes18–21, which had been thoroughly covered in a 
special issue of the journal Proteomics22. In spite of its flaws, DDA’s 
flexibility, breadth of detection, and the simplicity of its setup and 
analysis, make DDA the preferred LC-MS/MS method among the 
wider scientific community. Additionally, DDA allows relative 

Figure 1. A cartoon schematic of how peptides are isolated, fragmented, and analyzed by a mass spectrometer working in data-
dependent acquisition (DDA), multiple reaction monitoring (MRM), parallel reaction monitoring (PRM), or data-independent acquisition 
(DIA) modes. In DDA, MRM, and PRM, single precursor ions are isolated, fragmented, and analyzed in an MS2 scan by the mass spectrometer. 
In DDA mode, the precursor ions are chosen by the instrument on the basis of abundance. In MRM and PRM, the precursor ions to be 
analyzed are fixed by the user. DIA is different form the methods above in that all precursor ions within a selected mass range are isolated, 
fragmented, and analyzed in a single MS2 scan. MS1, scan in which the peptide ions entering the mass spectrometer at a given time are 
identified; MS2, scan in which the fragments of all (or some) of the peptides that are in the mass spectrometer at a given time are identified.
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Figure 2. Tandem mass spectrometry (MS/MS) analysis in data-dependent acquisition and data-independent acquisition50. (A) Data-
dependent acquisition (DDA) acquires MS/MS scans with narrow isolation windows centered on peptide precursors detected in an MS scan 
over a wide range of masses: 400 to 1,600 mass-to-charge ratio (m/z) here. (B) Data-independent acquisition (DIA) acquires MS/MS scans 
with wide isolation windows that do not target any particular peptide precursor. Instead, the scans are arranged side-by-side to collectively 
cover a desired precursor m/z range (500 to 900 m/z here) comprehensively, and several precursors are fragmented together in a single MS2 
event (four here: identified peptide M and peptides N, O, and P). (C) Fragment ion information for the peptide precursor VLENTEIGDSIFDK++ 
is present in a single MS/MS spectrum in a DDA analysis, (D) but it can be extracted over time from DIA data and used for quantification owing 
to the repetitive MS/MS sampling cycle of DIA. Adapted with permission from Egertson et al.46.

quantification of peptides between selected samples through a vari-
ety of chemical labeling schemes—e.g., isotopic (stable isotope 
labeling by amino acids in cell culture, or SILAC)23 or isobaric (iso-
baric tags for relative and absolute quantitation, or iTRAQ)24 labeling.

Alternatively, the targeted methods MRM and PRM avoid the 
imprecision and irreproducibility of DDA by focusing MS2 scans 
on only a small set of predetermined and previously identified 

peptides. Instead of selecting the top n precursors in an MS1 scan 
for further fragmentation in MS2 scans, these methods select only 
precursors and fragments with the m/z and elution time that match 
a pre-specified peptide of interest. The knowledge of a peptide’s 
elution time, MS1 m/z value, and robustly detectable fragments is 
determined prior to the MRM/PRM experiments by previous DDA 
identification or MS/MS measurement of its synthetic version in 
a simplified background or both. In MRM, for each MS1 scan, a 
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subset of fragment ions is measured in the subsequent MS2 scan25, 
whereas in PRM, all of the fragment ions are measured8. In both, 
the same precursors are selected and fragmented multiple times to 
acquire more precise quantification of fewer peptides, compared 
with DDA. MRM was developed first and has been shown to 
robustly quantify tens of blood plasma biomarkers of low abundance 
across laboratories toward clinical use6 and tens of low-abundance 
transcription factors and kinases in human cells7. Currently, the 
Clinical Proteomics Tumor Analysis Consortium (CPTAC)26 
database hosts a collection of 679 MRM assays for human pro-
teins. PRM, which succeeded MRM, outperforms it in terms of 
throughput and absolute quantification thanks to the use of high-
resolution spectrometers capable of parallel fragment analysis8,27. 
PRM is still evolving; however, it has already been used success-
fully to address difficult proteomics problems in human health, 
such as the role of low-abundance polyubiquitin chains28 in Parkin-
son’s disease29, and in plant biology to monitor the degradation of 
low-abundance peptides in Arabidopsis thaliana30.

