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Pancreatic cancer is marked by complement-high blood
monocytes and tumor-associated macrophages
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Pancreatic ductal adenocarcinoma (PDA) is accompanied by
reprogramming of the local microenvironment, but changes at
distal sites are poorly understood. We implanted biomaterial
scaffolds, which act as an artificial premetastatic niche, into
immunocompetent tumor-bearing and control mice, and iden-
tified a unique tumor-specific gene expression signature that
includes high expression of C1ga, C1gb, Trem2, and Chil3. Single-
cell RNA sequencing mapped these genes to two distinct mac-
rophage populations in the scaffolds, one marked by elevated
C1qa, C1gb, and Trem2, the other with high Chil3, Ly6c2 and Plac8.
In mice, expression of these genes in the corresponding pop-
ulations was elevated in tumor-associated macrophages com-
pared with macrophages in the normal pancreas. We then
analyzed single-cell RNA sequencing from patient samples, and
determined expression of C1QA, C1QB, and TREM2 is elevated in
human macrophages in primary tumors and liver metastases.
Single-cell sequencing analysis of patient blood revealed a
substantial enrichment of the same gene signature in monocytes.
Taken together, our study identifies two distinct tumor-
associated macrophage and monocyte populations that reflects
systemic immune changes in pancreatic ductal adenocarcinoma
patients.
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Introduction

Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy
with a dismal 5-yr survival rate of only 10% (Siegel et al, 2020). PDA is

8,12

characterized by an abundant, fibroinflammatory stroma. From the
onset of carcinogenesis, the immune response to pancreatic cancer
results in an immunosuppressive tumor microenvironment (TME)
(Clark et al, 2007). Myeloid cells are abundant and heterogeneous
within the PDA TME and are a key driver of an immune suppressive
microenvironment (Mitchem et al, 2013; Stromnes et al, 2014; Zhang
et al, 2017; Zhu et al, 2014, 2017). The primary tumor and metastatic
sites are both characterized by tumor cell evasion of the immune
response (Hanahan & Weinberg, 2011; Gonzalez et al, 2018). How-
ever, systemic alteration of the immune system by the primary
tumor remains poorly understood. Although the stochastic nature
of metastasis greatly limits our ability to study the systemic re-
sponses to the primary tumor, recent advances in biomaterials
engineering provide a novel opportunity to evaluate systemic re-
sponse to PDA through the use of polycaprolactone scaffolds.
Biomaterial scaffolds have been used as a synthetic premeta-
static niche in breast and pancreas cancer models (Azarin et al,
2015; Rao et al, 2016; Aguado et al, 2017; Bushnell et al, 2019, 2020).
Implantation of biomaterial scaffolds initially causes a foreign body
response in both control and tumor-bearing mice. Over time,
scaffolds in tumor-bearing mice develop a microenvironment
supportive of cancer cell colonization. Scaffolds have been used
more recently as a tool to obtain gene signatures that are predictive
of disease and recurrence in mouse models of breast cancer and
multiple sclerosis, an application of high clinical relevance (Oakes
et al, 2020; Morris et al, 2020a, 2020b). Scaffolds, unlike the blood,
allow for analysis of tissue-based immune response at distal sites.
In this study, we used engineered polymer scaffolds implanted
into immune competent mice with orthotopic pancreatic tumors to
generate an immune gene signature associated with pancreatic
cancer. We found fundamental differences in the gene expression
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of cellular infiltrates derived from scaffolds in tumor-bearing
versus non-tumor mice, with a tumor-specific signature includ-
ing Chil3, Trem2, Clga, and Cigb. Single-cell RNA sequencing
identified changes primarily in macrophage gene expression and
revealed two distinct populations of macrophages that were unique
to tumor-bearing animals. Whereas one macrophage population
expressed Chil3, Ly6c2, and Plac8, the other expressed Trem2 and
complement components Clga and Cigb (complement-high
macrophage). The complement-high macrophage population was
present in primary tumors from mice and PDA patients, metastatic
liver lesions, and expression of C1QA, C1QB, and TREM2 was elevated
in tumors and blood from human PDA patients. Thus, we defined
two-distinct systemically altered macrophage populations asso-
ciated with PDA.

Results

Biomaterial scaffolds harbor an immune-dense
microenvironment in response to an orthotopic model of PDA

To understand the systemic immune changes in PDA, we first
assessed the immune infiltration in the liver and peripheral blood
of tumor-bearing animals compared with controls. We used an
orthotopic syngeneic model using 7940b cells (Long et al, 2016;
Zhang et al, 2017), derived from a pure C57BL/6) (BL/6) version of the
LSL-Kras®™P/*; |SL-Trp53R"72H/*. pdx1-Cre (KPC) genetically engi-
neered mouse model of pancreatic cancer (Hingorani et al, 2005).
We orthotopically implanted 7940b cells into the pancreas and
performed mass cytometry (CyTOF) analysis of the resulting tumors.
We found that livers and PBMCs from tumor-bearing mice had an
increase in myeloid cells preceding the outgrowth of metastases,
similar to previous reports (Rhim et al, 2012; Sanford et al, 2013; Li
et al, 2018; Lee et al, 2019) (Fig S1A and B).

The immune cell changes in the blood and liver of tumor-bearing
mice provided evidence of a systemic immune response to the
tumor. We next used biologically inert polycaprolactone scaffolds
to further study how tumors alter the systemic immune response in
pancreatic cancer (Fig S1C). We first implanted scaffolds subcuta-
neously into BL/6 mice. 1 wk later 7940b (BL/6) cells were ortho-
topically transplanted into the pancreas, followed by removal of
scaffolds weekly over the course of 4 wk (Fig S1D). Control mice had
subcutaneous scaffold implantation, followed by mock orthotopic
surgery. We isolated RNA from control and tumor-bearing scaffolds
and used a qRT-PCR array (OpenArray, OA) to assess a panel of 632
mouse inflammatory genes and 16 reference genes (Fig S1D). In-
terestingly, earlier control time points were more similar to tumor-
bearing scaffolds, suggesting a foreign body response that subsides
over time (Fig S1D). Based on the inflammatory gene changes over
time in the scaffold infiltrate we performed our subsequent ex-
periments at a fixed 3-wk time point. We next orthotopically
transplanted 7940b cells into BL/6 mice, implanted scaffolds 1 wk
later and then harvested the scaffolds after 3 wk (Fig 1A). Scaffolds
from control and tumor-bearing animals were examined by im-
munofluorescence staining to determine which cell populations
colonized the scaffold. Epithelial cells (CK19") were identified only
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in tumor bearing mice, suggesting colonization by PDA cells (Fig 1B).
Furthermore, we observed a stromal response in the tumor-bearing
scaffold, characterized by accumulation of fibroblasts (alpha-
smooth muscle actin [a-SMA]) (Fig 1B).

