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Abstract: Although the link between diet and cancer is complex, epidemiological data confirm that
diet is a risk factor for prostate cancer and indicate a reduced prostate cancer incidence associated
with a diet rich in vegetables and fruits. Because of the known protective effect of grape seed extract
(GSE) against prostate cancer, we evaluated the effects of grape powder extract (GPE) on cell viability,
proliferation, and metastatic capability. Importantly, we explored the possible novel mechanism
of GPE through metastasis-associated protein 1 (MTA1) downregulation in prostate cancer, since
our previous studies indicated resveratrol (Res)- and pterostilbene (Pter)-induced MTA1-mediated
anticancer activities in prostate cancer. We found that GPE inhibited the cell viability and growth
of prostate cancer cells only at high 100 µg/mL concentrations. However, at low 1.5–15 µg/mL
concentrations, GPE significantly reduced the colony formation and wound healing capabilities of
both DU145 and PC3M cells. Moreover, we found that GPE inhibited MTA1 in a dose-dependent
manner in these cells, albeit with considerably less potency than Res and Pter. These results indicate
that stilbenes such as Res and Pter specifically and potently inhibit MTA1 and MTA1-associated
proteins compared to GPE, which contains low concentrations of Res and mainly consists of other
flavonoids and anthocyanidins. Our findings support continued interest in GPE as a chemopreventive
and anti-cancer agent against prostate cancer but also emphasize the unique and specific properties
of stilbenes on MTA1-mediated anticancer effects on prostate cancer.
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1. Introduction

Despite progresses in understanding the molecular mechanisms of prostate cancer (PCa), it is
still the most frequently diagnosed cancer in men in the United States, specifically in recent years,
in which life expectancy has increased. Most men acquire PCa during their lifetime because of risk
factors such as age and diet. Dietary bioactive polyphenols with anti-inflammatory, antioxidant, and
anticancer properties have been of intense interest for use as chemopreventive agents against PCa.
Particularly, stilbenes such as resveratrol (trans-3,5,4’-trihydroxystilbene, Res) and its natural analogs
including pterostilbene (trans-3,5-dimethoxystilbene, Pter), found in grapes and berries [1,2], have
attracted attention as potential pharmacological approaches for primary and clinical chemoprevention
of PCa [3–16].

However, only limited studies support separate polyphenol(s) use in human chemoprevention
due to their low bioavailability and rapid metabolism [17–19]. Therefore, grape extract, which contains
a mix of various polyphenols including stilbenes, might present improved pharmacokinetics and
superior pharmacological potency to stilbenes alone and may hold greater potential as a natural
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product drug. Grape seed extract (GSE), which is actively available as a health food supplement,
has been shown to have strong antioxidant capabilities [20], cardiac benefits [21,22], neurological
effects [23], and cancer preventive and anticancer activities [24–30]. Particularly, it has been shown
that GSE has anticancer effects against PCa in vitro and in vivo [24,28,29,31]. Importantly, specific
signaling pathways were identified as GSE-regulated, including androgen receptor (AR)-mediated
transcription of genes [24] and inhibition of the activation of extracellular signal-regulated kinase 1/2
(ERK 1/2) with associated apoptotic effects [28].

Our interest includes AR-independent pathways that play a role in the progression of PCa. One of
these pathways is represented by an overexpression of metastasis-associated protein 1 (MTA1) and the
subsequent activation of MTA1-mediated pro-oncogenic signaling associated with the progression of
PCa to metastasis [3,11–13,16,32–36]. Clinical studies have demonstrated the correlation of high MTA1
expression in prostate tissues with aggressive clinicopathological characteristics of tumors, signifying
MTA1 as a potential therapeutic target in PCa. Therefore, we have intensively investigated and
reported on the MTA1-mediated anticancer properties of Res and Pter in PCa in vitro and in vivo [3,4,
7,8,11–14,16].