DIA is like MRM/PRM in that it repeatedly samples the same pep-
tides for more precise quantification, but it differs from them and 
DDA by dispensing with the isolation of individual peptide species 
and instead repeatedly selecting mixtures of peptide species within 

large, pre-specified mass ranges (Figure 1 and Figure 2B) for MS2 
scans. DIA is therefore guaranteed to sample all peptides within 
the selected mass ranges, allowing for the identification of all suf-
ficiently abundant peptides within them if the resulting spectra are 
properly interpreted10.

Proper interpretation of DIA data is currently problematic because 
the complex MS2 scans contain mixtures of peptides and therefore 
are more difficult to analyze. Fortunately, recent developments in 
bioinformatics software have adequately overcome this DIA issue, 
so that DIA now closely matches DDA in the number of peptide 
identifications while still allowing precise quantification of most 
of them. Quantification relies on comparing DIA spectra to sets 
of annotated and refined peptide-MS2 spectrum matches from 
DDA experiments (or the same DIA experiment in DIA-Umpire’s 
algorithm) called spectral libraries that show accurate, empirically 
determined fragmentation patterns for each peptide in the library. 
However, DIA is currently unable to match the precision of MRM 
or PRM in measuring very low-abundance peptides, likely because 
their signals are dwarfed by those from abundant co-eluting pep-
tides. A brief comparison of DDA, DIA, and MRM/PRM with 
respect to precision of quantification, breadth of identification, ease 
of setup and analysis, and reproducibility, is shown in Table 1.

Table 1. Advantages and disadvantages of data-dependent acquisition, parallel reaction monitoring/multiple reaction monitoring, 
and data-independent acquisition methods.

Method Instrument setup Ease of data analysis Precision of peptide 
quantification

Reproducibility of 
peptide identification

Breadth of peptide 
identification

DDA Easiest 
Requires user selection 
of precursor m/z range 
and frequency of 
precursor scans. Is the 
default mode of use 
on most commercial 
instruments.

Easiest 
Many convenient 
and comprehensive 
pipelines for the 
analysis of DDA 
spectra have been 
developed over more 
than 20 years48,51,52.

Low/Moderate/High 
Spectral counts (low), 
isobaric-tag labels (moderate), 
or SILAC (high) can be used 
for relative quantification of 
protein abundance across 
samples. Hard to use for 
absolute quantification.

Lowest 
Run-to-run peptide 
identification overlap 
for a given sample is 
around 60%53.

Highest 
Samples and 
identifies a single 
time as many 
peptides as can be 
individually isolated.

PRM/MRM Hardest 
Requires prior 
identification of 
peptides and, in 
MRM, selection 
of reproducible 
fragments that do not 
exhibit interference54.

Moderate 
A few pipelines have 
been developed over 
the past few years but 
require some manual 
curation to identify 
and quantify fragment 
chromatograms54.

Highest 
Provides good relative 
peptide quantification and 
can be coupled with heavy 
labeled reference peptide for 
absolute quantification. Most 
sensitive method because of 
high signal-to-noise ratio54.

Highest 
Run-to-run peptide 
identification overlap 
for a given sample is 
more than 85%54.

Low 
Repeatedly samples 
and identifies a small 
set of pre-specified 
peptides54.

DIA Easy 
Requires user 
selection of precursor 
m/z windows for MS1 
and MS2 scans.

Hardest 
Requires multiple 
steps from multiple 
experiments to compile 
spectral libraries, with 
more parameters to 
choose in recently 
developed, not-yet-
established pipelines.

Moderate/High 
Similar to PRM/MRM but 
more vulnerable to variation 
caused by interference from 
other peptides32–37,39–45,47,50–54.