To determine whether the immune response in the scaffold was
distinct in tumor-bearing versus healthy mice, we performed CyTOF
using a panel of immune markers (Table S1). Visualization of the
scaffold infiltrate by t-distributed stochastic neighbor embedding
(t-SNE) in control and tumor-bearing animals revealed an abun-
dant stromal response in both, with most of the infiltrate com-
prising various myeloid subsets, including macrophage subsets and
myeloid-derived suppressor cells (MDSCs) (Fig 1C). Whereas there
was no difference in total myeloid (CD45" CD11b*), MDSC (CD11b"
Ly-6G" Ly-6C"), or total macrophage (CD11b" F4/80%) infiltration
expressed as percentage of total cells, we observed an upward
trend for specific macrophage populations (CD11b* F4/80" CD206™;
CD11b" F4/80" PD-L1") in scaffolds from tumor-bearing animals
compared with controls, similar to the increase in macrophages in
the tumor-bearing liver (Figs S1A and E and 1D). In addition, tumor-
bearing scaffolds had a higher proportion of endothelial cells
(CD45™ PECAMT) and fibroblasts (CD45~ PDGFRa") than control
scaffolds (Fig 1E). Finally, we analyzed the adaptive immune pop-
ulations, and observed that tumor-bearing scaffolds had fewer
total T cells (CD45" CD3"), and fewer CD8" T cells compared with
control (Figs STE and 1E). Thus, cell composition data suggested that
the microenvironment at a distal site was altered in tumor-bearing
mice.

Identification of a pancreatic cancer-specific gene signature

To understand the nature of the systemic changes in tumor bearing
mice, we isolated RNA from scaffolds implanted in control and
tumor-bearing mice and used the gRT-PCR inflammatory OA. Two
computational approaches were used to assign numerical scores to
the mice and distinguish healthy (black) from diseased (red) (Fig 2A)
(Morris et al, 2020a). Unsupervised hierarchical clustering analysis
revealed that tumor-bearing scaffolds (red) clustered separately
from control scaffolds (black) at the gene expression level (Fig S2A
and B). We further observed that, although the inflammatory sig-
nature of control scaffolds appeared rather uniform, there was
distinct heterogeneity amongst tumor-bearing scaffolds from in-
dividual mice (Fig S2A). We then analyzed the data to define a
unique 21 gene signature indicative of disease (Fig 2B). Tumor-
bearing scaffolds had lower expression of interferon y (Ifng) and
killer cell lectin like receptor G1(Klrg1), markers of T-cell activation/
effector T cells, and, conversely, up-regulation of coagulation factor
Il thrombin receptor (F2r), a marker of exhausted T cells (Wherry
et al, 2007) (Fig 2B). In addition, tumor-bearing scaffolds had up-
regulation of chitinase3-like-3 (Chil3), a gene elevated in tumor-
associated macrophages (TAMs) (Georgoudaki et al, 2016) (Fig 2B).
Bulk RNA analysis provided an indication that the immune com-
position and functional status might be altered systemically in mice
bearing pancreatic cancer.

To understand gene expression changes at a cellular level, we
performed single-cell RNA sequencing on cells isolated from the
scaffolds extracted from control and tumor-bearing mice. Using
published lineage markers, we defined the captured cells (Elyada
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Figure 1. Biomaterial scaffolds harbor an immune-dense microenvironment in response to an orthotopic model of PDA.

(A) Experimental scheme. Scaffolds were subcutaneously implanted as described in the Materials and Methods section. 7940b (BL/6) cells derived from the LSL-
Kras®™P/*; LSL-Trp53R7721/*; pdx1-Cre (KPC) were orthotopically implanted into the pancreas. Scaffolds were harvested 3 wk post tumor cell inoculation. (B) Co-
immunofluorescence of scaffolds from animals who underwent mock-surgery (left) compared with tumor-bearing (TB) mice (right). Tumor cells are marked by CK19
(green), macrophages by F4/80 (red), fibroblasts by aSMA (pink), and nuclei by DAPI (blue). Scale bars, 50 um. (C) Representative t-SNE plots for the scaffold infiltrate
from control and TB scaffolds. Identified populations include, myeloid-derived suppressor cells (blue), Ly-6C" macrophages (orange), PD-L1" macrophages (green),
CD206" macrophages (red), CD8" T cells (purple), CD4" T cells (brown), NK cells (pink), endothelial cells (grey), and fibroblasts (light green). (D) Manual gating of CyTOF
results for macrophage subsets (F4/80" CD206"; F4/80" PD-L1") in control scaffold (n = 8) compared with TB scaffold (n = 7-8). Results are plotted as percent of total
myeloid cells (%CD11b"). Statistical significance was determined using two-tailed t tests. Data presented as means + standard error (SEM) and P < 0.05 was considered
statistically significant. (E) Manual gating of CyTOF results for endothelial cells (CD45~ PECAM1"), fibroblasts (CD45~ PDGFRa") and CD8" T cells (CD3* CD8") in control scaffold
(n =10) compared with TB scaffold (n = 10). Results are plotted as percent of total live singlets. Statistical significance was determined using two-tailed t tests. Data
presented as means + standard error (SEM) and P < 0.05 was considered statistically significant.

Source data are available for this figure.
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Figure 2. Identification of a pancreatic cancer-specific gene signature.

(A) Plot of Bagged Tree/singular value decomposition prediction produced from inflammatory gene OpenArray. Plot highlights the divergence of tumor-bearing (TB)
scaffolds (red) from healthy control (HC) scaffolds (black). n = 6 for control and n = 6 for TB scaffolds. Each dot represents a single mouse. Black line indicates 99.5%
confidence intervals. Filled ovals denote the mean for control (black) and TB (red) scaffolds for pooled control or TB scaffolds. (B) Hierarchical clustering and heat map of
21inflammatory genes of interest in control (n = 6) scaffolds compared with TB scaffolds (n = 6). (C) UMAP visualization of control scaffold (n = 1) and TB (n = 1) scaffolds
from an orthotopic mouse model of pancreatic cancer. (D) Dot plot shows average expression of scaffold signature in merged control and TB scaffold infiltrate. Size of dot
represents percent expressed. Color of dot represents average expression.
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et al, 2019) (Fig S2C). We performed downstream analysis on all
captured stromal cells, including cancer-associated fibroblast (CAF)
subsets (myofibroblastic-CAFs [myCAF] and inflammatory-CAFs
[iCAF]) (Ohlund et al, 2017), perivascular cells, NK cells, T-cell subsets
(CD4, CD8, double-negative [DN] T cells, and regulatory T cells [Treg]),
plasma cells, mast cells, DCs, and myeloid cell subsets (granulocytes
and macrophages) (Fig 2C). Analysis of the scaffold gene profile
further revealed cell type specific gene signatures (Fig 2D). Given the
changes in myeloid cells and macrophages in the liver and blood of
tumor-bearing mice (Fig S1A and B) we subsequently focused on the
scaffold-associated macrophages (SAMs). We detected expression of
Chil3 and Interleukin 6 Receptor (/l6ra) (Fig 2D), which have both been
identified as playing a role in polarization of alternatively activated
macrophages (Mauer et al, 2014; Roszer, 2015; Liou et al, 2017). By
immunostaining, we detected an increase in Ym1* (Chil3) cells in the
livers of tumor-bearing compared with control mice, providing fur-
ther evidence that changes in the immune cell component occur
both in the scaffolds and in the natural metastatic site and precede
overt metastasis development (Fig S2D and E).