The present study aimed to investigate the anticancer efficacy and MTA1 targeting ability of grape
powder extract (GPE) in PCa cell lines. Grape powder extract consists of seven flavonoids, including
resveratrol and three anthocyanidins (Table 1) [37]. We performed cell-based assays with GPE in
two PCa cell lines using Res and Pter as reference compounds. Our results indicate that GPE has
anticancer and antimetastatic effects in PCa, while stilbenes such as Res and Pter have the strongest
MTA1 inhibitory action. Therefore, grape extract enriched for stilbenes through unique extraction
procedures may represent an effective dietary agent for chemopreventive and therapeutic activity
against PCa.

Table 1. Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) analysis of the GPE
(grape powder extract) and chemical structures of its compounds.

Class Compound Chemical Structure Content (ppm)

Phenols

Catechin
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Table 1. Cont.

Class Compound Chemical Structure Content (ppm)
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2.2. Cell Culture

Prostate cancer cells, DU145 and PC3M, were maintained in RPMI-1640 media containing 10%
FBS in an incubator at 37 ◦C with 5% CO2 as described previously [3,6,8–16,33,34,36]. Cells were
authenticated using short tandem repeat profiling at Research Technology Support Facility, Michigan
State University.

2.3. MTT Assay

Cell viability of DU145 and PC3M cells was measured after treatment with GPE (2–200 µg/mL),
Res (5–100 µM), and Pter (5–100 µM) using MTT assay (Sigma-Aldrich, St. Louis, MO, USA) as
described previously [6,16]. Briefly, the cells were seeded in 96-well plates and treated with vehicle,
GPE, Res, or Pter. Absorbance of the formazan was measured using BioTek Synergy-4 plate reader
(BioTek, Winooski, VT, USA) after 72 h of treatment. The % cell viability was calculated assuming 100%
viability in vehicle-treated (control) wells.

2.4. Proliferation Assay

DU145 and PC3M cells (2 × 103) were seeded in a 35-mm cell culture dish. The media with
appropriate compound (GPE, Res, or Pter) was changed every other day. The proliferation of the cells
was determined by counting the cells every other day over a period of 10 days.

2.5. Colony Formation Assay

Colony formation assay was performed as described previously [33]. Briefly, cells (5 × 103) were
seeded in a 35 mm cell culture dish for a 21-day observation time. The media with appropriate
compound was changed every other day. When colonies were freely visible (>50 cells/colony)
in vehicle-treated dish, cells were fixed with formaldehyde and stained with 0.1% crystal violet
solution. Colonies were visualized by imaging each dish using Amersham Imager 600 (GE Healthcare
Bio-Sciences, Pittsburg, PA, USA). ImageQuant TL software (GE Healthcare Bio-Sciences, Pittsburg,
PA, USA) was used for counting the number of colonies in each dish.

2.6. Wound-Healing Assay

Wound-healing assay was performed as described previously [33,36]. Briefly, 95% confluent cells
seeded in 6-well plates were starved in low serum media (0.1% serum) overnight, after which three
separate wounds were scratched across the well. The media with appropriate compound was changed
every other day. The wound was imaged daily until the wounds of vehicle-treated (control) cells were
completely closed using the EVOS XL Core microscope (ThermoFisher Scientific, Waltham, MA, USA).
Wound area was calculated using the ImageJ software (NIH, Bethesda, MD, USA). % wound area was
quantitated assuming 100% for vehicle-treated cells at 0 h.

2.7. Western Blot

Western blot analysis was carried out as previously described [33,36]. Briefly, cells were treated
with various concentrations of GPE (25–200 µg/mL), Res (50 µM), or Pter (50 µM) for 24 h, and total
protein was extracted. Protein concentration was measured using Bio-Rad protein assay reagent
(Bio-Rad Laboratories, Hercules, CA, USA). An equal amount of protein was resolved in 10–15% gels
and transferred to a polyvinylidene difluoride (PVDF) membrane. After blocking the membranes
for non-specificity, they were probed with MTA1 (1:2000), p21 (1:1000), cleaved caspase 3 (1:1000),
PTEN (1:1000), Cyclin D1 (1:1000), and pAkt (1:1000) (Cell Signaling Technology, Danvers, MA, USA)
primary antibodies. β-actin antibody (1:2500) (Santa Cruz, Dallas, TX, USA) was used as a loading
control. Signals were visualized using enhanced chemoluminescence. Densitometry was performed
using Image J software (NIH, Bethesda, MD, USA).
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2.8. Statistical Analysis