High 
Similar to PRM/MRM 
but more vulnerable 
to variation caused by 
interference from other 
peptides32–37,39–45,47,50–54.

High 
Repeatedly samples 
every peptide 
within pre-specified 
m/z windows and 
identifies those 
whose signals can 
be successfully 
deconvolved54.

DDA, data-dependent acquisition; DIA, data-independent acquisition; MRM, multiple reaction monitoring; MS1, scan in which the peptide ions entering the 
mass spectrometer at a given time are identified; MS2, scan in which the fragments of all (or some) of the peptides that are in the mass spectrometer at a given 
time are identified; m/z, mass-to-charge ratio; PRM, parallel reaction monitoring; SILAC, stable isotope labeling by amino acids in cell culture.
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The complexity of MS2 spectra greatly impacts the sensitiv-
ity of the downstream analyses and therefore must be considered 
when planning a DIA experiment. Two main variables determine 
the complexity and interpretability of the spectra: the number 
of proteins present in the sample and the precursor m/z window 
widths from which ions are isolated and fragmented. The effect 
of the number of proteins present is shown in Figure 3, which 
describes the results of a study in which 345 synthetic peptides 
were spiked into water, yeast lysate, or human lysate backgrounds 
in concentrations varying from 30 to 0.058 fmol/µL and then ana-
lyzed via relatively wide precursor isolation windows of 25 m/z31 
(see Supplementary material). The sensitivity of peptide detec-
tion decreases with the protein complexity of the organism, where 
the yeast lysate is more complex than the water background and 
the human lysate is more complex than the yeast lysate, with an 
average of 32,993 unique human, trypsin-digested peptide ions 
possibly falling within each 25-m/z window compared with the 
7,287 yeast peptide ions. Sensitivity and precision may be increased 
by shortening the width of the precursor isolation window, thereby 
decreasing the number of peptides represented in each MS2 
spectrum. However, this decreases coverage across the total precur-
sor m/z range and therefore the number of peptides to which the 
analysis may be sensitive. Therefore, experimentalists must bal-
ance the effects of sample complexity, isolation window width, and 
desired coverage on sensitivity.

The main reason for the decrease in sensitivity is the increased 
likelihood of fragment ion interference in complex spectra, which 
occurs when multiple co-eluting peptides share a fragment ion 
peak. Interference undermines the elution profile correlation 
between a peptide’s fragments and the fragments’ correlation to 
spectral libraries on which many DIA analysis methods rely. In an 
analysis of synthetic peptides spiked into human urine, SWATH-
Prophet32, a software tool further described below, estimated that 
at least 24% of confidently identified peptides showed evidence 
of fragment ion interference that increased the variance of their 
quantification. This percentage is likely much higher in unidenti-
fied peptides and this is the likely cause of the peptides’ invisibility 
to the software. Therefore, further progress in the interpretation of 
DIA spectra should circumvent the problem of interference, which 
SWATHProphet32 has begun to do by identifying and disregarding 
fragments affected by interference.

Data-independent acquisition strategies
In all DIA methods, each MS2 scan contains fragments from every 
peptide within one or more pre-specified precursor m/z windows. 
Each window is repeatedly sampled so that each peptide is frag-
mented multiple times. The earliest and most common DIA method 
is a sequential sampling strategy9,33 (Figure 2B), in which an m/z 
range covering most peptides of interest is split into a sequence 
of non-overlapping windows, usually of equal but sometimes of 

Figure 3. Effect of peptide concentration and sample complexity on identification sensitivity31. Varying concentrations of 345 synthetic 
peptides were spiked into three sample backgrounds, subjected to data-independent acquisition (DIA), and analyzed by OpenSWATH. Lines 
show the number of spike in peptides identified at a 5% false discovery rate (FDR) in the different samples.
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variable size depending on the m/z distribution of the peptides of 
interest. For each window in the sequence, all of the precursors 
falling into that window are fragmented together and measured in 
an MS2 scan. The machine repeats the sequence throughout the full 
HPLC elution gradient. The time needed to complete the traversal 
of the sequence is on the order of a few seconds, such that every 
peptide can be sampled at least a few times during its elution.