Identification of two distinct macrophage subsets in scaffold
infiltrate

We next compared the gene expression profile of SAMs in tumor-
bearing mice versus controls. The differentially expressed genes
corroborated the scaffold signature with lower expression of in-
terferon regulatory factor 7 (Irf7) and signal transducer and acti-
vator of transcription 1 (Stat?), as well as increased expression of
Chil3 (Figs 3A-C and 2B and Table S2). In addition, tumor-bearing
SAMs displayed a high expression of complement C1g A chain and
B chain (Ciga and Cigb) and triggering receptor expressed
on myeloid cells 2 (Trem2), and a low expression of the major
histocompatibility complexes (Cd74, H2-D1, H2-Aa, and H2-Eb1)
compared with control SAMs (Fig 3A and B). Thus, SAMs from tumor-
bearing mice at a distal site have distinct gene expression com-
pared with controls. While C1ga, C1gb, and Trem2 are known drivers
of alternatively activated macrophage polarization in a LPS-
induced inflammation model (Turnbull et al, 2006; Benoit et al,
2012), little is known about their involvement in pancreatic cancer.

Using uniform manifold approximation and projection (UMAP)
analysis on the SAMs we identified two transcriptionally distinct
macrophage populations in the control and tumor-bearing scaffold
infiltrate (Figs 3D and S3A). Unbiased analysis of the top genes
defining each cluster identified C1ga, C1gb, and Trem2 as markers of
the SAM 1 population, whereas Chil3, placenta associated 8 (Plac8),
and Ly6c2 emerged as markers of SAM 2 (Figs S3B and C and 3E and
F). SAM 1 also had high expression of Cd74, H2-Eb1, and H2-Aa (Fig
S3D). Taken together, SAMs segregated into two main populations
and have a different gene expression pattern in tumor-bearing
mice compared with SAMs from healthy mice.

Macrophages in mouse pancreatic tumors overexpress TREM2 and
complement genes

Having identified Chil3, Trem2, and the complement genes, Clga

and C1gb as markers of SAMs in tumor-bearing mice, we next in-
vestigated whether these macrophage subsets also exist in primary

Complement-high macrophages in pancreatic cancer Kemp et al.

tumors. To this end, we performed single-cell RNA sequencing on two
primary mouse orthotopic PDA tumors. We identified populations of
epithelial cells, acinar cells, fibroblasts, and six immune cell populations,
including macrophages (Figs 4A and S4A). Compared with other immune
cells, the macrophages in the primary tumor (i.e, TAMs) exclu-
sively exhibited high expression of the SAMs signature genes
(Chil3, Trem2, Clga, and C1gb), whereas Plac8 and Ly6c2 were
broadly expressed across cell types (Fig 4B). Unbiased clustering
identified 2 distinct populations of macrophages in the primary
tumor (Figs 4C and S4B). Similar to the SAMs, the TAMs in the
primary tumor separated into two populations: one with high
expression of Chil3, Plac8, and Ly6c2 (Chil-TAMs), and the other
with high expression of C1ga, Cigb, and Trem2 (Cq-TAMs) (Fig 4D). Chil-
TAMs had higher expression of the inflammatory macrophage markers
nitric oxide synthase 2 (Nos2) and tumor necrosis factor (Tnf) (Murray &
Wynn, 2011), whereas Cq-TAMs had higher expression of the alternatively
activated macrophage markers MrcT and Cd163 (Roszer, 2015) (Fig S4C).

We then compared TAMs in orthotopic KPC tumors (Tumor) to
normal mouse pancreas (N Panc) (Fig 4E). In both conditions, we
detected Chil-TAMs, Cg-TAMs, and an additional population of
macrophages (TAM) (Figs 4E and S4D). The expression of Chil-TAM
and Cq-TAM markers in the respective populations was elevated in
orthotopic tumors compared with the normal pancreas (Fig 4F). By
co-immunofluorescence we detected an increase in Cg-TAMs (C1g”
F4/807) in KPC tumors and KPC liver metastasis compared with the
normal pancreas (Fig 4G). Taken together, we detected an increase
in Cg-TAMs and an increase in the expression of Chil3, Trem2, C1qa,
and Cigb in the tumor compared with the normal pancreas.

We next compared macrophages from scaffolds with macro-
phages from orthotopic mouse tumors (Fig S4E) and plotted dif-
ferentially expressed genes. We observed higher expression of Arg1,
Il7a, and Rgs1in macrophages from scaffolds compared with those
from the primary tumor (Fig S4F). Thus, macrophages at the primary
and distant sites are similar but retain distinct features. Thus, these
two distinct macrophage populations (Chil-TAMs and Cq-TAMs) are
prevalent both at the primary tumor and systemically in response
to pancreatic cancer in mice.

We then sought to validate the presence of Chil-TAMs and Cqg-
TAMs in a spontaneous mouse model of pancreatic cancer. We used
the iKras* and iKras* p53* genetically engineered mouse models of
pancreatic cancer that express oncogenic Kras®™? in the pancreas
epithelium in an inducible and reversible manner (Collins et al,
2012a, 2012b). The iKras* mice represent an early lesion timepoint,
whereas the iKras* p53* mice, which have a pancreas specific
mutated p53, represent a late lesion timepoint, allowing us to
evaluate Chil-TAMs and Cq-TAMs during progression of PDA. We first
subcutaneously implanted scaffolds into control and iKras* p53*
mice that had oncogenic Kras expression for 15 wk. Oncogenic Kras
continued to be expressed for the duration of the experiment. We
harvested the scaffolds 3 wk later and performed single-cell RNA
sequencing on the scaffold infiltrate (Figs 5A and S5A and B). We
observed an increase in C1ga, C1gb, and Chil3, but not Trem2, in the
iKras* p53* scaffold infiltrate compared with control (Fig 5B) Similar
to the orthotopic scaffolds, we observed two distinct macrophage
populations (Fig 5C). SAM 1was defined by expression of C1qga, C1gb,
and Trem2, whereas SAM 2 was defined by expression of Chil3, Placs,
and Ly6c2 (Fig 5C and D).
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Figure 3. Identification of two distinct macrophage subsets in scaffold infiltrate.