The differences between the groups were analyzed by one-way analysis of variance (ANOVA).
All statistics were performed using GraphPad Prism 7 software (GraphPad Software, La Jolla, CA,
USA). The statistical significance was set as p < 0.05. All data are cumulative of at least three
independent experiments.

3. Results

The cytotoxic effects of GPE were evaluated and compared to those of Res and Pter by MTT cell
viability assay in DU145 and PC3M aggressive prostate cancer cell lines. The cells were treated with
various concentrations of GPE (5–200 µg/mL), Res (5–100 µM or 1.14–22.8 µg/mL), and Pter (5–100 µM
or 1.28–25.6 µg/mL) for 72 h. As shown in Figure 1A, treatment with GPE had a modest cytotoxic
effect even at high 200 µg/mL dose, whereas Res and Pter significantly inhibited the DU145 and PC3M
cells’ viability in relatively low concentrations. The IC50 values of Res and Pter in DU145 and PC3M
cells were in accordance with our previous reports [10], while GPE showed very low activity in both
cell lines, with IC50 values of 107 µg/mL in DU145 cells. We were not able to determine IC50 values for
GPE doses (5–200 µg/mL) used in PC3M cells. To further investigate the inhibition of cell proliferation
by GPE, we performed cell-counting assay upon treatment with compounds. We counted cell numbers
every other day for 10 days and found that GPE significantly inhibited cell proliferation compared to
control untreated cells in all concentrations tested in both DU145 and PC3M cells (Figure 1B). In DU145
cells, higher concentrations of GPE (15 and 100 µg/mL) were significantly more potent at inhibiting
cell growth (p < 0.01; p < 0.0001) than Res but not Pter. In PC3M cells, GPE at high doses (15 and
100 µg/mL) as well as Res and Pter showed significant differences compared to control vehicle-treated
cells (p < 0.001; p < 0.0001).
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Figure 1. Effects of GPE on cell viability and cell proliferation. (A) Cell viability analysis of DU145
(left) and PC3M (right) prostate cancer cells treated with GPE (2–200 µg/mL), Res (1.14–22.8 µg/mL),
and Pter (1.28–25.6 µg/mL). Data represent the mean ± scanning electron microscopy (SEM) of three
independent sets of experiments. (B) Proliferation assay of DU145 (left) and PC3M (right) cells after
treatment with GPE (1.5; 15; 100 µg/mL) and Res and Pter (1.5 µg/mL) for 10 days. Data represent
the mean ± SEM of three independent sets of experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, and
**** p < 0.0001 (one-way analysis of variance (ANOVA)) were assessed as significant differences between
treated and Ctrl vehicle cells.
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To characterize the anti-metastatic capacity of GPE, we examined the effect of GPE on the colony
formation and wound healing in DU145 and PC3M cells. As shown in Figure 2A, colony-forming ability
was decreased in DU145 cells, with an increased GPE concentration gradient reaching significance
at 15 µg/mL (p < 0.001) and 100 µg/mL (p < 0.0001). In more aggressive PC3M cells, GPE treatment
at only a high (100 µg/mL) dose caused a significant reduction of colony-forming ability (p < 0.0001)
(Figure 2B). However, these results indicated that only the effects of the highest concentration of
GPE (100 µg/mL) were comparable with the effects of Res and Pter alone at a relatively low dose
(1.5 µg/mL). After this, a wound-healing assay was performed in order to measure the effects of
GPE treatment on tumor cell migration. The migration of DU145 and PC3M cells was decreased
with an increased GPE concentration gradient (Figure 3A,B). As shown in Figure 3A, reduction in
the cell migration of GPE-treated DU145 cells was highly significant (p < 0.001) in a dose-dependent
manner, compared to control vehicle-treated cells. Interestingly, GPE-treated PC3M cells, which are
characterized as more aggressive than DU145 cells, were affected in their migration capabilities by
GPE treatment stronger than DU145 cells. These results indicated that GPE could reduce migration
of aggressive prostate cancer cells in a dose-dependent manner starting at as low as 1.5 µg/mL dose.
Once again, Res and Pter also showed strong ability to reduce migration of prostate cancer cells at 1.5
µg/mL dose.
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Figure 2. GPE reduces colony formation in DU145 and PC3M prostate cancer cells. Representative
images of colony formation ability of (A) DU145 and (B) PC3M cells after treatment with GPE (1.5;
15; 100 µg/mL) and Res and Pter (1.5 µg/mL). Data represent the mean ± SEM of three independent
experiments with duplicate wells. *** p < 0.001 and **** p < 0.0001 (one-way ANOVA) were assessed as
significant differences between treated and Ctrl vehicle cells.
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Figure 3. GPE reduces migration of DU145 and PC3M prostate cancer cells. Representative images of
migration ability of (A) DU145 and (B) PC3M cells after treatment with GPE (1.5; 15; 100 µg/mL) and
Res and Pter (1.5 µg/mL). Right: quantitation of wound widths, as % wound area is shown for each
cell line. Data represent the mean ± SEM of six separate wounds and three independent experiments.
*** p < 0.001 and **** p < 0.0001 (one-way ANOVA) were assessed as significant differences between
treated and Ctrl vehicle cells.