An alternative DIA method, MSX34, incorporates multiplexing and 
an element of randomness to the sequential sequencing to increase 
precision in associating a precursor ion to its fragments. However, 
this method is compatible only with selected mass spectrometers in 
which software controllers have been modified to accept random 
sampling of mass range windows. The precursor m/z windows are 
smaller and more numerous than in the sequential method, but each 
MS2 scan is multiplexed. Each scan contains fragmented precur-
sors from multiple, randomly chosen non-contiguous windows, 
such that the precursors span the same total m/z length in each MS2 
scan. Post-processing of the MS2 spectra solves a system of linear 
equations to infer from which smaller precursor window each frag-
ment ion peak originated. The resulting de-multiplexed MS2 scans 
allow a modest increase in peptide identifications compared with 
scans produced from non-random, contiguous windows.

Computational analysis of spectra
Although traditional algorithms for identifying peptides from DDA 
spectra can be applied to DIA spectra analysis, these algorithms are 
not appropriate for DIA for two reasons: they incorrectly assume 
that each MS2 scan contains fragments from just one peptide, and 
they ignore the dynamic pattern of elution profiles in DIA spectra. 
Consequently, three main classes of computational algorithms have 
emerged to specifically analyze DIA data that accommodate the 
complexity and time variation in DIA spectra. The first two classes 
are for untargeted, discovery-based identification, and the third is for 
precise quantification of previously identified peptides from spectral 
libraries. The main challenge of the algorithms below is control-
ling the false discovery rate among the identified peptides while 
identifying all (or most) real peptides in the sample of interest.

Deconvolution of MS2 scans over time followed by database 
search
These methods use a pre-processing step that deconvolves DIA 
MS2 scans into multiple pseudo-spectra, each containing the frag-
ments of only a single peptide species in the mixture. The intensities 
of different fragments of the same peptide species should correlate 
over elution time, and the pre-processing step uses this correlation 
to assign fragment ions from MS2 scans to their intact peptide spe-
cies in MS1 scans. These pseudo-spectra then can be searched by 
using a traditional DDA database search method.

DIA-Umpire35 and DeMux36 are two strategies that take this 
approach. They differ in the specific algorithms used to group ions 
and compile them into deconvolved spectra. DIA-Umpire tends to 
work better because it considers isotope peak distributions in MS1 
scans to narrow down candidate peptides, finding up to 89% of the 

peptides identified by analogous DDA experiments. DIA-Umpire 
also includes additional methods that generate new reference/
library spectra, incorporates prior library spectra, and uses them for 
further steps in protein identification and quantification, achieving 
on average a 0.931 R2 correlation in the quantifications of peptides 
between replicates. This strategy works in a fashion analogous 
to DDA experiments in that it identifies many peptides, but also 
the strategy provides precise DIA quantification of the identified 
peptides35.

Dot-product scoring with additional heuristics
These strategies are inspired by traditional database searching 
and do not focus on using dynamic patterns to identify peptides. 
Instead, they include other heuristics to adapt searching to a DIA 
context. They score each peptide against each observed spectrum 
by computing the dot-product of the peptide’s theoretical spec-
trum against each observed spectrum, much like traditional DDA 
search algorithms. However, these methods introduce additional 
heuristic filtering steps, such as considering only observed spectra 
that match a threshold number of peaks in a theoretical spectrum. 
The first example of this strategy was FT-ARM37. However, a more 
recent method, Pecan38, contains additional heuristics as well as a 
discriminative model to combine them, so it performs better than 
FT-ARM. Pecan is available through the Skyline34–37,39 graphical 
user interface, which provides convenient visualization, annota-
tion, and analysis of mass spectra acquired by DDA, DIA, and 
MRM/PRM.