(A) Average expression heat map for select differentially expressed genes between macrophages from control and tumor-bearing (TB) scaffolds. Low expression is shown in blue and
high expression in red. All genes plotted are statistically significant, determined using nonparametric Wilcoxon rank sum test with a P-value cut off of P < 0.05. (B, C) Violin plot of normalized
gene expression of select up-regulated and (C) down-regulated genes in macrophages from control (black) and TB (blue) scaffolds. Statistically significant genes were determined using
non-parametric Wilcoxon rank sum test with a P-value cutoff of P < 0.05. (D) UMAP visualization of scaffold-associated macrophage (SAM) 1 (navy) and SAM 2 (pink) subsets in control and

TB scaffolds. (E, F) Violin plots of normalized expression of Clga, Clgb, and Trem2 in SAM 1 and (F) Chil3, Plac8, and Ly6c2 in SAM 2.

By single-cell RNA sequencing, we compared the prevalence of
Chil-TAMs and Cg-TAMs in iKras* and iKras* p53* pancreas samples
compared with the normal pancreas (Figs S5A, C, and D). The mac-
rophages unbiasedly clustered into three distinct populations (Fig
5E) including Chil-TAMs and Cq-TAMs (Fig 5E and F). We additionally
identified a third population of macrophages defined by high ex-
pression of Ccr2, and Cd74 and H2-Eb1, the latter encoding com-
ponents of the MHC complex (Fig S5E). We then compared iKras*
samples and iKras* p53* samples, reflecting early and late stages of
PDA progression, and observed increased expression in Chil-TAM and

Complement-high macrophages in pancreatic cancer Kemp et al.

Cg-TAM makers in the infiltrating macrophages, along with a loss of
CCR2-TAM markers in advanced lesions (Figs 5G and S5F). Thus, over
time, the specific macrophage signature becomes more pronounced.

Macrophages in human pancreatic cancer overexpress TREM2 and
complement genes

Because there is no human ortholog for Chil3/Ym1 (Kzhyshkowska
et al, 2007) or Ly6c2 (Lee et al, 2013), we focused on PLACS, TREM2,
and the complement components C1QA and CTQB to analyze human

https://doi.org/10.26508/1sa.202000935 vol 4 | no 6 | e202000935 6 of 17


https://doi.org/10.26508/lsa.202000935

BB2E> Life Science Alliance

Orthotopic KPC tumor single cell RNA sequencing

A 15 ;i B
&%? -~ Fibroblasts
10 f? B cells Average Expression
T r,ells ] ip?thelial DCs I 2
Acmar ® Acinar
5 ® Tocells Macrophages{ e ® . L ® ® 1
o Granulocytes @ Fibroblasts NK cells 0
% f ® Granulocyles Granulocytes -1
Z = NKcels @ NKcells Fibroblasts Percent Expressed
® Macrophages T cell . .
5 DCs £ars oo Bt
B cells Acinar ® 50
itheli Epithelial (@) @5
-0 Bl ,.?’ » Epithelial P!
Ma::)phages ‘(\\(b \-’bg“'b ‘ba/ ’\& \& @(b
L N
=10 o 10
UMAP-1
Orthotopic KPC TAMs
C D C1lqga C1gb Trem2
4 .'-; e g“ %4 g
L~ ® Chil-TAMs o 43 32
2% is o % el S, g &
. A ] e Cg-TAMs g g* B
] » g 8 5
o o O oE—— & & Of S & 3 0
% Chil-TAMs Cqg-TAMs Chil-TAMs Cqg-TAMs Chil-TAMs Cqg-TAMs
=
=2 Chil3 Plac8 Ly6c2
3 £ 2
3 84 o3
g* 53 [
g 2 ﬂﬁ, ? 2 1
Chil-TAMs  Cqg-TAMs Chil-TAMs  Cq-TAMs Chil-TAMs  Cqg-TAMs
E N Panc Tumor F _ Chil3 _ Plac8 _ Ly6c2
& % p<0.0001 % 5, P<0.0001 % p<0.0001
-‘?;"*-"- . 5-;0- = = 23
257887 Sgad : 8 83 82
g E 0 ‘;%0 ;5‘_ o -
& 0,04 = W ® Chil-TAM u s & w & & di *
% 3 p ® Cg-TAM & Sy &L <3 & <
* ® TAM
= C1igb Trem2
251 . o T p=0.001 T p<0.0001
3 3a b
5 53 ]
| 7 w2 @ 4
5.0 . . . ’ ‘ . : 8 3 1 ]
-4 -2 0 ? -4 -2 0 2 L% L%L 0 E 0
UMAP-1 sf' &
G N Panc KPC Tumor KPC Liver Met

Cad/DAPI

w
S
0
=
L
(&)

Figure 4. Macrophages in mouse pancreatic tumors overexpress TREM2 and complement genes.
(A) UMAP visualization of mouse orthotopic pancreatic tumors (n = 2)

. (B) Dot Plot of scaffold-associated macrophage signature, Chil3, Plac8, Ly6c2, C1ga, C1gb, and

Trem2 in identified cell populations in the orthotopic KPC tumors. Color represents average expression, whereas size of dot represents percent expressed. (C) UMAP
visualization of Chil-tumor-associated macrophages (TAMs) (pink) and Cq-TAMs (navy) subsets in mouse orthotopic pancreatic tumors. (D) Violin plots of Ciga, Clgb,
Trem2, Chil3, Plac8, and Ly6c2 across Chil-TAMs and Cq-TAMs. (E) UMAP visualization of Chil-TAM (pink), Cg-TAM (navy), and TAM (green) macrophage subsets in normal
pancreas (n = 1) and orthotopic tumors (n = 2). (F) Violin plot of normalized gene expression of Chil3, Plac8, Ly6c2, C1ga, C1gb, and Trem2 in macrophages from normal
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patient samples. To assess the expression of TREM2, C1QA, and
C1QB, and PLAC8 we queried a single-cell RNA sequencing dataset
including human normal/adjacent normal pancreas (n = 3) and
human PDA tumors (n = 16) (Steele et al, 2020) (Fig 6A). Consistent
with our observation in mice, TREM2, C1QA, and C1QB were mainly
expressed in macrophages, whereas PLAC8 was expressed in
multiple cell types, including macrophages (Fig 6B). The macro-
phages separated into two transcriptionally distinct subsets, which
were consistent across patients (Figs 6C and S6A and B). One
population was enriched for expression of C1QA, C1QB, and TREM2
(CQ-TAMs), whereas the other population had higher expression of
PLACS, VCAN, FABP5, and RETN (TAMs) (Figs 6D and S6A and Q).
Paralleling the mouse data, C1QA, C1QB, and TREM2 were up-
regulated in macrophages from human pancreatic cancer com-
pared with macrophages from the non-malignant pancreas (Fig 6E).