We have shown previously that Res and Pter inhibit MTA1-mediated PCa progression in vitro
and in vivo [3,7,8,11,13,16]. Therefore, we next measured the effect of GPE treatment on MTA1
protein expression in DU145 and PC3M cells. Cells were treated with GPE at various concentrations
(25–200 µg/mL) and with Res and Pter (50 µM~12 µg/mL) for 24 h, after which the total protein was
isolated and a western blot was performed. As indicated in Figure 4A,B, GPE downregulated MTA1
in a dose-dependent manner in DU145 cells and PC3M cells, respectively, but with considerably less
potency than Res and Pter. We also sought to investigate the effect of GPE on certain MTA1-associated
proteins in DU145 and PC3M cells, which we previously identified using ChIP-Seq [11]. We have
shown that MTA1 directly regulates CyclinD1 and pAkt and negatively associates with PTEN [11,13].
As seen in Figure 5A,B, there was downregulation of Cyclin D1 and a slight upregulation of PTEN in
DU145 cells treated with GPE. pAkt levels were affected by GPE treatment in PC3M cells (Figure 5C,D).
Because p21 expression represents an important biomarker of apoptosis, we examined its expression
after treatment with GPE. Results show that p21 was induced in a dose-dependent manner upon GPE
treatment in PC3M cells (Figure 5C,D).
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Figure 4. GPE inhibits MTA1 protein expression in a dose-dependent manner in DU145 and PC3M
prostate cancer cells. Immunoblots of MTA1 expression in (A) DU145 and (B) PC3M cells (top panels).
β-actin was used as a loading control. Western blots were repeated three times and representative blots
are shown. Quantitation of immunoblot signals (lower panels). * p < 0.05, ** p < 0.01, *** p < 0.001,
and **** p < 0.0001 (one-way ANOVA) were assessed as significant differences between treated and
Ctrl vehicle cells.
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Figure 5. Effects of GPE treatment on MTA1-associated protein levels. (A) Immunoblots of MTA1,
Cyclin D1, and PTEN expression, in DU145 cells treated with GPE. β-actin was used as a loading
control. (B) Quantitation of immunoblot signals of MTA1-associated proteins, Cyclin D1, and PTEN,
in cells treated with 150 µg/mL GPE. (C) Immunoblots of MTA1, Cyclin D1, pAkt, and p21 expression,
in PC3M cells treated with GPE. β-actin was used as a loading control. (D) Quantitation of immunoblot
signals of MTA1-associated proteins, Cyclin D1, pAkt, and p21, in cells treated with 150 µg/mL
GPE. Western blots were repeated three times for each protein, and representative blots are shown.
*** p < 0.001 and **** p < 0.0001 (one-way ANOVA) were assessed as significant differences between
150 µg/mL GPE-treated vs. Ctrl vehicle-treated cells.