Chromatogram scoring with spectral libraries
Strategies in this category are adapted from methods used to analyze 
PRM/MRM spectra, because both DIA and MRM/PRM repeat-
edly sample the same peptides to obtain sequences of fragment 
ion intensities over elution time (fragment ion chromatograms; 
Figure 2D). These methods take library spectra as input (compiled 
from prior DDA peptide identifications or prior DIA-Umpire iden-
tifications) and extract fragment ion chromatograms at the peaks 
in the library spectra. Potential elution peaks of each peptide from 
these fragment ion chromatograms are evaluated on the basis of 
many criteria, including how well the fragment ions correlate over 
elution time and how well their relative intensities match their cor-
responding library spectrum. Elution peaks are evaluated by using 
a discriminative model that combines these criteria to distinguish 
real peptide signals from decoy peptide signals. These methods also 
quantify proteins by quantifying the fragment ion chromatograms 
of their peptides.

OpenSWATH31, SWATHProphet32, Spectronaut40, and a module in 
DIA-Umpire35 all implement this strategy. Skyline39 provides elu-
tion peak quantification but not statistical validation. OpenSWATH31 
has been shown to achieve coefficients of variation of between 
0% and 20% on 345 spike-in peptides across 256-fold concentra-
tion differences in a yeast lysate. In a series of human lysate runs, 
Spectronaut40 achieved a 98% peptide identification reproducibility 
rate from run to run on DIA data compared with 49% on DDA data 
on 26,738 peptides covering 3,690 proteins.
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The class of search methods to be used depends on the specific 
context of the experiment. If no library spectra are available, then 
Pecan or DIA-Umpire must be used. No published direct compari-
son yet exists between the two, so the choice depends on how they 
fit into your bioinformatics pipeline. DIA-Umpire includes its own 
pipeline for library spectrum generation and automated quantifica-
tion. Pecan is incorporated into Skyline39 such that visualization, 
annotation, and semi-automated quantification are convenient. If 
library spectra are available, then a method with chromatogram 
scoring should be used. Again, no direct comparison is available, but 
the different chromatogram scoring algorithms are similar enough 
such that one can use the tool that best fits into one’s pipeline.

Examples of studies facilitated by the increased 
breadth and precision of DIA
Here, we describe the use of algorithm 3, chromatogram scoring 
with spectral libraries, on two large quantitative studies whose 
insights critically depend on the breadth, reproducibility, and quan-
titative precision of DIA. The first study characterizes plasma pro-
teome variation between monozygotic and dizygotic twins41 and 
elucidates biomarker variation over time. Its inclusion of both types 
of twins allows the quantification of variation caused by genetics, 
the environment, and time. The study sampled, at two time points, 
blood from each person in 22 pairs of adult fraternal twins and 
36 pairs of adult identical twins, resulting in 232 sets of DIA experi-
ments. The spectral library used to identify and quantify peptides 
consists of 43,000 peptides that represent 1,667 unique proteins, 
compiled from a pre-existing library42 and supplementary DDA 
data. OpenSWATH analysis was able to identify 1,904 of these pep-
tides (342 proteins) in all 232 samples and quantify 76% of these 
with coefficients of variation of less than 25%. Notably, 42 of the 
identified proteins are approved by the US Food and Drug Admin-
istration for clinical assays. The breadth and precision of quantifi-
cation vastly surpassed prior attempts using antibody arrays43 and 
could be achieved only by using DIA rather than PRM or DDA.

A thorough survey of the successfully identified proteins charac-
terized the main causes of their variability: proteins involved in 
blood coagulation, inflammation, and high-density lipoproteins 
that regulate cholesterol levels are controlled more by genetics than 
environmental influences. These results corroborate findings from 
several prior studies. Moreover, the survey discovered previously 
uncharacterized dependencies of eight of the clinically relevant pro-
teins on age, which could confound their clinical interpretation. For 
example, plasma level of soluble CD14 is used as an independent 
predictor for HIV infection, and 14-3-3 protein zeta/delta is used 
as a prognostic for lung and breast cancers; both of these proteins 
naturally vary over time41.