Macrophages in human liver metastases express high levels of
TREM2 and complement genes

To further address the role of CQ-TAMs in the systemic immune
response, we next assessed the expression of the macrophage
signature genes in liver metastasis samples from PDA patients (n = 5).
These samples were obtained through ultrasound guided percuta-
neous biopsy of a liver lesion in five individual PDA patients and
processed for single-cell RNA sequencing. Single-cell RNA se-
qguencing followed by UMAP visualization revealed a profound
stromal response, including a substantial population of macro-
phages within the metastatic liver lesions (Figs 7A and S7A). Similar to
our scaffold and primary tumor data, the macrophages in the liver
metastases had high expression of C1QA, C1QB, and TREMZ2 consistent
with this macrophage population being part of a systemic response
to a primary tumor (Fig 7B). In addition, subsetting of the liver
metastasis associated-macrophages confirmed the existence of two
transcriptionally distinct macrophage populations (i.e., CQ-TAMs and
TAMs), similar to the findings in the scaffolds in mice and primary
tumors in mice and humans (Fig 7C). The signature genes C1QA4, C1QB,
and TREM2 had highest expression in CQ-TAMs compared with TAMs
(Figs 7D and S7B). CQ-TAMs are present at both the primary tumor and
systemic locations in humans. Similar to our analysis in mice, we next
performed differential expression analysis on macrophages from
human liver metastases compared with macrophages from human
primary tumors (Fig 7E and F). IL7A was enriched in both scaffolds and
liver metastases compared with the primary tumor (Figs 7F and S4F).
IL1A has been associated with increased cell invasion in vitro in PDA
(Melisi et al, 2009).

Complement-high myeloid cells are elevated in the blood of
pancreatic cancer patients

The notion that systemic changes in the immune/myeloid gene
expression signature might reflect the presence of a primary tumor

is potentially important to add to the diagnostic/prognostic
toolbox. With this in mind, we assessed the macrophage gene
expression signature in human blood. We used a published dataset
of single-cell RNA sequencing on PBMCs from healthy donors (n = 4)
and PDA patients (n = 16) (Steele et al, 2020) and queried it for the
expression of our signature genes: C1QA, C1QB, and TREM2 (Fig S8A).
We observed highest expression of C1QA, C1QB, and TREM2 in cir-
culating monocytes in human PBMCs (Fig 8A). We identified four
populations of circulating monocytes based on expression of CD14
and CD16 (FCGR3A/B) as previously defined (Wong et al, 2011) (Figs
8B and S8B). Similar to the scaffold, liver and primary tumor, C1QA,
C10B, and TREM2 marked only one subpopulation of monocytes
(CQ-Monocytes) in human PBMCs (Figs 8C and S8B-D). Interestingly,
PLAC8 was highest in Monocyte populations 2 and 3, suggesting that
it marks distinct populations from the CQ-monocytes (Figs 8C and
S8D). To assess whether these genes are up-regulated in the blood
of PDA patients we further compared PBMCs between healthy
donors and PDA patients and saw higher normalized expression of
C10A and C1Q8B in patients, suggesting that the up-regulation of
these markers also applies to circulating monocytes (Figs 8D and
S8E).

In summary, we have identified a complement-high population
of macrophages, CQ-TAMs, which exists both at the primary tumor
and systemically in mouse and human pancreatic cancer. CQ-TAM
marker expression is enriched at the primary tumor and in cir-
culation in human PDA patients, presenting a novel population of
monocytes/macrophages that could potentially serve as indicators
of disease state.

Discussion

In this study, we used bioengineered scaffolds as a tool to discover
a novel gene signature that is associated with tumor-bearing mice,
including elevated expression of Ciga, Cigb, and Trem2. By single-
cell RNA sequencing we mapped this signature to a population of
SAMs and determined that a corresponding TAM population (Cq-
TAMs) is present at the primary tumor in multiple mouse models of
PDA. We then analyzed single-cell RNA sequencing data from pa-
tient tumors (Steele et al, 2020) and novel single-cell RNA se-
quencing data from liver metastases and identified macrophages
expressing high levels of C1QA, C1QB, and TREM2 in both primary
tumor and metastases. Finally, we determined that C1QA and C1QB
expression is enriched in pancreatic cancer patient blood com-
pared with healthy individuals, suggesting that the elevation of
these markers may serve as a novel predictor of disease in PDA
patients.

Biomaterial scaffolds model the pre-metastatic niche (Azarin
et al, 2015; Rao et al, 2016; Bushnell et al, 2019) and allow for repeated
sampling, and, thus, longitudinal analyses. Furthermore, scaffolds
model natural secondary sites of metastasis and are distinct from

pancreas (grey) and orthotopic tumors (navy). Statistically significant genes were determined using non-parametric Wilcoxon rank sum test with a P-value cut offof P <
0.05. (G) Co-immunofluorescence of normal mouse pancreas (N Panc), KPC tumor, and KPC liver metastasis samples of C1q (green), F4/80 (red), E-Cadherin (pink) and DAPI
(blue). Red arrow denotes C1q™ F4/80" macrophage in the normal pancreas. Yellow arrows denote C1q° F4/80" macrophages in KPC tumor and KPC liver metastasis. Inlets
show higher magnification of select macrophages in boxed region. Scale bars, 50 pym.
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Figure 5. Cqg-tumor-associated macrophage (TAM) and Chil-TAM markers are elevated in the iKras* p53* model of pancreatic cancer.

(A) UMAP visualization of scaffolds from control (n = 1) and iKras* p53* mice (n = 1). (B) Average expression heat map of Trem2, Cigb, Chil3, and C1ga in control and iKras*
p53* scaffolds. High expression is in red, whereas low expression is in blue. (C) UMAP visualization of scaffold-associated macrophage (SAM) 1 (navy) and SAM 2 (pink)
macrophage subsets in control and iKras* p53* scaffolds. (D) Violin plots of C1qa, Clgb, Trem2, Chil3, Plac8, and Ly6c2 across SAM 1and SAM 2. (E) UMAP visualization of
CCR2-TAM (green), Chil-TAM (pink), and Cg-TAM (navy) macrophage subsets in control, iKras* and iKras* p53* pancreas samples. (F) Violin plots of Chil3, Plac8, Ly6c2
C1qa, C1gb, and Trem2 across CCR2-TAM, Chil-TAM, and Cq-TAM macrophage subsets. (G) Dot plot of C1ga, C1gb, Trem2, Chil3, Plac8, Ly6c2, Ccr2, Cd74, and H2-Eb1in control,
iKras* and iKras* p53* macrophages. Color represents average expression. Size of the dot represents percent expressed.
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Figure 6. Macrophages in human pancreatic tumors overexpress TREM2 and complement genes.