4. Discussion

Numerous studies have demonstrated that diet is a risk factor for PCa and consumption of plant
foods may reduce the incidence of PCa [38–40]. Dietary phytochemicals such as quercetin, curcumin,
genistein, selenium, resveratrol, and pterostilbene have been shown to possess anti-inflammatory,
antioxidative, cardioprotective, and anticancer activities [4]. These polyphenols individually
act through various genetic and epigenetic mechanisms to control numerous biochemical and
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molecular pathways, influencing cell growth, differentiation, cell cycle, senescence, apoptosis,
epithelial-to-mesenchymal transition, and metastasis. While it is necessary to understand the
mechanisms of action for individual bioactive molecules, the composition of dietary sources such as
fruits or vegetables consists of various polyphenols, represented by different classes of phytochemicals
that provide health benefits in unison. However, at the molecular level, the interaction of these
molecules may cause the activation or inhibition of certain molecular pathways.

Published studies have demonstrated the prostate anticancer activity of GSE, which is comprised
of high phenolic content. However, the total content might differ with possible active compounds
depending on the method of extraction [28]. In the present study, we used grape powder extract (GPE),
which is an organic solvent extract of freeze-dried whole table grapes. The varieties of grapes include a
proportional representation of table grapes grown in California. Most table grapes grown in California
are seedless, but some seeded grapes are produced and were included. After freeze drying, the grape
skins and seeds remained and were ground to produce powder.

In this study, we demonstrated that GPE treatment caused growth inhibition and reduced the
colony formation and migration ability of DU145 and PC3M prostate cancer cells. Less aggressive
DU145 cells showed more sensitivity to the antiproliferative and anti-colony formation effects of GPE
than to that of the PC3M cells. Because of our long-standing interest in targeting MTA1 signaling,
we asked whether GPE acts through inhibition of MTA1 oncogenic protein in prostate cancer, as we
have shown for Res and Pter, which has significant MTA1-mediated anticancer effects [3,7,8,11,13,16].
Our results suggest that although GPE downregulated MTA1 protein levels in a dose-dependent
manner (p.6. 11–1128), the inhibition was not significant, possibly due to low nanomolar concentration
of Res in GPE. As expected, Res and mainly Pter alone at 50 µM dose showed a marked inhibition of
MTA1, suggesting a unique stilbenes–MTA1 relationship.

Taken together, GPE demonstrated anticancer effects in prostate cancer cell lines. Because of strong
evidence for the involvement of MTA1 signaling in all stages of PCa progression, we explored a chance
of MTA1 inhibition by GPE. Since we detected more potent MTA1 inhibition by stilbenes compared
to mixture of polyphenols in GPE, there is a possibility that stilbenes and no other phytochemicals
directly bind to MTA1 (unpublished data). Whether or not combination of various stilbenes will be
most effective at inhibiting MTA1 and MTA1-guided signaling in PCa is unknown and remains to
be elucidated.

In summary, our preclinical in vitro findings support continued interest in GPE as an anticancer
agent against PCa. However, in vivo studies and especially clinical trials are needed to explore the
chemopreventive and therapeutic effects of GPE. Two recent clinical trials of muscadine grape skin
extract containing ellagic acid, quercetin, and resveratrol in men with biochemically recurrent PCa
showed the safety of two different doses (500 mg and 4 g) but no significant differences in predictive
biomarkers [41,42]. Nevertheless, recent advances in personalized medicine are very promising and
may make the translational application of chemoprevention by natural products a distinct possibility
in target-stratified patient populations.
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