In a second study, DIA and OpenSWATH successfully mapped 
the interactomes of four well-characterized human proteins via 
affinity purification of Flag-tagged proteins and discovered how 
the interactions of two of them with the chaperone protein HSP90 
differ in response to melanoma-associated mutations44. In particu-
lar, DIA analysis of CDK4 affinity-purified samples out-identified 
and out-quantified analogous DDA experiments: 5,089 peptides 
were identified in all three DIA replicates, whereas 2,741 were 
identified in all three DDA replicates. Of peptides identified by both 

DIA and DDA, DIA quantified 82.1% with a coefficient of varia-
tion of less than 20% compared with the 74.5% achieved by DDA. 
Samples affinity-purified for melanoma-associated mutant versions 
of CDK4 showed increases in HSP90 abundance, suggesting that 
these mutants associate more or form a stronger association than 
wild-type CDK4 with HSP90.

Future directions
Although DIA has been gradually accepted by the proteomics 
community, improvements in hardware and software tools are 
still required to facilitate its use by the larger scientific commu-
nity. From a hardware standpoint, parallel improvements in duty-
cycle speed, sensitivity, and peak resolution, especially at the MS2 
level, will be critical for the improvement of DIA. Faster duty-cycle 
speed could allow increases in the mass regions analyzed by a DIA 
experiment in a single run. Currently, DIA experiments typically 
range from 100 to 400 m/z units (500 to 900 m/z region), whereas 
DDA usually covers 1,600 m/z units (400 to 2000 m/z region). 
Moreover, increases in duty cycle would allow a reduction of the 
size of the fragmentation windows on DIA methods from 15 to 
25 m/z units on average to 2 to 5 m/z units without needing to reduce 
the mass range to be analyzed in a single run. Much like MRM 
methods, isolating small regions for fragmentation would result in 
increased signal-to-noise ratios at the MS2 level, which combined 
with increased sensitivity would allow the detection of fragment 
ions formerly lost in the noise. Moreover, the use of smaller frag-
mentation windows combined with increases in instrument resolu-
tion, currently provided by high-end instruments, would result in 
improved deconvolution of mixed spectra because the mixtures are 
simpler (fewer peptides fragmented in each MS2 event) and frag-
ments that are close in mass are easier to differentiate (higher reso-
lution). No mass spectrometers yet combine the resolving power 
and speed needed to cover the same mass range that DDA does 
using small windows for DIA analysis; however, mass spectrometry 
speed, sensitivity, and resolution have greatly improved over the 
last 5 years, and we are yet to reach the physical limits of hardware 
improvements45. If the rate of instrumentation advances continues, 
then within the next 5 years we should be able to cover the same m/z 
range that DDA covers using small, overlapping DIA windows. 
Thus, the main challenge is how these large DIA datasets will be 
deconvoluted and analyzed.

To further improve the deconvolution of complex DIA spectra and 
increase their identification and quantification efficiency, research-
ers are developing more sophisticated sampling and computational 
algorithms to analyze biological samples using DIA. Though yet 
unpublished, several such methods were presented at the American 
Society of Mass Spectrometry conference. Three of the most prom-
ising analysis methods are outlined below.

The first method draws a parallel between the analysis of DIA spec-
tra and the field of compressed sensing to precisely infer the pre-
cursor masses of the detected fragment ions46. It uses the random, 
multiplexed sampling of MSX34 but improves the deconvolution of 
multiplexed spectra by adding further constraints to the system of 
linear equations posed by deconvolution, inspired by the field of 
compressed sensing. Compressed sensing takes advantage of the 
fact that if a signal is sparse, then one need not measure all of the 
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signal to accurately reconstruct it47. DIA data are sparse; at any 
time during the chromatography, only a small fraction of possible 
precursor peaks is observed. To precisely match precursor ions to 
their fragments, it is unnecessary to dedicate fragment scans to all 
small individual precursor windows if most windows are devoid 
of peptides. Indeed, DIA methods use wide, contiguous precursor 
isolation windows of width up to 25 m/z. However, compressed 
sensing states that repeated sampling from these predetermined 
windows are suboptimal to match fragment ions to their precursors. 
Instead, if one randomly combines smaller, not necessarily adjacent 
windows into large composite windows that overall span 25 m/z, 
then one can match fragments to precursors within these smaller, 
more precise windows. The published MSX34 method already lever-
ages this fact but does not use the theoretical techniques developed 
in compressed sensing to get the most accurate deconvolution.