(A) UMAP visualization of Adj/Norm (n = 3) and pancreatic ductal adenocarcinoma (PDA) tumors (n = 16). (B) Dot plot of TREM2, C1QB, C1QA, and PLACS in human PDA
tumor cell populations. Color of the dot represents average expression, whereas the size of the dot represents expression frequency. (C) UMAP visualization of human
tumor-associated macrophages (TAMs) (pink) and CQ-TAMs (navy) from adjacent normal pancreas (n = 3) and human PDA tumors (n = 16). (D) Violin plots of C1QA, C1QB,
and TREM2 in human TAMs and CQ-TAMs. (E) Violin plots of C1QA, C1QB, and TREM2 in human macrophages from human PDA tumors compared with adjacent normal
pancreas. Statistics were determined using non-parametric Wilcoxon rank sum test with a P-value of P < 0.0001.

blood, as recently determined (Oakes et al, 2020; Morris et al, 2020a).
Relevant to our study, myeloid cells entering scaffolds differentiate
into macrophages, distinct from peripheral blood monocytes.
PDA is characterized by a dense, fibroinflammatory stroma,
which contains a large infiltration of immunosuppressive myeloid
cells. Myeloid cells are a heterogeneous population consisting of
MDSCs and TAMs that contribute to tumor progression and me-
tastasis (Qian & Pollard, 2010). Although TAMs have been well-
described as contributors to PDA tumor progression, no prior study

Complement-high macrophages in pancreatic cancer Kemp et al.

has examined their role systemically in response to a primary
tumor. Here, we have leveraged single-cell RNA sequencing
analysis to identify two distinct systemically induced macro-
phage populations that are specific to mouse and human
pancreatic cancer. In mice one macrophage population up-
regulated Chil3 (Chil-TAMs) in response to disease, whereas
the other population up-regulated C1ga, C1gb, and Trem2 (Cq-
TAMs) in mouse and PDA patients. The role for these genes is
unknown in pancreatic cancer.
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Figure 7. Macrophages in human liver metastases express high levels of TREM2 and complement genes.
(A) UMAP visualization of human liver metastasis samples (n = 5) from pancreatic ductal adenocarcinoma patients. (B) Violin plots of normalized expression of C1QA,
C1QB, and TREMZ in identified cell populations in the liver metastasis lesions from human pancreatic ductal adenocarcinoma patients (n = 5). (C) UMAP visualization of
CQ-tumor-associated macrophages (TAMs) (navy) and TAMs (pink) identified in human liver metastasis samples. (D) Violin plots of normalized expression for C1QA, C1QB,
and TREM2 in CQ-TAMs and TAMs from liver metastasis samples. (E) Average expression heat map for select differentially expressed genes between macrophages from
human liver metastases and human primary tumors. Low expression is shown in blue and high expression in red. All genes plotted are statistically significant, determined
using nonparametric Wilcoxon rank sum test with a P-value cutoff of P < 0.05. (F) Violin plots of normalized expression for IL1A, IL1B, PLAC8, RGST, MRCT, and TREM2 in

macrophages from human liver metastasis and primary tumor samples.

Complement-high macrophages in pancreatic cancer Kemp et al. https://doi.org/10.26508/1sa.202000935 vol 4 | no 6 | €202000935 11 of 17


https://doi.org/10.26508/lsa.202000935

<4< o . o
s2el» Life Science Alliance

Human PBMCs Human circulating monocytes
pDCs { PDA Healthy
Plasma Cells
5
B Cells
Monocyte 1 O QO -
o~
CD8 T Cells| g o
NK CellsH '.'EJ
Granulocyte 5
CD4 T Cells
\O?. \db Q}S\q’ -10
0 «Q~ -5 (1] 5 10 -5 0 5 10
o UMAP-1
Wi e Percent Expressed g 7, ® CQ-Monocytes @ Monocyte 2
@
® Monocyte 1 ® Monocyte 3
Human circulating monocytes
c C1QA C1QB D
51 % 5 51 ﬁ?{. " 5
o ) 4 o 4
% 01 3 g 01 3 Average Expression
= i 2 s - -
35 -51 £ 15 51 1 Healthy : IM
0l 0 qof - 0 00
-0 -5 0 5 10 -10 -5 0 5 10 -04
MAP-1 MAP-1
u u Percent Expressed
TREM2 PLAC8 - 10
e 15
5.
o 51 = 4 o 5] DAL @ . ® 25
& . 3 & o 3 ® 20
: > :
=51 1 =51 1
-0 CR TR I 0 c10A cioB TREM2
-0 -5 0 5 10 -0 -5 0 5 10
UMAP-1 UMAP-1

Figure 8. Complement-high monocyte markers are elevated in the blood of pancreatic cancer patients.

(A) Dot plot of C1QA, C1QB, and TREM2 in identified populations in human PBMCs. Color of the dot represents average expression, whereas the size of the dot represents
expression frequency. (B) UMAP visualization of CQ-monocytes (navy), monocyte 1 (pink), monocyte 2 (green), and monocyte 3 (purple) in human PBMCs in pancreatic
ductal adenocarcinoma (n = 16) and healthy (n = 4). (C) Feature plot of C1QA, C1QB, TREM2, and PLACS in human monocyte subsets in the blood. Blue is high expression and
grey is low expression. (D) Dot plot of C1QA, C1QB, and TREM2 in PBMCs from healthy donors and pancreatic ductal adenocarcinoma patients. High expression is in blue,

low expression is in grey. Size of the dot represents expression frequency.

C1QA and C1QB are components of the complement cascade. The
complement cascade is a crucial mediator of innate immunity and
can be recruited by components of the adaptive immune system to
combat microbial infection, but recently its role in cancer and the
tumor microenvironment has been explored (Bonavita et al, 2015;
Afshar-Kharghan, 2017). Up-regulation of C1QB has been reported in
PBMCs of melanoma patients (Luo et al, 2011). Although C1QA and
C1QB have not been extensively studied, a recent report examined
the role of the complement cascade in PDA. Zhang et al (2019)
reported that TAMs help tumor cells avoid complement-mediated
cell death, providing mechanistic insight into TAM and complement
component cross-talk in pancreatic cancer (Zhang et al, 2019). Our

Complement-high macrophages in pancreatic cancer Kemp et al.

data provide evidence for up-regulation of the complement
components CIQA and C1QB in PDA TAMs systemically. Further
work is needed to determine if the up-regulation of complement
components is a side effect of the systemic inflammation caused by
PDA or if it is functionally contributing to carcinogenesis (Bettac
et al, 2017).

To our knowledge, TREM2 has not been evaluated in pancreatic
cancer, but has been shown to play an immunosuppressive role in
other tumor types (Katzenelenbogen et al, 2020; Molgora et al,
2020). Its family member, triggering receptor expressed on mye-
loid cells 1 (TREM1), however, has been implicated to reduce tumor
burden in PDA (Shen & Sigalov, 2017). Whereas understudied in PDA,
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TREM2 has been extensively evaluated in Alzheimer's disease, a
neurodegenerative disease, which, like cancer, is marked by a chronic
inflammatory response (Kinney et al, 2018). TREM2 is a risk factor for
Alzheimer's disease and is believed to modulate the behavior of
microglia to exacerbate the inflammatory response.

A similar single-cell sequencing approach to ours previously
identified two distinct macrophage subsets in normal renal
tissue across multiple species (Zimmerman et al, 2019). The
authors reported a population of inflammatory macrophages
defined by high expression of Ly6c, Plac8, and Chil3 and a
resident macrophage subset defined by high expression of
Cd81,C1ga, Cigb, and C1gc. Given the similarity of their finding to
ours, these macrophage populations are likely relevant in other
model systems. The gene signature presented here identified
markers that define macrophage/monocyte subsets in mouse
and human pancreatic cancer. The identification of a tumor
associated signature in blood monocytes will potentially be
exploited for diagnostic and prognostic applications in pan-
creatic cancer patients.

Materials and Methods

Study approvals

Allanimal procedures and studies were performed at the University
of Michigan (Protocol Number PRO00007983) in compliance with
the Institutional Animal Care & Use Committee (IACUC) guidelines.
For human research, this study included a dataset that included
patients over the age of 18 yr who received diagnostic endo-
scopic ultrasound for a suspected pancreas mass who were
consented under the Institutional Review Board HUM00041280
(Two additional passes using a 22 Gauge SharkCore needle was
performed for research once biopsy for clinical use was ob-
tained). For surgically resected tissue, patients who underwent
either Whipple of distal pancreatectomy were consented under
Institutional Review Board HUM00025339. For PBMC collection,
up to 40 ml of whole blood was collected pre- and intra-
operatively for all consented patients. All patients provided
written consent and procedures and studies performed were
carried out in accordance to ethical standards. For liver me-
tastasis samples, patients over the age of 18 referred for per-
cutaneous liver biopsy of a mass suspected to be metastatic PDA
were consented according to HUM00025339. Up to 2 extra bi-
opsies were taken for research.

Scaffold fabrication

Implantable, biomaterial scaffolds were formed by mixing poly-
caprolactone microspheres with NaCl particles (250-425 um) at a
1:30 (w/w) ratio as previously described (Rao et al, 2016). This
mixture was then pressed into a 5 mm (diameter) by 2 mm (height)
disc, heated at 60°C for 5 min on each side, and submerged in water
to remove salt particles, leaving a porous structure. The scaffolds
were then sterilized in 70% ethanol and stored in -80°C until
surgical implantation.
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Animal experiments

Mice

C57/BL6) mice (stock number #000664; Jackson Laboratory),
KPC (Hingorani et al, 2005), iKras* (Collins et al, 2012a), and
iKras* p53* (Collins et al, 2012b) mice were used for mouse
experiments. All mice were housed in the Rogel Cancer Center
vivarium at the University of Michigan. Experimental mice were
monitored daily.

Doxycycline treatment

iKras* and iKras* p53*mice were administered doxycycline chow at
8 wk of age (F3949; BioServ) to induce expression of Kras®™?? for 72 h,
followed by 2 d of eight intraperitoneal injections of caerulein (75
ug/kg; Sigma-Aldrich) to induce pancreatitis, as previously de-
scribed (Collins et al, 2012a). Control mice lacked the full set of
alleles and were administered doxycycline chow and caerulein
along with experimental animals. For early lesion samples, iKras*
mice had continuous doxycycline administration for 3 wk after
caerulein. For tumor samples, iKras* p53* mice were continuously
administered doxycycline for 14 wk. Scaffolds were subcutaneously
implanted into iKras* p53* mice that had been administered
doxycycline for 15 wk and harvested 3 wk later.

Scaffold implantation

Mice were anesthetized using isoflurane and the surgical area was
prepared using aseptic technique. Before implantation, scaffolds
were warmed at RT for 30 s and then implanted subcutaneously in
C57/BL6J or iKras* p53* mice. The incision site was closed using
absorbable sutures (#303H; Ethicon). For all experiments, up to
eight scaffolds were implanted per mouse to allow enough cells for
downstream analysis. For orthotopic tumor studies, 7940b (BL/6)
cells derived from the LSL-Kras®™?/*; LSL-Trp53R"7?H/*. pdx1-Cre
(KPC) model of pancreatic cancer (A gift from Dr. Gregory Beatty,
University of Pennsylvania) were orthotopically transplanted into
the pancreas 1 wk after scaffold implantation.

Orthotopic transplantation model

Orthotopic transplantation into the pancreas was performed as
previously described (Aiello et al, 2016). Briefly, 5 x 10% 7940b KPC
(BL/6) cells were prepared in a 1:1 ratio of growth-factor reduced
Matrigel and media (DMEM supplemented with 10% FBS). Mice were
anesthetized using isoflurane and the surgical area was prepared
using aseptic technique. A tumor cell suspension of 50 ul was
injected directly into the pancreas using an insulin syringe. Control,
non-tumor-bearing mice in scaffold experiments received injection
of 50 ul of 50% Matrigel in media.

Histopathological analysis

Scaffolds were removed from -80°C and stored on dry ice until
embedding. For frozen sections, scaffolds were embedded in op-
timal cutting temperature and allowed to solidify over dry ice, then
stored at -80°C until sectioning. Frozen sections were cut at 10 ym.
For immunofluorescent staining on optimal cutting temperature
embedded scaffolds, slides were brought to RT and then sub-
merged in 4% PFA for 12 min at RT, and then washed with three
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changes of PBS. Scaffolds were then blocked with 1% BSA in PBS for
1h at RT, followed by primary antibody incubation overnight at 4°C
and secondary antibody incubation for 45 min at RT. Cell nuclei
were counterstained with Prolong Diamond Antifade Mountant with
DAPI (Invitrogen). Tissues were fixed overnight in 10% buffered
formalin, then transferred to 70% ethanol for paraffin embedding.
Immunohistochemical staining was performed on tissue sections
using the Ventana Discovery Ultra XT autostainer and counter-
stained with hematoxylin. Scaffolds and tissues were imaged on the
Olympus BX53F microscope with the Olympus DP80 digital camera
and CellSens Standard software using the 20x and 40x objectives.
Quantitation of positive immunohistochemical stain was per-
formed using Image ), Fiji V2.0.0-rc-69/1.52p on at least three 20x
magnification fields per sample. For co-immunofluorescence, Alexa
Fluor 488 Tyramide SuperBoost Kit (Invitrogen) with SignalStain
EDTA Unmasking Solution (Cell Signaling) were used for C1q staining
according to manufacturer's protocols, then Alexa Fluor (Invi-
trogen) secondary antibodies were used for F4/80 and E-cad. Cell
nuclei were counterstained with Prolong Diamond Antifade
Mountant with DAPI (Invitrogen). Images were taken using Olympus
BX53F microscope, Olympus DP80 digital camera, and CellSens
Standard software. A list of the antibodies used and corresponding
dilutions can be found in Table S3.