The second method attempts to improve identifications by using 
linear regression to jointly identify the whole set of present peptides 
simultaneously rather than one at a time48. Unlike current methods, 
the regression can deconvolve fragment ion interference in a prin-
cipled way, which occurs when multiple precursor ions contribute 
to intensity at the same fragment ion peak, such that its chroma-
tographic profile no longer matches the chromatographic profiles 
of the other fragment ions. Estimates have shown that approxi-
mately 24% of peptides may exhibit interference in a human urine 
sample32. This phenomenon prevents current methods from attrib-
uting the fragment ion peak to any single precursor ion, but the 
regression approach can in principle properly attribute the peak to 
all appropriate precursor ions simultaneously.

The third method extends traditional DDA search methods with 
peak filtering to take into account the correlation of fragment ion 
peaks from the same peptide49. When scoring matches between can-
didate peptides and observed MS2 scans, some shared peaks can be 
explained by multiple candidate peptides and some unique peaks 
can be explained by just one. The method restricts each shared peak 
to contribute to the score of only the single peptide whose unique 
peaks correlate best over time with the shared peak. This restriction 
prevents the spurious high scores of falsely discovered peptides that 

depend entirely on peaks originating from other peptides. These 
techniques to better associate fragment ions to their precursor ions 
are in developmental stages and, if successful, will broaden the 
usefulness of any DIA dataset.

Conclusions
Because DIA combines the breadth of protein identification pro-
vided by DDA and approaches the sensitivity and precision of 
MRM/PRM, it will be the best choice for discovery bottom-up pro-
teomics and large-scale quantification in the near future. Sampling 
schemes and analysis methods already allow flexibility to adapt 
DIA to most biological problems and researcher needs. However, 
because DIA is still a work in progress, DDA data are still easier to 
acquire and analyze for most researchers and DDA is the method of 
choice for most biology and proteomics laboratories. Finally, using 
DIA implies trading off some precision and sensitivity for breadth 
when compared with targeted methods. Thus, if quantification of 
specific lowly abundant peptides is required, then MRM and PRM 
targeting the ions of interest are still the better option.

Abbreviations
DDA, data-dependent acquisition; DIA, data-independent acqui-
sition; HPLC, high performance liquid chromatography; LC-MS/
MS, liquid chromatography-tandem mass spectrometry; MRM, 
multiple reaction monitoring; MS1, scan in which the peptide ions 
entering the mass spectrometer at a given time are identified; MS2, 
scan in which the fragments of all (or some) of the peptides that 
are in the mass spectrometer at a given time are identified; m/z, 
mass-to-charge ratio; PRM, parallel reaction monitoring.

Competing interests
The authors declare that they have no competing interests.

Grant information
The authors thank Dina Fomina Yadlin for helpful discussions and 
suggestions. This work was supported by National Institutes of 
Health award R01 GM096306 and by National Science Foundation 
award 1549932.

Supplementary material
Dataset 1. Zip file contains 4 files: 3 files that show false discovery rates and metadata for the 345 Synthetic Gold Standard peptides spiked 
into the yeast, human, and water backgrounds from the experiments shown in Figure 3. Each file is associated with one background and 
contains identifications from 30 experiments spanning 10 spike-in concentrations with 3 replicates each. The “m_score” column denotes the 
false discovery rates reported by OpenSWATH. The 4th file “mf_files.txt” further annotates the 90 experiments.

Click here to access the data.
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