Mass cytometry (CyTOF)

To obtain a single-cell suspension, scaffolds were first enzymati-
cally digested with 1 mg/ml Collagenase P in DMEM for 10 min at
37°C under constant agitation. Scaffolds were then mechanically
digested and allowed further enzymatic digestion for an additional
10 min. Cells are then filtered through a 40-uM mesh. Preparation of
the mouse tissue for CyTOF was performed as previously described
(zhang et al, 2020). Mouse livers were mechanically and enzy-
matically digested for 10 min at 37°C under agitation and filtered
through a 40-uM mesh to obtain single cells. For mouse PBMCs, up
to 1mlofwhole blood was obtained via cardiac puncture into EDTA-
coated syringes and transferred to 15-ml tubes. Tubes were
inverted 10 times and centrifuged at RT at 1,700g for 20 min. Serum
was then removed and the PBMC layer was transferred to a new
tube. PBMCs were washed, underwent ammonium-chloride-
potassium (ACK) lysis for 10 min at RT, and were then centri-
fuged at 300g for 5 min. For both scaffolds, PBMCs and tissues, up to
1 x 107 cells from the single-cell suspension were stained with the
live/dead marker, Cell-ID Cisplatin (#201064; Fluidigm) for 5 min at
RT. Maxpar cell surface staining protocol was followed (PN 400276
As). Cells were stained with a panel of surface antibodies (addi-
tional details can be found in Table S1) for 30 min at RT and then
stored in Cell-ID Intercalator-IR (201192A; Fluidigm) until being
shipped and acquired on the CyTOF2 Mass Cytometer at the Uni-
versity of Rochester Medical Center. Downstream analysis on
normalized FCS files was performed using the Premium CytoBank
Software V7.3.0 (cytobank.org).

Inflammatory gene array and signature

Scaffolds were removed from the subcutaneous space and flash
frozen in liquid nitrogen, then stored at -80°C. Scaffolds were
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submerged in TRl Reagent (#R2050-1-50) and mechanically ho-
mogenized. RNA was extracted using Direct-zol RNA miniprep
(#R2051) with on column DNase | treatment. RNA quality was de-
termined using both NanoDrop results for concentration and purity,
and RNA integrity number (RIN). Samples with a RIN greater than
seven underwent reverse transcription for cDNA synthesis. The
University of Michigan Advanced Genomics Core measured gene
expression using the Mouse Inflammation Tagman OpenArray
(#4475373), a high-throughput gqRT-PCR of 648 inflammatory genes.

Selection of genes for scaffold gene signature

After OpenArray analysis, Cq values were analyzed in MATLAB to
create a gene signature in a manner similarly to that used previ-
ously (Oakes et al, 2020; Morris et al, 2020a). First, any genes that
were not detected in more than two mice in either group were
removed from further analysis, and 549 of the 648 genes on the OA
chip were used for this study. For some downstream analysis (that
requires complete matrices such as singular value decomposition
[SVD]), samples missing data for a particular gene were filled with
the median of the entire dataset. Three reference genes were
selected: Hmbs, Ubc, and Ywhaz and ACq values were calculated for
each gene from the average of the reference genes for that sample.
Fold change and P-values were calculated for diseased versus
control samples for each gene. To create the scaffold gene sig-
nature, genes with a fold change >1.5 and P < 0.1 were selected. This
included: Ifng, Stat1, Ccr2, Irf7, Klrg7, Cx3cr1, Ccl4, I112b, Cxcl10, Ccl11,
Cxcl14, Csf3, Tnfsf11, Nfatc4, F2r, Nox4, Cxcr4, Iléra, 1118bp, Chi313, and
Ccrl1/Ackr4.

Gene signature scores and analysis

Unsupervised hierarchical clustering was performed using the
clustergram tool in MATLAB to plot dendrograms. This process
allows clustering analysis of genes that cluster together as well as
samples and can indicate if diseased scaffolds appear different
from healthy. Next, computational approaches were applied to
create two metrics determined from the scaffolds to indicate
whether a mouse was diseased or healthy. We first created a score
with an unsupervised technique, SVD using the svds function in
MATLAB. Then we trained a bootstrap aggregated decision tree
ensemble (Bagged Tree) with 100 learning cycles using MATLAB's
fitcensemble function with the Bag method to classify samples as
healthy or diseased. The bagged tree ensemble was fed the log2
transformed ACq values centered on the healthy controls as well as
disease classification. This created our second score, a supervised
machine learning metric that indicated the probability of disease.

Single-cell RNA sequencing

Scaffolds and human and mouse tissues were mechanically and
enzymatically digested with collagenase P (1 mg/ml) and filtered
through a 40-uM mesh to obtain single cells. Dead cells were re-
moved using MACS Dead Cell Removal Kit (Miltenyi Biotec Inc.). The
single-cell cDNA libraries were prepared using the 10x Genomics
platform at the University of Michigan, Advanced Genomics Core. All
single-cell RNA sequencing samples were run using paired end
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50 cycle reads on either the HiSeq 4000 or the NovaSeq 6000
(Illumina) to a depth of 100,000 reads. Raw data were aligned to
either mm10 or hg19 for mouse and human, respectively. Data were
then filtered using Cellranger count V3.0.0 with default settings at
the University of Michigan, Advanced Genomics Core. Downstream
analysis was performed using R Studio V3.5.1 and R package Seurat
V3.0. Batch correction across samples was performed using the
R package Harmony V1.0 (https://github.com/immunogenomics/
harmony). Raw human data from the Steele et al study (Steele et al,
2020) are available at the National Institutes of Health (NIH) dbGaP
database under the accession phs002071.v1.p1 and processed data
are available at NIH Gene Expression Omnibus (GEO) database
under the accession GSE155698. Raw and processed data for the
iKras* (3 wk ON) samples are available under the accession
GSE140628 (Zhang et al, 2020). Raw and processed data from this
study are available at the NCBI's GEO database under the accession
GSE158356.

Statistics

GraphPad Prism V7 software was used for graphical representation
and statistical analysis. Two-tailed Student’s t-tests were per-
formed. A P < 0.05 was considered statistically significant. Data are
presented as means + standard error (SEM). Differential expression
analysis in single-cell RNA sequencing data was performed using
Wilcoxon rank sum test, with adjusted P-values for multiple
comparisons.

Data Availability

Raw human data from the Steele et al study (Steele et al, 2020)
are available at the NIH dbGaP database under the accession
phs002071.v1.p1 and processed data are available at NIH GEO da-
tabase under the accession GSE155698. Raw and processed data for
the iKras* (3 wk ON) samples are available under the accession
GSE140628 (Zhang et al, 2020). Raw and processed data from this
study are available at the NCBI's GEO database under the accession
GSE158356.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000935.
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